|
1
|
Xiong T, Qu Y, Mu D and Ferriero D:
Erythropoietin for neonatal brain injury: opportunity and
challenge. Int J Dev Neurosci. 29:583–591. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Levi-Montalcini R: The nerve growth factor
35 years later. Science. 237:1154–1162. 1987.PubMed/NCBI
|
|
3
|
Gotz R, Koster R, Winkler C, et al:
Neurotrophin-6 is a new member of the nerve growth factor family.
Nature. 372:266–269. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lessmann V and Brigadski T: Mechanisms,
locations, and kinetics of synaptic BDNF secretion: an update.
Neurosci Res. 65:11–22. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang J, Siao CJ, Nagappan G, et al:
Neuronal release of proBDNF. Nat Neurosci. 12:113–115. 2009.
View Article : Google Scholar
|
|
6
|
Mowla SJ, Farhadi HF, Pareek S, et al:
Biosynthesis and post-translational processing of the precursor to
brain-derived neurotrophic factor. J Biol Chem. 276:12660–12666.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lu B: Pro-region of neurotrophins: role in
synaptic modulation. Neuron. 39:735–738. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pang PT, Teng HK, Zaitsev E, et al:
Cleavage of proBDNF by tPA/plasmin is essential for long-term
hippocampal plasticity. Science. 306:487–491. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lee R, Kermani P, Teng KK and Hempstead
BL: Regulation of cell survival by secreted proneurotrophins.
Science. 294:1945–1948. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Seidah NG, Benjannet S, Pareek S, Chretien
M and Murphy RA: Cellular processing of the neurotrophin precursors
of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett.
379:247–250. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Goodman LJ, Valverde J, Lim F, et al:
Regulated release and polarized localization of brain-derived
neurotrophic factor in hippocampal neurons. Mol Cell Neurosci.
7:222–238. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Thomas K and Davies A: Neurotrophins: a
ticket to ride for BDNF. Curr Biol. 15:R262–R264. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Boutilier J, Ceni C, Pagdala PC, Forgie A,
Neet KE and Barker PA: Proneurotrophins require endocytosis and
intracellular proteolysis to induce TrkA activation. J Biol Chem.
283:12709–12716. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen ZY, Bath K, McEwen B, Hempstead B and
Lee F: Impact of genetic variant BDNF (Val66Met) on brain structure
and function. Novartis Found Symp. 289:180–195. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu H and Chen ZY: The role of BDNF in
depression on the basis of its location in the neural circuitry.
Acta Pharmacol Sin. 32:3–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tapia-Arancibia L, Rage F, Givalois L and
Arancibia S: Physiology of BDNF: focus on hypothalamic function.
Front Neuroendocrinol. 25:77–107. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yamamoto H and Gurney ME: Human platelets
contain brain-derived neurotrophic factor. J Neurosci.
10:3469–3478. 1990.PubMed/NCBI
|
|
18
|
Bejot Y, Prigent-Tessier A, Cachia C, et
al: Time-dependent contribution of non neuronal cells to BDNF
production after ischemic stroke in rats. Neurochem Int.
58:102–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cassiman D, Denef C, Desmet VJ and Roskams
T: Human and rat hepatic stellate cells express neurotrophins and
neurotrophin-receptors. Hepatology. 33:148–158. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Aid T, Kazantseva A, Piirsoo M, Palm K and
Timmusk T: Mouse and rat BDNF gene structure and expression
revisited. J Neurosci Res. 85:525–535. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pruunsild P, Kazantseva A, Aid T, Palm K
and Timmusk T: Dissecting the human BDNF locus: bidirectional
transcription, complex splicing, and multiple promoters. Genomics.
90:397–406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Givalois L, Marmigere F, Rage F, Ixart G,
Arancibia S and Tapia-Arancibia L: Immobilization stress rapidly
and differentially modulates BDNF and TrkB mRNA expression in the
pituitary gland of adult male rats. Neuroendocrinology. 74:148–159.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tongiorgi E and Baj G: Functions and
mechanisms of BDNF mRNA trafficking. Novartis Found Symp.
