Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells

  • Authors:
    • Liyuan Mao
    • Qiongyun Chen
    • Ke Gong
    • Xiaolin Xu
    • Yurou Xie
    • Wenqing Zhang
    • Hanwei Cao
    • Tianhui Hu
    • Xiaoting Hong
    • Yan‑Yan Zhan
  • View Affiliations

  • Published online on: March 16, 2018     https://doi.org/10.3892/or.2018.6318
  • Pages: 2436-2442
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hyperactivated glucose uptake and glycolytic metabolism are considered as a hallmark of cancer. Berberine, a natural alkaloid with tumor‑selective anticancer effects, has been shown to promote glucose uptake in metabolic tissues and cells. However, whether and how berberine regulates the glucose metabolism of cancer cells are still poorly understood. In the present study, we revealed that berberine, which suppressed the growth of colon cancer cell lines HCT116 and KM12C, greatly inhibited the glucose uptake and the transcription of glucose metabolic genes, GLUT1, LDHA and HK2 in these two cell lines as assessed by RT‑qPCR. A mechanistic study further indicated that the protein expression but not mRNA transcription of HIF‑1α, a well‑known transcription factor critical for dysregulated cancer cell glucose metabolism, was dramatically inhibited in berberine‑treated colon cancer cell lines. Using western blot analysis, this regulation appears to occur via protein synthesis but not protein stability as blockade of HIF‑1α protein degradation by hypoxia mimic desferrioxamine (DFX) or proteasome inhibitor MG132 did not affect berberine's effect. In addition, mTOR signaling previously reported to regulate HIF‑1α protein synthesis was further found to be suppressed by berberine. Taken together, our results indicated that berberine inhibits overactive glucose metabolism of colon cancer cells via suppressing mTOR‑depended HIF‑1α protein synthesis, which provided not only a novel mechanism involved in berberine's tumor‑specific toxicity but also a theoretical basis for the development of berberine for colon cancer treatment.

References

1 

Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Cicero AF and Tartagni E: Antidiabetic properties of berberine: From cellular pharmacology to clinical effects. Hosp Pract. 40:56–63. 2012. View Article : Google Scholar

4 

Pang B, Zhao LH, Zhou Q, Zhao TY, Wang H, Gu CJ and Tong XL: Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol. 15:9057492015.

5 

Cok A, Plaisier C, Salie MJ, Oram DS, Chenge J and Louters LL: Berberine acutely activates the glucose transport activity of GLUT1. Biochimie. 93:1187–1192. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M and Chen J: Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 56:405–412. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ and Li J: Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta. 1760:1682–1689. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Ortiz LM, Lombardi P, Tillhon M and Scovassi AI: Berberine, an epiphany against cancer. Molecules. 19:12349–12367. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Wang N, Tan HY, Li L, Yuen MF and Feng Y: Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. J Ethnopharmacol. 176:35–48. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Tan W, Li Y, Chen M and Wang Y: Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int J Nanomedicine. 6:1773–1777. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Zou C, Wang Y and Shen Z: 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods. 64:207–215. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC and Hyun CK: Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull. 30:2120–2125. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, Slater G, Weiss A and Burstein DE: GLUT1 glucose transporter expression in colorectal carcinoma: A marker for poor prognosis. Cancer. 83:34–40. 1998. View Article : Google Scholar : PubMed/NCBI

15 

Saigusa S, Toiyama Y, Tanaka K, Okugawa Y, Fujikawa H, Matsushita K, Uchida K, Inoue Y and Kusunoki M: Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy. Surg Today. 42:460–469. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 19:12–16. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Kallio PJ, Wilson WJ, O'Brien S, Makino Y and Poellinger L: Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem. 274:6519–6525. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Demidenko ZN, Rapisarda A, Garayoa M, Giannakakou P, Melillo G and Blagosklonny MV: Accumulation of hypoxia-inducible factor-1alpha is limited by transcription-dependent depletion. Oncogene. 24:4829–4838. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Abraham RT: mTOR as a positive regulator of tumor cell responses to hypoxia. Curr Top Microbiol Immunol. 279:299–319. 2004.PubMed/NCBI

