Bortezomib improves adoptive carbonic anhydrase IX‑specific chimeric antigen receptor‑modified NK92 cell therapy in mouse models of human renal cell carcinoma

  • Authors:
    • Qing Zhang
    • Jinjing Xu
    • Jiage Ding
    • Hongyan Liu
    • Huizhong Li
    • Hailong Li
    • Mengmeng Lu
    • Yangna Miao
    • Zhenzhen Wang
    • Qiang Fu
    • Junnian Zheng
  • View Affiliations

  • Published online on: September 24, 2018     https://doi.org/10.3892/or.2018.6731
  • Pages: 3714-3724
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Adoptive chimeric antigen receptor (CAR) T or NK cells offer new options for cancer treatment. Clinical results indicate that CAR‑modified T cell (CAR‑T) therapy has curative therapeutic efficacy for hematological malignancies. However, the efficacy of the therapy in most solid tumors, including advanced renal cell carcinoma (RCC), remains highly limited. New regimens, including combination of CAR‑T cells with chemical drugs, must be studied to enhance the therapeutic efficacy of CAR‑T or NK cells for solid tumors. In the present study, a carbonic anhydrase IX (CAIX)‑specific third‑generation CAR was transduced into NK92 cells by lentiviral vectors. The immune effects, including cytokine release and cytotoxicity, of the CAR‑NK92 cells against CAIX‑positive RCC cells were evaluated in vitro. Combination therapeutic effects of bortezomib and CAR‑NK92 cells were analyzed in a mouse model with human RCC xenografts. The results revealed that CAIX‑specific CAR‑NK92 cells specifically recognized in vitro cultured CAIX‑positive RCC cells and released cytokines, including IFN‑γ, perforin and granzyme B, and exhibited specific cytotoxicity. The cytotoxicity of the CAR‑NK92 cells was enhanced after treating RCC cells with bortezomib in vitro. The suppressive efficacy of bortezomib combined with CAR‑NK92 cells against established CAIX‑positive tumor xenografts was more significant than that of the monotherapy with either CAR‑NK92 cells or bortezomib. Therefore, bortezomib can enhance the effects of the CAR‑NK92 cells against RCC in vitro and in vivo. This study provided an experimental basis for the novel clinical regimen of CAIX‑specific CAR‑modified NK or T cells for the treatment of RCC.

References

1 

Kuusk T, Grivas N, de Bruijn R and Bex A: The current management of renal cell carcinoma. Minerva Med. 108:357–369. 2017.PubMed/NCBI

2 

Linehan WM and Ricketts CJ: Kidney cancer in 2016: RCC-advances in targeted therapeutics and genomics. Nat Rev Urol. 14:76–78. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Fisher RI, Rosenberg SA and Fyfe G: Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 6 Suppl 1:S55–S57. 2000.PubMed/NCBI

4 

Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH and White DE: Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 271:907–913. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Zhang Q, Li H, Yang J, Li L, Zhang B, Li J and Zheng J: Strategies to improve the clinical performance of chimeric antigen receptor-modified T cells for cancer. Curr Gene Ther. 13:65–70. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Geyer MB and Brentjens RJ: Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy. 18:1393–1409. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, et al: B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 119:2709–2720. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, Diouf O, Liu E, Barrett AJ, Ito S, et al: Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study. Blood. 122:2965–2973. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Lim WA and June CH: The principles of engineering immune cells to treat cancer. Cell. 168:724–740. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Lamers CH, Klaver Y, Gratama JW, Sleijfer S and Debets R: Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells-a completed study overview. Biochem Soc Trans. 44:951–959. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Weijtens ME, Willemsen RA, Valerio D, Stam K and Bolhuis RL: Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol. 157:836–843. 1996.PubMed/NCBI

12 

Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, et al: Human natural killer cells: News in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother. 65:465–476. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, et al: Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 313:1485–1492. 1985. View Article : Google Scholar : PubMed/NCBI