289:136–195. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Greenberg ME, Xu B, Lu B and Hempstead BL:
New insights in the biology of BDNF synthesis and release:
implications in CNS function. J Neurosci. 29:12764–12767. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Teng HK, Teng KK, Lee R, et al: ProBDNF
induces neuronal apoptosis via activation of a receptor complex of
p75NTRand sortilin. J Neurosci. 25:5455–5463. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Massa SM, Yang T, Xie Y, et al: Small
molecule BDNF mimetics activate TrkB signaling and prevent neuronal
degeneration in rodents. J Clin Invest. 120:1774–1785. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Numakawa T, Suzuki S, Kumamaru E, Adachi
N, Richards M and Kunugi H: BDNF function and intracellular
signaling in neurons. Histol Histopathol. 25:237–258.
2010.PubMed/NCBI
|
|
28
|
Han BH, D’Costa A, Back SA, et al: BDNF
blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol
Dis. 7:38–53. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen AI, Nguyen CN, Copenhagen DR, et al:
TrkB (tropomyosin-related kinase B) controls the assembly and
maintenance of GABAergic synapses in the cerebellar cortex. J
Neurosci. 31:2769–2780. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wong J, Woon HG and Weickert CS: Full
length TrkB potentiates estrogen receptor alpha mediated
transcription suggesting convergence of susceptibility pathways in
schizophrenia. Mol Cell Neurosci. 46:67–78. 2011. View Article : Google Scholar
|
|
31
|
Luberg K, Wong J, Weickert CS and Timmusk
T: Human TrkB gene: novel alternative transcripts, protein isoforms
and expression pattern in the prefrontal cerebral cortex during
postnatal development. J Neurochem. 113:952–964. 2010. View Article : Google Scholar
|
|
32
|
Zampieri N and Chao MV: Mechanisms of
neurotrophin receptor signalling. Biochem Soc Trans. 34:607–611.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Skaper SD, Floreani M, Negro A, Facci L
and Giusti P: Neurotrophins rescue cerebellar granule neurons from
oxidative stress-mediated apoptotic death: selective involvement of
phosphatidylinositol 3-kinase and themitogen-activated protein
kinase pathway. J Neurochem. 70:1859–1868. 1998. View Article : Google Scholar
|
|
34
|
Huang EJ and Reichardt LF: Trk receptors:
roles in neuronal signal transduction. Annu Rev Biochem.
72:609–642. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lessmann V, Gottmann K and Malcangio M:
Neurotrophin secretion: current facts and future prospects. Prog
Neurobiol. 69:341–374. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Han BH and Holtzman DM: BDNF protects the
neonatal brain from hypoxic-ischemic injury in vivo via the ERK
pathway. J Neurosci. 20:5775–5781. 2000.PubMed/NCBI
|
|
37
|
Sun X, Zhou H, Luo X, et al:
Neuroprotection of brain-derived neurotrophic factor against
hypoxic injury in vitro requires activation of extracellular
signal-regulated kinase and phosphatidylinositol 3-kinase. Int J
Dev Neurosci. 26:363–370. 2008. View Article : Google Scholar
|
|
38
|
Amaral MD and Pozzo-Miller L: BDNF induces
calcium elevations associated with IBDNF, a nonselective cationic
current mediated by TRPC channels. J Neurophysiol. 98:2476–2482.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Angelo MF, Aviles-Reyes RX, Villarreal A,
Barker P, Reines AG and Ramos AJ: p75 NTR expression is induced in
isolated neurons of the penumbra after ischemia by cortical
devascularization. J Neurosci Res. 87:1892–1903. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dechant G and Barde YA: The neurotrophin
receptor p75(NTR): novel functions and implications for diseases of
the nervous system. Nat Neurosci. 5:1131–1136. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ho R, Minturn JE, Simpson AM, et al: The
effect of P75 on Trk receptors in neuroblastomas. Cancer Lett.
305:76–85. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kenchappa RS, Tep C, Korade Z, et al: p75
neurotrophin receptor-mediated apoptosis in sympathetic neurons
involves abiphasic activation of JNK and up-regulation of tumor
necrosisfactor-alpha-converting enzyme/ADAM17. J Biol Chem.
