|
1
|
Bi WR, Jin CX, Xu GT and Yang CQ: Effect
of alendronate sodium on the expression of mesenchymal-epithelial
transition markers in mice with liver fibrosis. Exp Ther Med.
5:247–252. 2013.PubMed/NCBI
|
|
2
|
Deng YH, Pu CL, Li YC, Zhu J, Xiang C,
Zhang MM and Guo CB: Analysis of biliary epithelial-mesenchymal
transition in portal tract fibrogenesis in biliary atresia. Dig Dis
Sci. 56:731–740. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yoshida K and Matsuzaki K: Differential
regulation of TGF-β/Smad signaling in hepatic stellate cells
between acute and chronic liver injuries. Front Physiol. 3:532012.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Moreno-Alvarez P, Sosa-Garrocho M,
Briones-Orta MA, González-Espinosa C, Medina-Tamayo J, Molina-Jijón
E, Pedraza-Chaverri J and Macías-Silva M: Angiotensin II increases
mRNA levels of all TGF-beta isoforms in quiescent and activated rat
hepatic stellate cells. Cell Biol Int. 34:969–978. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee YS and Jeong WI: Retinoic acids and
hepatic stellate cells in liver disease. J Gastroenterol Hepatol.
27(Suppl 2): S75–S79. 2012. View Article : Google Scholar
|
|
6
|
Rippe RA and Brenner DA: From quiescence
to activation: Gene regulation in hepatic stellate cells.
Gastroenterology. 127:1260–1262. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mann J, Oakley F, Akiboye F, Elsharkawy A,
Thorne AW and Mann DA: Regulation of myofibroblast
transdifferentiation by DNA methylation and MeCP2: Implications for
wound healing and fibrogenesis. Cell Death Differ. 14:275–285.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tsukamoto H, She H, Hazra S, Cheng J and
Miyahara T: Anti-adipogenic regulation underlies hepatic stellate
cell transdifferentiation. J Gastroenterol Hepatol. 21(Suppl 3):
S102–S105. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Elpek GÖ: Cellular and molecular
mechanisms in the pathogenesis of liver fibrosis: An update. World
J Gastroenterol. 20:7260–7276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fausther M, Lavoie EG and Dranoff JA:
Contribution of Myofibroblasts of Different Origins to Liver
Fibrosis. Curr Pathobiol Rep. 1:225–230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bosselut N, Housset C, Marcelo P, Rey C,
Burmester T, Vinh J, Vaubourdolle M, Cadoret A and Baudin B:
Distinct proteomic features of two fibrogenic liver cell
populations: Hepatic stellate cells and portal myofibroblasts.
Proteomics. 10:1017–1028. 2010.PubMed/NCBI
|
|
12
|
Dranoff JA and Wells RG: Portal
fibroblasts: Underappreciated mediators of biliary fibrosis.
Hepatology. 51:1438–1444. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Uchio K, Tuchweber B, Manabe N, Gabbiani
G, Rosenbaum J and Desmoulière A: Cellular retinol-binding
protein-1 expression and modulation during in vivo and in vitro
myofibroblastic differentiation of rat hepatic stellate cells and
portal fibroblasts. Lab Invest. 82:619–628. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Iwaisako K, Brenner DA and Kisseleva T:
What's new in liver fibrosis? The origin of myofibroblasts in liver
fibrosis. J Gastroenterol Hepatol. 27(Suppl 2): S65–S68. 2012.
View Article : Google Scholar
|
|
15
|
Tuchweber B, Desmoulière A,
Bochaton-Piallat ML, Rubbia-Brandt L and Gabbiani G: Proliferation
and phenotypic modulation of portal fibroblasts in the early stages
of cholestatic fibrosis in the rat. Lab Invest. 74:265–278.
