|
1
|
Syro LV, Rotondo F, Ramirez A, Di Ieva A,
Sav MA, Restrepo LM, Serna CA and Kovacs K: Progress in the
diagnosis and classification of pituitary adenomas. Front
Endocrinol (Lausanne). 6:972015.PubMed/NCBI
|
|
2
|
Cushing H: The basophil adenomas of the
pituitary body and their clinical manifestations (pituitary
basophilism) 1932. Obes Res. 2:486–508. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Herman V, Fagin J, Gonsky R, Kovacs K and
Melmed S: Clonal origin of pituitary adenomas. J Clin Endocrinol
Metab. 71:1427–1433. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Daly AF and Beckers A: Update on the
treatment of pituitary adenomas: Familial and genetic
considerations. Acta Clin Belg. 63:418–424. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Stratakis CA, Tichomirowa MA, Boikos S,
Azevedo MF, Lodish M, Martari M, Verma S, Daly AF, Raygada M, Keil
MF, et al: The role of germline AIP, MEN1, PRKAR1A, CDKN1B and
CDKN2C mutations in causing pituitary adenomas in a large cohort of
children, adolescents, and patients with genetic syndromes. Clin
Genet. 78:457–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lecoq AL, Kamenický P, Guiochon-Mantel A
and Chanson P: Genetic mutations in sporadic pituitary adenomas -
what to screen for? Nat Rev Endocrinol. 11:43–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Daly AF, Jaffrain-Rea ML, Ciccarelli A,
Valdes-Socin H, Rohmer V, Tamburrano G, Borson-Chazot C, Estour B,
Ciccarelli E, Brue T, et al: Clinical characterization of familial
isolated pituitary adenomas. J Clin Endocrinol Metab. 91:3316–3323.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Asa SL and Ezzat S: The pathogenesis of
pituitary tumors. Annu Rev Pathol. 4:97–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Georgitsi M, Raitila A, Karhu A,
Tuppurainen K, Mäkinen MJ, Vierimaa O, Paschke R, Saeger W, van der
Luijt RB, Sane T, et al: Molecular diagnosis of pituitary adenoma
predisposition caused by aryl hydrocarbon receptor-interacting
protein gene mutations. Proc Natl Acad Sci USA. 104:4101–4105.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Karl M, Lamberts SW, Koper JW, Katz DA,
Huizenga NE, Kino T, Haddad BR, Hughes MR and Chrousos GP:
Cushing's disease preceded by generalized glucocorticoid
resistance: Clinical consequences of a novel, dominant-negative
glucocorticoid receptor mutation. Proc Assoc Am Physicians.
108:296–307. 1996.PubMed/NCBI
|
|
11
|
Perez-Rivas LG and Reincke M: Genetics of
Cushing's disease: An update. J Endocrinol Invest. 39:29–35. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bassett JH, Forbes SA, Pannett AA, Lloyd
SE, Christie PT, Wooding C, Harding B, Besser GM, Edwards CR,
Monson JP, et al: Characterization of mutations in patients with
multiple endocrine neoplasia type 1. Am J Hum Genet. 62:232–244.
1998. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wautot V, Vercherat C, Lespinasse J,
Chambe B, Lenoir GM, Zhang CX, Porchet N, Cordier M, Béroud C and
Calender A: Germline mutation profile of MEN1 in multiple endocrine
neoplasia type 1: Search for correlation between phenotype and the
functional domains of the MEN1 protein. Hum Mutat. 20:35–47. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Burgess JR, Greenaway TM and Shepherd JJ:
Expression of the MEN-1 gene in a large kindred with multiple
endocrine neoplasia type 1. J Intern Med. 243:465–470. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Matsuzaki LN, Canto-Costa MH and Hauache
OM: Cushing's disease as the first clinical manifestation of
multiple endocrine neoplasia type 1 (MEN1) associated with an R460X
mutation of the MEN1 gene. Clin Endocrinol (Oxf). 60:142–143. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lamberts SW: Glucocorticoid receptors and
Cushing's disease. Mol Cell Endocrinol. 197:69–72. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vierimaa O, Georgitsi M, Lehtonen R,
Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM,
Salmela PI, Paschke R, et al: Pituitary adenoma predisposition
caused by germline mutations in the AIP gene. Science.