285:20358–20368. 2010. View Article : Google Scholar
|
|
43
|
Schecterson LC and Bothwell M:
Neurotrophin receptors: old friends with new partners. Dev
Neurobiol. 70:332–338. 2010.PubMed/NCBI
|
|
44
|
Lou H, Kim SK, Zaitsev E, Snell CR, Lu B
and Loh YP: Sorting and activity-dependent secretion of BDNF
require interaction of aspecific motif with the sorting receptor
carboxypeptidase e. Neuron. 45:245–255. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lou H, Park JJ, Cawley NX, et al:
Carboxypeptidase E cytoplasmic tail mediates localization of
synaptic vesicles to the pre-active zone in hypothalamic
pre-synaptic terminals. J Neurochem. 114:886–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kuczewski N, Porcher C, Lessmann V, Medina
I and Gaiarsa JL: Activity-dependent dendritic release of BDNF and
biological consequences. Mol Neurobiol. 39:37–49. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pallesen LT and Vaegter CB: Sortilin and
SorLA regulate neuronal sorting of trophic and dementia-linked
proteins. Mol Neurobiol. 45:379–387. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Evans SF, Irmady K, Ostrow K, et al:
Neuronal brain-derived neurotrophic factor is synthesized in
excess, with levels regulated by sortilin-mediated trafficking and
lysosomal degradation. J Biol Chem. 286:29556–29567. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shah PS, Ohlsson A and Perlman M:
Hypothermia to treat neonatal hypoxic ischemic encephalopathy:
systematic review. Arch Pediatr Adolesc Med. 161:951–958. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chalak LF, Rollins N, Morriss MC, Brion
LP, Heyne R and Sanchez PJ: Perinatal acidosis and hypoxic-ischemic
encephalopathy in preterm infants of 33 to 35 weeks’ gestation. J
Pediatr. 160:388–394. 2012.PubMed/NCBI
|
|
51
|
Szydlowska K and Tymianski M: Calcium,
ischemia and excitotoxicity. Cell Calcium. 47:122–129. 2010.
View Article : Google Scholar
|
|
52
|
Zhang J, Yu Z, Yu Z, et al: rAAV-mediated
delivery of brain-derived neurotrophic factor promotes neurite
outgrowth and protects neurodegeneration in focal ischemic model.
Int J Clin Exp Pathol. 4:496–504. 2011.
|
|
53
|
Liu Z, Ma D, Feng G, Ma Y and Hu H:
Recombinant AAV-mediated expression of human BDNF protects neurons
against cell apoptosis in Abeta-induced neuronal damage model. J
Huazhong Univ Sci Technolog Med Sci. 27:233–236. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Takeshima Y, Nakamura M, Miyake H, et al:
Neuroprotection with intraventricular brain-derived neurotrophic
factor in rat venous occlusion model. Neurosurgery. 68:1334–1341.
2011.PubMed/NCBI
|
|
55
|
Kiprianova I, Freiman TM, Desiderato S, et
al: Brain-derived neurotrophic factor prevents neuronal death and
glial activation after global ischemia in the rat. J Neurosci Res.
56:21–27. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kurokawa T, Katai N, Shibuki H, et al:
BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons
in retinal-ganglion cell layer after transient ischemia. Invest
Ophthalmol Vis Sci. 40:3006–3011. 1999.PubMed/NCBI
|
|
57
|
Neumann J, Gunzer M, Gutzeit HO, Ullrich
O, Reymann KG and Dinkel K: Microglia provide neuroprotection after
ischemia. FASEB J. 20:714–716. 2006.PubMed/NCBI
|
|
58
|
Lai AY and Todd KG: Differential
regulation of trophic and proinflammatory microglial effectors is
dependent on severity of neuronal injury. Glia. 56:259–270. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang J, Geula C, Lu C, Koziel H, Hatcher
LM and Roisen FJ: Neurotrophins regulate proliferation and survival
of two microglial cell lines in vitro. Exp Neurol. 183:469–481.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang Y, Wei N, Lu T, Zhu J, Xu G and Liu
X: Intranasal brain-derived neurotrophic factor protects brain from
ischemic insult via modulating local inflammation in rats.