1996.PubMed/NCBI
|
|
16
|
Kinnman N, Francoz C, Barbu V, Wendum D,
Rey C, Hultcrantz R, Poupon R and Housset C: The myofibroblastic
conversion of peribiliary fibrogenic cells distinct from hepatic
stellate cells is stimulated by platelet-derived growth factor
during liver fibrogenesis. Lab Invest. 83:163–173. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Quan TE, Cowper S, Wu SP, Bockenstedt LK
and Bucala R: Circulating fibrocytes: Collagen-secreting cells of
the peripheral blood. Int J Biochem Cell Biol. 36:598–606. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Strieter RM, Keeley EC, Burdick MD and
Mehrad B: The role of circulating mesenchymal progenitor cells,
fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol
Assoc. 120:49–59. 2009.PubMed/NCBI
|
|
19
|
Kisseleva T, Uchinami H, Feirt N,
Quintana-Bustamante O, Segovia JC, Schwabe RF and Brenner DA: Bone
marrow-derived fibrocytes participate in pathogenesis of liver
fibrosis. J Hepatol. 45:429–438. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kisseleva T and Brenner DA: The phenotypic
fate and functional role for bone marrow-derived stem cells in
liver fibrosis. J Hepatol. 56:965–972. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Forbes SJ and Parola M: Liver fibrogenic
cells. Best Pract Res Clin Gastroenterol. 25:207–217. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zeisberg M, Yang C, Martino M, Duncan MB,
Rieder F, Tanjore H and Kalluri R: Fibroblasts derive from
hepatocytes in liver fibrosis via epithelial to mesenchymal
transition. J Biol Chem. 282:23337–23347. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Milani S, Herbst H, Schuppan D, Stein H
and Surrenti C: Transforming growth factors beta 1 and beta 2 are
differentially expressed in fibrotic liver disease. Am J Pathol.
139:1221–1229. 1991.PubMed/NCBI
|
|
24
|
Pinzani M, Milani S, Herbst H, DeFranco R,
Grappone C, Gentilini A, Caligiuri A, Pellegrini G, Ngo DV,
Romanelli RG and Gentilini P: Expression of platelet-derived growth
factor and its receptors in normal human liver and during active
hepatic fibrogenesis. Am J Pathol. 148:785–800. 1996.PubMed/NCBI
|
|
25
|
Omenetti A, Porrello A, Jung Y, Yang L,
Popov Y, Choi SS, Witek RP, Alpini G, Venter J and Vandongen HM:
Hedgehog signaling regulates epithelial-mesenchymal transition
during biliary fibrosis in rodents and humans. J Clin Invest.
118:3331–3342. 2008.PubMed/NCBI
|
|
26
|
Xia JL, Dai C, Michalopoulos GK and Liu Y:
Hepatocyte growth factor attenuates liver fibrosis induced by bile
duct ligation. Am J Pathol. 168:1500–1512. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hay ED: An overview of
epithelio-mesenchymal transformation. Acta Anat (Basel). 154:8–20.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zeisberg M and Neilson EG: Biomarkers for
epithelial-mesenchymal transitions. J Clin Invest. 119:1429–1437.
2009. View
Article : Google Scholar : PubMed/NCBI
|
|
29
|
Strutz F, Okada H, Lo CW, Danoff T, Carone
RL, Tomaszewski JE and Neilson EG: Identification and
characterization of a fibroblast marker: FSP1. J Cell Biol.
130:393–405. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Okada H, Danoff TM, Kalluri R and Neilson
EG: Early role of Fsp1 in epithelial-mesenchymal transformation. Am
J Physiol. 273:F563–F574. 1997.PubMed/NCBI
|
|
31
|
Zeisberg M, Hanai J, Sugimoto H, Mammoto
T, Charytan D, Strutz F and Kalluri R: BMP-7 counteracts
TGF-beta1-induced epithelial-to-mesenchymal transition and reverses
chronic renal injury. Nat Med. 9:964–968. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee HY, Jeon HS, Song EK, Han MK, Park SI,
Lee SI, Yun HJ, Kim JR, Kim JS, Lee YC, et al: CD40 ligation of
rheumatoid synovial fibroblasts regulates RANKL-mediated
osteoclastogenesis: Evidence of NF-kappaB-dependent, CD40-mediated
bone destruction in rheumatoid arthritis. Arthritis Rheum.