14 

Law TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O'Connell M, Khan A, Vlamis V, Vogelzang NJ and Bajorin DF: Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer. 76:824–832. 1995. View Article : Google Scholar : PubMed/NCBI

15 

Parkhurst MR, Riley JP, Dudley ME and Rosenberg SA: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 17:6287–6297. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105:3051–3057. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH and Leung W: NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 28:955–959. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, et al: Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 118:3273–3279. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M and Rossig C: 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res. 15:4857–4866. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg H, Hartmann W, et al: Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology. 6:e12500502017. View Article : Google Scholar : PubMed/NCBI

21 

Muller N, Michen S, Tietze S, Töpfer K, Schulte A, Lamszus K, Schmitz M, Schackert G, Pastan I and Temme A: Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother. 38:197–210. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, et al: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 13:98–107. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Gong JH, Maki G and Klingemann HG: Characterization of a human cell-line (Nk-92) with phenotypical and functional-characteristics of activated Natural killer cells. Leukemia. 8:652–658. 1994.PubMed/NCBI

24 

Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J and Klingemann H: Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy. 10:625–632. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Tam YK, Martinson JA, Doligosa K and Klingemann HG: Ex vivo expansion of the highly cytotoxic human natural killer cell line NK-92 under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy. 5:259–272. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Tonn T, Becker S, Esser R, Schwabe D and Seifried E: Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematoth Stem Cell. 10:535–544. 2001. View Article : Google Scholar

27 

Boissel L, Betancur M, Wels WS, Tuncer H and Klingemann H: Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 33:1255–1259. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Muller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T and Wels WS: Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother. 57:411–423. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Schonfeld K, Sahm C, Zhang C, Naundorf S, Brendel C, Odendahl M, Nowakowska P, Bönig H, Köhl U, Kloess S, et al: Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther. 23:330–338. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, et al: ErbB2/HER2-Specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 108:2016. View Article : Google Scholar

31 

Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schönfeld K, et al: NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med. 16:569–581. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Sahm C, Schönfeld K and Wels WS: Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother. 61:1451–1461. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, et al: CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 28:917–927. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, Zeng T, Huang H, Zhang X, Sun W, et al: Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 8:297–310. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Genssler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, Steinbach JP and Wels WS: Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology. 5:e11193542016. View Article : Google Scholar : PubMed/NCBI

36 

Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, Chen L, Wang Y, Wang H, Yi L, et al: A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget. 7:27764–27777. 2016.PubMed/NCBI

37 

Han J, Chu J, Chan Keung W, Zhang J, Wang Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P, et al: CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 5:114832015. View Article : Google Scholar : PubMed/NCBI

38 

Chen KH, Wada M, Firor AE, Pinz KG, Jares A, Liu H, Salman H, Golightly M, Lan F, Jiang X and Ma Y: Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget. 7:56219–56232. 2016.PubMed/NCBI

39 

Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A, Firor AE, Shuai X, Salman H, Golightly M, et al: Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia. 31:2151–2160. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Rezvani K and Rouce RH: The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 6:5782015. View Article : Google Scholar : PubMed/NCBI

41 

Xu J, Tian K, Zhang H, Li L, Liu H, Liu J, Zhang Q and Zheng J: Chimeric antigen receptor-T cell therapy for solid tumors require new clinical regimens. Expert Rev Anticancer Ther. 17:1099–1106. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Orlowski M and Wilk S: Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 383:1–16. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Lilienbaum A: Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol. 4:1–26. 2013.PubMed/NCBI