Neuroscience. 172:398–405. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nakajima K and Kohsaka S: Microglia:
neuroprotective and neurotrophic cells in the central nervous
system. Curr Drug Targets Cardiovasc Haematol Disord. 4:65–84.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
McCoy MK and Tansey MG: TNF signaling
inhibition in the CNS: implications for normal brain function and
neurodegenerative disease. J Neuroinflammation. 5:452008.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Frenkel D, Pachori AS, Zhang L, et al:
Nasal vaccination with troponin reduces troponin specific T-cell
responses and improves heart function in myocardial
ischemia-reperfusion injury. Int Immunol. 21:817–829. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Peng CH, Chiou SH, Chen SJ, et al:
Neuroprotection by Imipramine against lipopolysaccharide-induced
apoptosis in hippocampus-derived neural stem cells mediated by
activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol.
18:128–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Casalbore P, Barone I, Felsani A, et al:
Neural stem cells modified to express BDNF antagonize
trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase
pathways. J Cell Physiol. 224:710–721. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sakai R, Ukai W, Sohma H, et al:
Attenuation of brain derived neurotrophic factor (BDNF) by ethanol
and cytoprotective effect of exogenous BDNF against ethanol damage
in neuronal cells. J Neural Transm. 112:1005–1013. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kume T, Kouchiyama H, Kaneko S, et al:
BDNF prevents NO mediated glutamate cytotoxicity in cultured
cortical neurons. Brain Res. 756:200–204. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Endres M, Dirnagl U and Moskowitz MA: The
ischemic cascade and mediators of ischemic injury. Handb Clin
Neurol. 92:31–41. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Akaike A, Katsuki H, Kume T and Maeda T:
Reactive oxygen species in NMDA receptor-mediated glutamate
neurotoxicity. Parkinsonism Relat Disord. 5:203–207. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Crozier RA, Bi C, Han YR and Plummer MR:
BDNF modulation of NMDA receptors is activity-dependent. J
Neurophysiol. 100:3264–3274. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Georgiev DD, Taniura H, Kambe Y and Yoneda
Y: Crosstalk between brain-derived neurotrophic factor and
N-methyl-D-aspartate receptor signaling in neurons. Biomed Rev.
19:17–27. 2008. View Article : Google Scholar
|
|
72
|
Zhu JM, Zhao YY, Chen SD, Zhang WH, Lou L
and Jin X: Functional recovery after transplantation of neural stem
cells modified by brain-derived neurotrophic factor in rats with
cerebral ischaemia. J Int Med Res. 39:488–498. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Horch HW, Kruttgen A, Portbury SD and Katz
LC: Destabilization of cortical dendrites and spines by BDNF.
Neuron. 23:353–364. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schabitz WR, Berger C, Kollmar R, et al:
Effect of brain-derived neurotrophic factor treatment and forced
arm use on functional motor recovery after small cortical ischemia.
Stroke. 35:992–997. 2004. View Article : Google Scholar
|
|
75
|
Lopatina T, Kalinina N, Karagyaur M, et
al: Adipose-derived stem cells stimulate regeneration of peripheral
nerves: BDNF secreted by these cells promotes nerve healing and
axon growth de novo. PLoS One. 6:e178992011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Johnston MV, Trescher WH, Ishida A and
Nakajima W: Neurobiology of hypoxic-ischemic injury in the
developing brain. Pediatr Res. 49:735–741. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Husson I, Rangon CM, Lelievre V, et al:
BDNF-induced white matter neuroprotection and stage-dependent
neuronal survival following a neonatal excitotoxic challenge. Cereb
Cortex. 15:250–261. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Binder DK: The role of BDNF in epilepsy
and other diseases of the mature nervous system. Adv Exp Med Biol.
548:34–56. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Binder DK, Croll SD, Gall CM and Scharfman
HE: BDNF and epilepsy: too much of a good thing. Trends Neurosci.
24:47–53. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Blurton-Jones M, Kitazawa M,
Martinez-Coria H, et al: Neural stem cells improve cognition via
BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci
USA. 106:13594–13599. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kiprianova I, Sandkuhler J, Schwab S,
Hoyer S and Spranger M: Brain-derived neurotrophic factor improves
long-term potentiation and cognitive functions after transient
forebrain ischemia in the rat. Exp Neurol. 159:511–519. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Griesbach GS, Hovda DA and Gomez-Pinilla
F: Exercise-induced improvement in cognitive performance after
traumatic brain injury in rats is dependent on BDNF activation.