312:1228–1230. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Occhi G, Jaffrain-Rea ML, Trivellin G,
Albiger N, Ceccato F, De Menis E, Angelini M, Ferasin S, Beckers A,
Mantero F, et al: The R304X mutation of the aryl hydrocarbon
receptor interacting protein gene in familial isolated pituitary
adenomas: Mutational hot-spot or founder effect? J Endocrinol
Invest. 33:800–805. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Igreja S, Chahal HS, King P, Bolger GB,
Srirangalingam U, Guasti L, Chapple JP, Trivellin G, Gueorguiev M,
Guegan K, et al: International FIPA Consortium: Characterization of
aryl hydrocarbon receptor interacting protein (AIP) mutations in
familial isolated pituitary adenoma families. Hum Mutat.
31:950–960. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Leontiou CA, Gueorguiev M, van der Spuy J,
Quinton R, Lolli F, Hassan S, Chahal HS, Igreja SC, Jordan S, Rowe
J, et al: The role of the aryl hydrocarbon receptor-interacting
protein gene in familial and sporadic pituitary adenomas. J Clin
Endocrinol Metab. 93:2390–2401. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Levine AJ, Momand J and Finlay CA: The p53
tumour suppressor gene. Nature. 351:453–456. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hollstein M, Sidransky D, Vogelstein B and
Harris CC: p53 mutations in human cancers. Science. 253:49–53.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Oliveira MC, Marroni CP, Pizarro CB,
Pereira-Lima JF, Barbosa-Coutinho LM and Ferreira NP: Expression of
p53 protein in pituitary adenomas. Braz J Med Biol Res. 35:561–565.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sumi T, Stefaneanu L, Kovacs K, Asa SL and
Rindi G: Immunohistochemical study of p53 protein in human and
animal pituitary tumors. Endocr Pathol. 4:95–99. 1993. View Article : Google Scholar
|
|
25
|
Gandour-Edwards R, Kapadia SB, Janecka IP,
Martinez AJ and Barnes L: Biologic markers of invasive pituitary
adenomas involving the sphenoid sinus. Mod Pathol. 8:160–164.
1995.PubMed/NCBI
|
|
26
|
Lübke D, Saeger W and Lüdecke DK:
Proliferation markers and EGF in ACTH-secreting adenomas and
carcinomas of the pituitary. Endocr Pathol. 6:45–55. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Buckley N, Bates AS, Broome JC, Strange
RC, Perrett CW, Burke CW and Clayton RN: p53 Protein accumulates in
Cushings adenomas and invasive non-functional adenomas. J Clin
Endocrinol Metab. 79:1513–1516. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Copelli SB, Loza Coll MA and Bruno OD:
Absence of mutations in the p53 tumor suppressor gene in
non-invasive Cushing adenomas. Medicina (B Aires). 59:459–462.
1999.PubMed/NCBI
|
|
29
|
Levy A, Hall L, Yeudall WA and Lightman
SL: p53 gene mutations in pituitary adenomas: Rare events. Clin
Endocrinol (Oxf). 41:809–814. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Herman V, Drazin NZ, Gonsky R and Melmed
S: Molecular screening of pituitary adenomas for gene mutations and
rearrangements. J Clin Endocrinol Metab. 77:50–55. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kawashima ST, Usui T, Sano T, Iogawa H,
Hagiwara H, Tamanaha T, Tagami T, Naruse M, Hojo M, Takahashi JA,
et al: P53 gene mutation in an atypical corticotroph adenoma with
Cushing's disease. Clin Endocrinol (Oxf). 70:656–657. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Reutens AT, Achermann JC, Ito M, Ito M, Gu
WX, Habiby RL, Donohoue PA, Pang S, Hindmarsh PC and Jameson JL:
Clinical and functional effects of mutations in the DAX-1 gene in
patients with adrenal hypoplasia congenita. J Clin Endocrinol
Metab. 84:504–511. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nachtigal MW, Hirokawa Y,
Enyeart-VanHouten DL, Flanagan JN, Hammer GD and Ingraham HA:
Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1
in sex-specific gene expression. Cell. 93:445–454. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Merke DP, Tajima T, Baron J and Cutler GB
Jr: Hypogonadotropic hypogonadism in a female caused by an X-linked
recessive mutation in the DAX1 gene. N Engl J Med. 340:1248–1252.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu CM, Zhang HB, Zhou Q, Wan L, Jin J, Ni
L, Pan YJ, Wu XY and Ruan LY: Two novel DAX1 gene mutations in
Chinese patients with X-linked adrenal hypoplasia congenita:
Clinical, hormonal and genetic analysis. J Endocrinol Invest.