44 

Chen D, Frezza M, Schmitt S, Kanwar J and Dou QP: Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives. Curr Cancer Drug Targets. 11:239–253. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Manasanch EE and Orlowski RZ: Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 14:417–433. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Richardson PG, Hideshima T and Anderson KC: Bortezomib (PS-341): A novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 10:361–369. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Huang Z, Wu Y, Zhou X, Xu J, Zhu W, Shu Y and Liu P: Efficacy of therapy with bortezomib in solid tumors: A review based on 32 clinical trials. Future Oncol. 10:1795–1807. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Kondagunta GV, Drucker B, Schwartz L, Bacik J, Marion S, Russo P, Mazumdar M and Motzer RJ: Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol. 22:3720–3725. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Pellom ST Jr, Singhal A and Shanker A: Prospects of combining adoptive cell immunotherapy with bortezomib. Immunotherapy. 9:305–308. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Ames E, Hallett WH and Murphy WJ: Sensitization of human breast cancer cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin Exp Immunol. 155:504–513. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Zhang Q, Wang H, Li H, Xu J, Tian K, Yang J, Lu Z and Zheng J: Chimeric antigen receptor-modified T cells inhibit the growth and metastases of established tissue factor-positive tumors in NOG mice. Oncotarget. 8:9488–9499. 2017.PubMed/NCBI

52 

Armeanu S, Krusch M, Baltz KM, Weiss TS, Smirnow I, Steinle A, Lauer UM, Bitzer M and Salih HR: Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res. 14:3520–3528. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredini D, Berg M and Childs R: Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: A novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 66:7317–7325. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, Storrie B, Mulder A, Shaughnessy JD Jr, Barlogie B and van Rhee F: Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood. 111:1309–1317. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Hallett WH, Ames E, Motarjemi M, Barao I, Shanker A, Tamang DL, Sayers TJ, Hudig D and Murphy WJ: Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol. 180:163–170. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Finney HM, Lawson AD, Bebbington CR and Weir AN: Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 161:2791–2797. 1998.PubMed/NCBI

57 

Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, et al: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 106:3360–3365. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Lundqvist A, Yokoyama H, Smith A, Berg M and Childs R: Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood. 113:6120–6127. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, Zhou Y, Xu D, Xu J, Zhao L, et al: Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and γδ T cell-mediated lysis in multiple myeloma. Oncotarget. 8:5954–5964. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Seeger JM, Schmidt P, Brinkmann K, Hombach AA, Coutelle O, Zigrino P, Wagner-Stippich D, Mauch C, Abken H, Krönke M and Kashkar H: The proteasome inhibitor bortezomib sensitizes melanoma cells toward adoptive CTL attack. Cancer Res. 70:1825–1834. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Thounaojam MC, Dudimah DF, Pellom ST Jr, Uzhachenko RV, Carbone DP, Dikov MM and Shanker A: Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-κB crosstalk. Oncotarget. 6:32439–32455. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Pellom ST Jr, Dudimah DF, Thounaojam MC, Uzhachenko RV, Singhal A, Richmond A and Shanker A: Bortezomib augments lymphocyte stimulatory cytokine signaling in the tumor microenvironment to sustain CD8+ T cell antitumor function. Oncotarget. 8:8604–8621. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 40 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Q., Xu, J., Ding, J., Liu, H., Li, H., Li, H. ... Zheng, J. (2018). Bortezomib improves adoptive carbonic anhydrase IX‑specific chimeric antigen receptor‑modified NK92 cell therapy in mouse models of human renal cell carcinoma. Oncology Reports, 40, 3714-3724. https://doi.org/10.3892/or.2018.6731
MLA
Zhang, Q., Xu, J., Ding, J., Liu, H., Li, H., Li, H., Lu, M., Miao, Y., Wang, Z., Fu, Q., Zheng, J."Bortezomib improves adoptive carbonic anhydrase IX‑specific chimeric antigen receptor‑modified NK92 cell therapy in mouse models of human renal cell carcinoma". Oncology Reports 40.6 (2018): 3714-3724.
Chicago
Zhang, Q., Xu, J., Ding, J., Liu, H., Li, H., Li, H., Lu, M., Miao, Y., Wang, Z., Fu, Q., Zheng, J."Bortezomib improves adoptive carbonic anhydrase IX‑specific chimeric antigen receptor‑modified NK92 cell therapy in mouse models of human renal cell carcinoma". Oncology Reports 40, no. 6 (2018): 3714-3724. https://doi.org/10.3892/or.2018.6731