Brain Res. 1288:105–115. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bekinschtein P, Cammarota M, Katche C, et
al: BDNF is essential to promote persistence of long-term memory
storage. Proc Natl Acad Sci USA. 105:2711–2716. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kubo T, Nonomura T, Enokido Y and Hatanaka
H: Brain-derived neurotrophic factor (BDNF) can prevent apoptosis
of rat cerebellar granule neurons in culture. Brain Res Dev Brain
Res. 85:249–258. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bhave SV, Ghoda L and Hoffman PL:
Brain-derived neurotrophic factor mediates the anti-apoptotic
effect of NMDA in cerebellar granule neurons: signal transduction
cascades and site of ethanol action. J Neurosci. 19:3277–3286.
1999.
|
|
86
|
Han Q, Li B, Feng H, et al: The promotion
of cerebral ischemia recovery in rats by laminin-binding BDNF.
Biomaterials. 32:5077–5085. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhou H, Mao M, Liu W, Li S and Wang H:
Expression of BDNF Receptor TrkBmRNA in hypoxia-induced fetal
cortical neurons. J West China Univ Med Sci. 33:573–576. 2002.
|
|
88
|
Luo XL, Mao M, Zhou H, Sun XM and Li SF:
Neuroprotective effect of BDNF on hypoxia for embryonic rat
cortical neurons in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban.
37:373–377. 2006.(In Chinese).
|
|
89
|
Meng M, Zhiling W, Hui Z, Shengfu L, Dan Y
and Jiping H: Cellular levels of TrkB and MAPK in the
neuroprotective role of BDNF for embryonic rat cortical neurons
against hypoxia in vitro. Int J Dev Neurosci. 23:515–521. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Meng M, Dan Y, Jie Z, Hui Z and Zhiling W:
Effect of brain-derived neurotrophic factor on apoptosis of embryo
brain suffered from intrauterine hypoxic-ischemic injury. J Appl
Clin Pediatr. 19:1062–1064. 2004.
|
|
91
|
Ostrowski RP, Graupner G, Titova E, et al:
The hyperbaric oxygen preconditioning-induced brain protection is
mediated by a reduction of early apoptosis after transient global
cerebral ischemia. Neurobiol Dis. 29:1–13. 2008. View Article : Google Scholar
|
|
92
|
Park JH, Joo HS, Yoo KY, et al: Extract
from Terminalia chebula seeds protect against experimental
ischemic neuronal damage via maintaining SODs and BDNF levels.
Neurochem Res. 36:2043–2050. 2011.
|
|
93
|
Lee CH, Park JH, Yoo KY, et al: Pre- and
post-treatments with escitalopram protect against experimental
ischemic neuronal damage via regulation of BDNF expression and
oxidative stress. Exp Neurol. 229:450–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu W, Sun X, Zhou H, Luo X and Mao M:
Correlation of a protective effect of brain-derived neurotrophic
factor on hypoxic neurons to extracellular signal-regulated kinase.
J Clin Rehabil Tissue Eng Res. 12:3884–3888. 2008.
|
|
95
|
Alcala-Barraza SR, Lee MS, Hanson LR,
McDonald AA, Frey WH II and McLoon LK: Intranasal delivery of
neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug
Target. 18:179–190. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Guan J, Tong W, Ding W, et al: Neuronal
regeneration and protection by collagen-binding BDNF in the rat
middle cerebral artery occlusion model. Biomaterials. 33:1386–1395.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kim SH, Won SJ, Sohn S, et al:
Brain-derived neurotrophic factor can act as a pronecrotic factor
through transcriptional and translational activation of NADPH
oxidase. J Cell Biol. 159:821–831. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hwang JJ, Choi SY and Koh JY: The role of
NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose)
polymerase in oxidative neuronal death induced in cortical cultures
by brain-derived neurotrophic factor and neurotrophin-4/5. J
Neurochem. 82:894–902. 2002. View Article : Google Scholar
|
|
99
|
Kingwell K: Neurodegenerative disease:
BDNF copycats. Nat Rev Drug Discov. 9:4332010. View Article : Google Scholar : PubMed/NCBI
|