Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
January-2018 Volume 8 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 8 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review)

  • Authors:
    • Annapoorna Sreedhar
    • Yunfeng Zhao
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
    Copyright: © Sreedhar et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-10
    |
    Published online on: November 21, 2017
       https://doi.org/10.3892/br.2017.1022
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor cells carry various genetic and metabolic alterations, which directly contribute to their growth and malignancy. Links between metabolism and cancer are multifaceted. Metabolic reprogramming, such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid (TCA) cycle metabolic enzymes, and dependence on lipid and glutamine metabolism are key characteristics of cancer cells. Understanding these metabolic alterations is crucial for development of novel anti-cancer therapeutic strategies. In the present review, the broad importance of metabolism in tumor biology is discussed, and the current knowledge on dysregulated metabolic enzymes involved in the vital regulatory steps of glycolysis, the TCA cycle, the pentose phosphate pathway, and lipid, amino acid, and mitochondrial metabolism pathways are reviewed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Dang CV: Links between metabolism and cancer. Genes Dev. 26:877–890. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Newmeyer DD and Ferguson-Miller S: Mitochondria: Releasing power for life and unleashing the machineries of death. Cell. 112:481–490. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Wang X: The expanding role of mitochondria in apoptosis. Genes Dev. 15:2922–2933. 2001.PubMed/NCBI

5 

Detmer SA and Chan DC: Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 8:870–879. 2007. View Article : Google Scholar : PubMed/NCBI

6 

McBride HM, Neuspiel M and Wasiak S: Mitochondria: More than just a powerhouse. Curr Biol. 16:R551–R560. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Wallace DC: Mitochondria and cancer. Nat Rev Cancer. 12:685–698. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Weinberg SE and Chandel NS: Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 11:9–15. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Wen S, Zhu D and Huang P: Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 5:53–67. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Wang F, Ogasawara MA and Huang P: Small mitochondria-targeting molecules as anti-cancer agents. Mol Aspects Med. 31:75–92. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Carew JS and Huang P: Mitochondrial defects in cancer. Mol Cancer. 1:92002. View Article : Google Scholar : PubMed/NCBI

12 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

13 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

14 

DeBerardinis RJ: Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med. 10:767–777. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Seyfried TN and Shelton LM: Cancer as a metabolic disease. Nutr Metab (Lond). 7:72010. View Article : Google Scholar : PubMed/NCBI

16 

Pelicano H, Martin DS, Xu RH and Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 25:4633–4646. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Niederacher D and Entian KD: Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. FEBS J. 200:311–319. 1991.

18 

Herrero P, Galíndez J, Ruiz N, Martínez-Campa C and Moreno F: Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast. 11:137–144. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Rempel A, Mathupala SP, Griffin CA, Hawkins AL and Pedersen PL: Glucose catabolism in cancer cells: Amplification of the gene encoding type II hexokinase. Cancer Res. 56:2468–2471. 1996.PubMed/NCBI

20 

Bustamante E and Pedersen PL: High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase. Proc Natl Acad Sci USA. 74:pp. 3735–3739. 1977; View Article : Google Scholar : PubMed/NCBI

21 

El-Bacha T, de Freitas MS and Sola-Penna M: Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab. 79:294–299. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Zancan P, Sola-Penna M, Furtado CM and Da Silva D: Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab. 100:372–378. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA II, Klarer AC, Redman R, Miller DM, Trent JO, et al: Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 12:1461–1470. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R and Bucala R: High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 62:5881–5887. 2002.PubMed/NCBI

25 

Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW, Park SW and Kim KS: Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J. 433:225–233. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Okar DA, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R and Lange AJ: PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 26:30–35. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X, Li X, Yi H, Li M, Zhu G, et al: Proteome analysis of human lung squamous carcinoma. Proteomics. 6:547–558. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Tokunaga K, Nakamura Y, Sakata K, Fujimori K, Ohkubo M, Sawada K and Sakiyama S: Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res. 47:5616–5619. 1987.PubMed/NCBI

29 

Schek N, Hall BL and Finn OJ: Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human pancreatic adenocarcinoma. Cancer Res. 48:6354–6359. 1988.PubMed/NCBI

30 

Epner DE, Partin AW, Schalken JA, Isaacs JT and Coffey DS: Association of glyceraldehyde-3-phosphate dehydrogenase expression with cell motility and metastatic potential of rat prostatic adenocarcinoma. Cancer Res. 53:1995–1997. 1993.PubMed/NCBI

31 

Krasnov GS, Dmitriev AA, Snezhkina AV and Kudryavtseva AV: Deregulation of glycolysis in cancer: Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin Ther Targets. 17:681–693. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Feng C, Gao Y, Wang C, Yu X, Zhang W, Guan H, Shan Z and Teng W: Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 98:E1524–E1533. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI

34 

Lu W, Cao Y, Zhang Y, Li S, Gao J, Wang XA, Mu J, Hu YP, Jiang L, Dong P, et al: Up-regulation of PKM2 promote malignancy and related to adverse prognostic risk factor in human gallbladder cancer. Sci Rep. 6:263512016. View Article : Google Scholar : PubMed/NCBI

35 

Wittwer JA, Robbins D, Wang F, Codarin S, Shen X, Kevil CG, Huang TT, Van Remmen H, Richardson A and Zhao Y: Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prev Res (Phila). 4:1476–1484. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL and Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 107:pp. 2037–2042. 2010; View Article : Google Scholar : PubMed/NCBI

37 

Linnane AW, Marzuki S, Ozawa T and Tanaka M: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1:642–645. 1989. View Article : Google Scholar : PubMed/NCBI

38 

Taylor RW and Turnbull DM: Mitochondrial DNA mutations in human disease. Nat Rev Genet. 6:389–402. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J and Sidransky D: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 287:2017–2019. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Cardaci S and Ciriolo MR: TCA cycle defects and cancer: When metabolism tunes redox state. Int J Cell Biol. 2012:1618372012. View Article : Google Scholar : PubMed/NCBI

41 

Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A and Rötig A: Inborn errors of the Krebs cycle: A group of unusual mitochondrial diseases in human. Biochim Biophys Acta. 1361:185–197. 1997. View Article : Google Scholar : PubMed/NCBI

42 

Singh KK, Desouki MM, Franklin RB and Costello LC: Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol Cancer. 5:142006. View Article : Google Scholar : PubMed/NCBI

43 

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med. 360:765–773. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, Stewart L, Duray P, Tourre O, Sharma N, et al: Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 73:95–106. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Chen YB, Brannon AR, Toubaji A, Dudas ME, Won HH, Al-Ahmadie HA, Fine SW, Gopalan A, Frizzell N, Voss MH, et al: Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: Recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am J Surg Pathol. 38:627–637. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, et al: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. 477:225–228. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Gaude E and Frezza C: Defects in mitochondrial metabolism and cancer. Cancer Metab. 2:102014. View Article : Google Scholar : PubMed/NCBI

50 

Neumann HP, Pawlu C, Pęczkowska M, Bausch B, McWhinney SR, Muresan M, Buchta M, Franke G, Klisch J, Bley TA, et al: European-American Paraganglioma Study Group: Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 292:943–951. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Pollard PJ, Wortham NC and Tomlinson IP: The TCA cycle and tumorigenesis: The examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 35:632–639. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, et al: Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 14:2231–2239. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Habano W, Sugai T, Nakamura S, Uesugi N, Higuchi T, Terashima M and Horiuchi S: Reduced expression and loss of heterozygosity of the SDHD gene in colorectal and gastric cancer. Oncol Rep. 10:1375–1380. 2003.PubMed/NCBI

54 

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB and Gottlieb E: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell. 7:77–85. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Deberardinis RJ, Sayed N, Ditsworth D and Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Riganti C, Gazzano E, Polimeni M, Aldieri E and Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 53:421–436. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Jiang P, Du W and Wu M: Regulation of the pentose phosphate pathway in cancer. Protein Cell. 5:592–602. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Jonas SK, Benedetto C, Flatman A, Hammond RH, Micheletti L, Riley C, Riley PA, Spargo DJ, Zonca M and Slater TF: Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia. Br J Cancer. 66:185–191. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti D, Giglio A, et al: Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 6:13371–13386. 2015. View Article : Google Scholar : PubMed/NCBI

62 

D'Alessandro A, Amelio I, Berkers CR, Antonov A, Vousden KH, Melino G and Zolla L: Metabolic effect of TAp63α: Enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget. 5:7722–7733. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Sukhatme VP and Chan B: Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 586:2389–2395. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Nishimura M and Uyeda K: Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 270:26341–26346. 1995. View Article : Google Scholar : PubMed/NCBI

65 

Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI

66 

DeBerardinis RJ and Cheng T: Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Dang CV: Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 9:3884–3886. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Hensley CT, Wasti AT and DeBerardinis RJ: Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 105:pp. 18782–18787. 2008; View Article : Google Scholar : PubMed/NCBI

71 

Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, et al: Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 132:435–445. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E and Hall MN: Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 47:349–358. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, Kudo K, Kittaka S, Hara M and Furukawa S: Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 167:269–274. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Alarcon-Aguilar FJ, Almanza-Perez J, Blancas G, Angeles S, Garcia-Macedo R, Roman R and Cruz M: Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol. 599:152–158. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Cruz M, Maldonado-Bernal C, Mondragón-Gonzalez R, Sanchez-Barrera R, Wacher NH, Carvajal-Sandoval G and Kumate J: Glycine treatment decreases proinflammatory cytokines and increases interferon-γ in patients with type 2 diabetes. J Endocrinol Invest. 31:694–699. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, et al: Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148:259–272. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Locasale JW: Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer. 13:572–583. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et al: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 476:346–350. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, et al: Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 43:869–874. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Mattaini KR, Sullivan MR and Vander Heiden MG: The importance of serine metabolism in cancer. J Cell Biol. 214:249–257. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Baenke F, Peck B, Miess H and Schulze A: Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 6:1353–1363. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Santos CR and Schulze A: Lipid metabolism in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Vance JE and Vance DE: Biochemistry of lipids, lipoproteins and membranes. Elsevier; Amsterdam: 2002, View Article : Google Scholar