34:e235–e239. 2011.PubMed/NCBI
|
|
36
|
Suzuki M, Egashira N, Kajiya H, Minematsu
T, Takekoshi S, Tahara S, Sanno N, Teramoto A and Osamura RY: ACTH
and alpha-subunit are co-expressed in rare human pituitary
corticotroph cell adenomas proposed to originate from
ACTH-committed early pituitary progenitor cells. Endocr Pathol.
19:17–26. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
De Menis E, Roncaroli F, Calvari V,
Chiarini V, Pauletto P, Camerino G and Cremonini N: Corticotroph
adenoma of the pituitary in a patient with X-linked adrenal
hypoplasia congenita due to a novel mutation of the DAX-1 gene. Eur
J Endocrinol. 153:211–215. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Reincke M, Sbiera S, Hayakawa A,
Theodoropoulou M, Osswald A, Beuschlein F, Meitinger T,
Mizuno-Yamasaki E, Kawaguchi K, Saeki Y, et al: Mutations in the
deubiquitinase gene USP8 cause Cushing's disease. Nat Genet.
47:31–38. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Perez-Rivas LG, Theodoropoulou M, Ferraù
F, Nusser C, Kawaguchi K, Stratakis CA, Faucz FR, Wildemberg LE,
Assié G, Beschorner R, et al: The gene of the ubiquitin-specific
protease 8 is frequently mutated in adenomas causing Cushing's
disease. J Clin Endocrinol Metab. 100:E997–E1004. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ma ZY, Song ZJ, Chen JH, Wang YF, Li SQ,
Zhou LF, Mao Y, Li YM, Hu RG, Zhang ZY, et al: Recurrent
gain-of-function USP8 mutations in Cushing's disease. Cell Res.
25:306–317. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Grishok A, Pasquinelli AE, Conte D, Li N,
Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G and Mello CC: Genes
and mechanisms related to RNA interference regulate expression of
the small temporal RNAs that control C. elegans developmental
timing. Cell. 106:23–34. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chiosea S, Jelezcova E, Chandran U, Luo J,
Mantha G, Sobol RW and Dacic S: Overexpression of Dicer in
precursor lesions of lung adenocarcinoma. Cancer Res. 67:2345–2350.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hill DA, Ivanovich J, Priest JR, Gurnett
CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp
KA, Suarez BK, Whelan AJ, et al: DICER1 mutations in familial
pleuropulmonary blastoma. Science. 325:9652009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Doros LA, Rossi CT, Yang J, Field A,
Williams GM, Messinger Y, Cajaiba MM, Perlman EJ, A Schultz K,
Cathro HP, et al: DICER1 mutations in childhood cystic nephroma and
its relationship to DICER1-renal sarcoma. Mod Pathol. 27:1267–1280.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wildi-Runge S, Bahubeshi A, Carret A,
Crevier L, Robitaille Y, Kovacs K, Horvath E, Scheithauer BW,
Foulkes WD and Deal C: New phenotype in the familial DICER1 tumor
syndrome: Pituitary blastoma presenting at age 9 months. Endocr
Rev. 32:P1–P777, (Abstract). 2011.