54:1747–1758. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iwano M, Plieth D, Danoff TM, Xue C, Okada
H and Neilson EG: Evidence that fibroblasts derive from epithelium
during tissue fibrosis. J Clin Invest. 110:341–350. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zeisberg EM, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, et al: Endothelial-to-mesenchymal transition
contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Potenta S, Zeisberg E and Kalluri R: The
role of endothelial-to-mesenchymal transition in cancer
progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li Y, Wang J and Asahina K: Mesothelial
cells give rise to hepatic stellate cells and myofibroblasts via
mesothelial-mesenchymal transition in liver injury. Proc Natl Acad
Sci USA. 110:2324–2329. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pagan R, Martín I, Llobera M and Vilaró S:
Epithelial-mesenchymal transition of cultured rat neonatal
hepatocytes is differentially regulated in response to epidermal
growth factor and dimethyl sulfoxide. Hepatology. 25:598–606. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Valdés F, Alvarez AM, Locascio A, Vega S,
Herrera B, Fernández M, Benito M, Nieto MA and Fabregat I: The
epithelial mesenchymal transition confers resistance to the
apoptotic effects of transforming growth factor beta in fetal rat
hepatocytes. Mol Cancer Res. 1:68–78. 2002.PubMed/NCBI
|
|
39
|
Sicklick JK, Choi SS, Bustamante M, McCall
SJ, Pérez EH, Huang J, Li YX, Rojkind M and Diehl AM: Evidence for
epithelial-mesenchymal transitions in adult liver cells. Am J
Physiol Gastrointest Liver Physiol. 291:G575–G583. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xue ZF, Wu XM and Liu M: Hepatic
regeneration and the epithelial to mesenchymal transition. World J
Gastroenterol. 19:1380–1386. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang J and Liu Y: Blockage of tubular
epithelial to myofibroblast transition by hepatocyte growth factor
prevents renal interstitial fibrosis. J Am Soc Nephrol. 13:96–107.
2002.PubMed/NCBI
|
|
42
|
Eghbali-Fatourechi G, Sieck GC, Prakash
YS, Maercklein P, Gores GJ and Fitzpatrick LA: Type I procollagen
production and cell proliferation is mediated by transforming
growth factor-beta in a model of hepatic fibrosis. Endocrinology.
137:1894–1903. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hay ED and Zuk A: Transformations between
epithelium and mesenchyme: Normal, pathological and experimentally
induced. Am J Kidney Dis. 26:678–690. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huber MA, Kraut N and Beug H: Molecular
requirements for epithelial-mesenchymal transition during tumor
progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Witzgall R, Brown D, Schwarz C and
Bonventre JV: Localization of proliferating cell nuclear antigen,
vimentin, c-Fos and clusterin in the postischemic kidney. Evidence
for a heterogenous genetic response among nephron segments and a
large pool of mitotically active and dedifferentiated cells. J Clin
Invest. 93:2175–2188. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Klass BR, Grobbelaar AO and Rolfe KJ:
Transforming growth factor beta1 signalling, wound healing and
repair: A multifunctional cytokine with clinical implications for
wound repair, a delicate balance. Postgrad Med J. 85:9–14. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Martin M, Lefaix J and Delanian S:
TGF-beta1 and radiation fibrosis: A master switch and a specific
therapeutic target? Int J Radiat Oncol Biol Phys. 47:277–290. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Del Castillo G, Murillo MM,
Alvarez-Barrientos A, Bertran E, Fernández M, Sánchez A and
Fabregat I: Autocrine production of TGF-beta confers resistance to
apoptosis after an epithelial-mesenchymal transition process in
hepatocytes: Role of EGF receptor ligands. Exp Cell Res.
312:2860–2871. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bakin AV, Tomlinson AK, Bhowmick NA, Moses
HL and Arteaga CL: Phosphatidylinositol 3-kinase function is
required for transforming growth factor beta-mediated epithelial to
mesenchymal transition and cell migration. J Biol Chem.