23 

Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Yi P, Lu FE, Xu LJ, Chen G, Dong H and Wang KF: Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 14:876–883. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Zhang CH, Yu RY, Liu YH, Tu XY, Tu J, Wang YS and Xu GL: Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. J Ethnopharmaco. 151:864–872. 2014. View Article : Google Scholar

26 

Inoue K, Kulsum U, Chowdhury SA, Fujisawa S, Ishihara M, Yokoe I and Sakagami H: Tumor-specific cytotoxicity and apoptosis-inducing activity of berberines. Anticancer Res. 25:4053–4059. 2005.PubMed/NCBI

27 

Liu B, Wang G, Yang J, Pan X, Yang Z and Zang L: Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes. PLoS One. 6:e214162011. View Article : Google Scholar : PubMed/NCBI

28 

Wang L, Liu L, Shi Y, Cao H, Chaturvedi R, Calcutt MW, Hu T, Ren X, Wilson KT, Polk DB and Yan F: Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor. PLoS One. 7:e364182012. View Article : Google Scholar : PubMed/NCBI

29 

Murthy Chidambara KN, Jayaprakasha GK and Patil BS: The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol. 688:14–21. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Yu T, Tang B and Sun X: Development of Inhibitors Targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med J. 58:489–496. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Melillo G: Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26:341–352. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Yang X, Yang B, Cai J, Zhang C, Zhang Q, Xu L, Qin Q, Zhu H, Ma J, Tao G, et al: Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol Ther. 14:1068–1073. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Lin S, Tsai SC, Lee CC, Wang BW, Liou JY and Shyu KG: Berberine inhibits HIF-1 alpha expression via enhanced proteolysis. Mol Pharmacol. 66:612–619. 2004.PubMed/NCBI

34 

Zhang C, Yang X, Zhang Q, Yang B, Xu L, Qin Q, Zhu H, Liu J, Cai J, Tao G, et al: Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1α expression. Acta Otolaryngol. 134:185–192. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Zhang Q, Zhang C, Yang X, Yang B, Wang J, Kang Y, Wang Z, Li D, Huang G, Ma Z, et al: Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer. Diagn Pathol. 9:982014. View Article : Google Scholar : PubMed/NCBI

36 

Dazert E and Hall MN: mTOR signaling in disease. Curr Opin Cell Biol. 23:744–755. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Chen ZZ: Berberine induced apoptosis of human osteosarcoma cells by inhibiting phosphoinositide 3 kinase/protein kinase B (PI3K/Akt) signal pathway activation. Iran J Public Health. 45:578–585. 2016.PubMed/NCBI

39 

Kou Y, Li L, Li H, Tan Y, Li B, Wang K and Du B: Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells. Biochem Biophys Res Commun. 479:290–296. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Milella M, Falcone I, Conciatori F, Matteoni S, Sacconi A, De Luca T, Bazzichetto C, Corbo V, Simbolo M, Sperduti I, et al: PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep. 7:430132017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2018
Volume 39 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Mao, L., Chen, Q., Gong, K., Xu, X., Xie, Y., Zhang, W. ... Zhan, Y. (2018). Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells. Oncology Reports, 39, 2436-2442. https://doi.org/10.3892/or.2018.6318
MLA
Mao, L., Chen, Q., Gong, K., Xu, X., Xie, Y., Zhang, W., Cao, H., Hu, T., Hong, X., Zhan, Y."Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells". Oncology Reports 39.5 (2018): 2436-2442.
Chicago
Mao, L., Chen, Q., Gong, K., Xu, X., Xie, Y., Zhang, W., Cao, H., Hu, T., Hong, X., Zhan, Y."Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells". Oncology Reports 39, no. 5 (2018): 2436-2442. https://doi.org/10.3892/or.2018.6318