|
|
47
|
Sahakitrungruang T, Srichomthong C,
Pornkunwilai S, Amornfa J, Shuangshoti S, Kulawonganunchai S,
Suphapeetiporn K and Shotelersuk V: Germline and somatic DICER1
mutations in a pituitary blastoma causing infantile-onset Cushing's
disease. J Clin Endocrinol Metab. 99:E1487–E1492. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tajima T, Ma XM, Bornstein SR and Aguilera
G: Prenatal dexamethasone treatment does not prevent alterations of
the hypothalamic pituitary adrenal axis in steroid 21-hydroxylase
deficient mice. Endocrinology. 140:3354–3362. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Haase M, Schott M, Kaminsky E, Lüdecke DK,
Saeger W, Fritzen R, Schinner S, Scherbaum WA and Willenberg HS:
Cushing's disease in a patient with steroid 21-hydroxylase
deficiency. Endocr J. 58:699–706. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Boronat M, Carrillo A, Ojeda A, Estrada J,
Ezquieta B, Marín F and Nóvoa FJ: Clinical manifestations and
hormonal profile of two women with Cushing's disease and mild
deficiency of 21-hydroxylase. J Endocrinol Invest. 27:583–590.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kozasa T, Itoh H, Tsukamoto T and Kaziro
Y: Isolation and characterization of the human Gs alpha gene. Proc
Natl Acad Sci USA. 85:2081–2085. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Aldred MA and Trembath RC: Activating and
inactivating mutations in the human GNAS1 gene. Hum Mutat.
16:183–189. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Patten JL, Johns DR, Valle D, Eil C,
Gruppuso PA, Steele G, Smallwood PM and Levine MA: Mutation in the
gene encoding the stimulatory G protein of adenylate cyclase in
Albright's hereditary osteodystrophy. N Engl J Med. 322:1412–1419.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Williamson EA, Ince PG, Harrison D,
Kendall-Taylor P and Harris PE: G-protein mutations in human
pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J
Clin Invest. 25:128–131. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Riminucci M, Collins MT, Lala R, Corsi A,
Matarazzo P, Gehron Robey P and Bianco P: An R201H activating
mutation of the GNAS1 (Gsalpha) gene in a corticotroph pituitary
adenoma. Mol Pathol. 55:58–60. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chesnokova V, Auernhammer CJ and Melmed S:
Murine leukemia inhibitory factor gene disruption attenuates the
hypothalamo-pituitary-adrenal axis stress response. Endocrinology.
139:2209–2216. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yano H, Readhead C, Nakashima M, Ren SG
and Melmed S: Pituitary-directed leukemia inhibitory factor
transgene causes Cushing's syndrome: Neuro-immune-endocrine
modulation of pituitary development. Mol Endocrinol. 12:1708–1720.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mathieu ME, Saucourt C, Mournetas V,
Gauthereau X, Thézé N, Praloran V, Thiébaud P and Bœuf H:
LIF-dependent signaling: New pieces in the Lego. Stem Cell Rev.
8:1–15. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Heutling D, Dieterich KD, Buchfelder M and
Lehnert H: Mutation analysis of leukemia inhibitory factor-receptor
(LIF-R) in ACTH-secreting pituitary adenomas. Exp Clin Endocrinol
Diabetes. 112:458–461. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Roussel-Gervais A, Bilodeau S, Vallette S,
Berthelet F, Lacroix A, Figarella-Branger D, Brue T and Drouin J:
Cooperation between cyclin E and p27(Kip1) in pituitary
tumorigenesis. Mol Endocrinol. 24:1835–1845. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky
K, Fan XM, Lin S and Melmed S: Targeting zebrafish and murine
pituitary corticotroph tumors with a cyclin-dependent kinase (CDK)
inhibitor. Proc Natl Acad Sci USA. 108:8414–8419. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Georgitsi M, Raitila A, Karhu A, van der
Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen K,
Paschke R, et al: Germline CDKN1B/p27Kip1 mutation in multiple
endocrine neoplasia. J Clin Endocrinol Metab. 92:3321–3325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dahia PL, Aguiar RC, Honegger J, Fahlbush
R, Jordan S, Lowe DG, Lu X, Clayton RN, Besser GM and Grossman AB:
Mutation and expression analysis of the p27/kip1 gene in
corticotrophin-secreting tumours. Oncogene. 16:69–76. 1998.
View Article : Google Scholar : PubMed/NCBI
|