275:36803–36810. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cicchini C, Laudadio I, Citarella F,
Corazzari M, Steindler C, Conigliaro A, Fantoni A, Amicone L and
Tripodi M: TGFbeta-induced EMT requires focal adhesion kinase (FAK)
signaling. Exp Cell Res. 314:143–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bhowmick NA, Zent R, Ghiassi M, McDonnell
M and Moses HL: Integrin beta 1 signaling is necessary for
transforming growth factor-beta activation of p38MAPK and
epithelial plasticity. J Biol Chem. 276:46707–46713. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xie L, Law BK, Chytil AM, Brown KA, Aakre
ME and Moses HL: Activation of the Erk pathway is required for
TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu
C, Xiao X, Wu K, Nie Y, Zhang H and Fan D: KLF8 involves in
TGF-beta-induced EMT and promotes invasion and migration in gastric
cancer cells. J Cancer Res Clin Oncol. 139:1033–1042. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Porsch H, Bernert B, Mehić M, Theocharis
AD, Heldin CH and Heldin P: Efficient TGFβ-induced
epithelial-mesenchymal transition depends on hyaluronan synthase
HAS2. Oncogene. 32:4355–4365. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ding X, Park SI, McCauley LK and Wang CY:
Signaling between transforming growth factor β (TGF-β) and
transcription factor SNAI2 represses expression of microRNA miR-203
to promote epithelial-mesenchymal transition and tumor metastasis.
J Biol Chem. 288:10241–10253. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim KH, Lee WR, Kang YN, Chang YC and Park
KW: Inhibitory effect of nuclear factor-κB decoy
oligodeoxynucleotide on liver fibrosis through regulation of the
epithelial-mesenchymal transition. Hum Gene Ther. 25:721–729. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Leask A and Abraham DJ: TGF-beta signaling
and the fibrotic response. FASEB J. 18:816–827. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zavadil J, Cermak L, Soto-Nieves N and
Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch
signalling in epithelial-to-mesenchymal transition. EMBO J.
23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Park JH, Yoon J, Lee KY and Park B:
Effects of geniposide on hepatocytes undergoing
epithelial-mesenchymal transition in hepatic fibrosis by targeting
TGFβ/Smad and ERK-MAPK signaling pathways. Biochimie. 113:26–34.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee WR, Kim KH, An HJ, Kim JY, Lee SJ, Han
SM, Pak SC and Park KK: Apamin inhibits hepatic fibrosis through
suppression of transforming growth factor β1-induced hepatocyte
epithelial-mesenchymal transition. Biochem Biophys Res Commun.
450:195–201. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang S, Lee Y, Kim J, Hyun J, Lee K, Kim Y
and Jung Y: Potential role of Hedgehog pathway in liver response to
radiation. PLoS One. 8:e741412013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ingham PW and McMahon AP: Hedgehog
signaling in animal development: Paradigms and principles. Genes
Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
van den Brink GR: Hedgehog signaling in
development and homeostasis of the gastrointestinal tract. Physiol
Rev. 87:1343–1375. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Varjosalo M and Taipale J: Hedgehog:
Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kahila Bar-Gal G, Kim MJ, Klein A, Shin
DH, Oh CS, Kim JW, Kim TH, Kim SB, Grant PR, Pappo O, et al:
Tracing hepatitis B virus to the 16th century in a Korean mummy.
Hepatology. 56:1671–1680. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Choi SS, Omenetti A, Witek RP, Moylan CA,
Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, et
al: Hedgehog pathway activation and epithelial-to-mesenchymal
transitions during myofibroblastic transformation of rat hepatic
cells in culture and cirrhosis. Am J Physiol Gastrointest Liver
Physiol. 297:G1093–G1106. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kaimori A, Potter J, Kaimori JY, Wang C,
Mezey E and Koteish A: Transforming growth factor-beta1 induces an
epithelial-to-mesenchymal transition state in mouse hepatocytes in
vitro. J Biol Chem. 282:22089–22101. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Taura K, Miura K, Iwaisako K, Osterreicher
CH, Kodama Y, Penz-Osterreicher M and Brenner DA: Hepatocytes do
not undergo epithelial-mesenchymal transition in liver fibrosis in
mice. Hepatology. 51:1027–1036. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee SJ, Kim KH and Park KK: Mechanisms of
fibrogenesis in liver cirrhosis: The molecular aspects of
epithelial-mesenchymal transition. World J Hepatol. 6:207–216.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Scholten D, Osterreicher CH, Scholten A,
Iwaisako K, Gu G, Brenner DA and Kisseleva T: Genetic labeling does
not detect epithelial-to-mesenchymal transition of cholangiocytes
in liver fibrosis in mice. Gastroenterology. 139:987–998. 2010.
View Article : Google Scholar : PubMed/NCBI
|