87 

Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C and Thompson CB: ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 24:6314–6322. 2005. View Article : Google Scholar : PubMed/NCBI

88 

Qian X, Hu J, Zhao J and Chen H: ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med. 8:7855–7860. 2015.PubMed/NCBI

89 

Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W, et al: miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: Evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget. 7:44252–44265. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, Mills GB, Hunt KK and Keyomarsi K: Cyclin E associates with the lipogenic enzyme ATP-citrate lyase to enable malignant growth of breast cancer cells. Cancer Res. 76:2406–2418. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Su YW, Lin YH, Pai MH, Lo AC, Lee YC, Fang IC, Lin J, Hsieh RK, Chang YF and Chen CL: Association between phosphorylated AMP-activated protein kinase and acetyl-CoA carboxylase expression and outcome in patients with squamous cell carcinoma of the head and neck. PLoS One. 9:e961832014. View Article : Google Scholar : PubMed/NCBI

92 

Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, Dong LW, Qin CJ, Huang S, Zhao LH, et al: Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology. 63:1272–1286. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Bauerschlag DO, Maass N, Leonhardt P, Verburg FA, Pecks U, Zeppernick F, Morgenroth A, Mottaghy FM, Tolba R, Meinhold-Heerlein I, et al: Fatty acid synthase overexpression: Target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med. 13:1462015. View Article : Google Scholar : PubMed/NCBI

94 

Ogino S, Kawasaki T, Ogawa A, Kirkner GJ, Loda M and Fuchs CS: Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum Pathol. 38:842–849. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Gong J, Shen S, Yang Y, Qin S, Huang L, Zhang H, Chen L, Chen Y, Li S, She S, et al: Inhibition of FASN suppresses migration, invasion and growth in hepatoma carcinoma cells by deregulating the HIF-1α/IGFBP1 pathway. Int J Oncol. 50:883–892. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Ito K and Suda T: Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 15:243–256. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, Sawyer SK, Fuerth B, Faubert B, et al: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25:1041–1051. 2011. View Article : Google Scholar : PubMed/NCBI

99 

McGarry JD and Brown NF: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 244:1–14. 1997. View Article : Google Scholar : PubMed/NCBI

100 

Coller HA: Is cancer a metabolic disease? Am J Pathol. 184:4–17. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Tan DJ, Bai RK and Wong LJ: Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res. 62:972–976. 2002.PubMed/NCBI

102 

Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, Wong LC and Ngan HY: High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res. 61:5998–6001. 2001.PubMed/NCBI

103 

Richard SM, Bailliet G, Páez GL, Bianchi MS, Peltomäki P and Bianchi NO: Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 60:4231–4237. 2000.PubMed/NCBI

104 

Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y and Hayashi J: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 320:661–664. 2008. View Article : Google Scholar : PubMed/NCBI

105 

Swalwell H, Kirby DM, Blakely EL, Mitchell A, Salemi R, Sugiana C, Compton AG, Tucker EJ, Ke BX, Lamont PJ, et al: Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet. 19:769–775. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Kwong JQ, Henning MS, Starkov AA and Manfredi G: The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol. 179:1163–1177. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Osellame LD, Blacker TS and Duchen MR: Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 26:711–723. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Shen YH, Wang XL and Wilcken DE: Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Lett. 433:125–131. 1998. View Article : Google Scholar : PubMed/NCBI

109 

Seiler N and Raul F: Polyamines and apoptosis. J Cell Mol Med. 9:623–642. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A and Arancia G: The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy. Amino Acids. 33:175–187. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Grancara S, Ohkubo S, Artico M, Ciccariello M, Manente S, Bragadin M, Toninello A and Agostinelli E: Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids. 48:2313–2326. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sreedhar A and Zhao Y: Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review). Biomed Rep 8: 3-10, 2018.
APA
Sreedhar, A., & Zhao, Y. (2018). Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review). Biomedical Reports, 8, 3-10. https://doi.org/10.3892/br.2017.1022
MLA
Sreedhar, A., Zhao, Y."Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review)". Biomedical Reports 8.1 (2018): 3-10.
Chicago
Sreedhar, A., Zhao, Y."Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review)". Biomedical Reports 8, no. 1 (2018): 3-10. https://doi.org/10.3892/br.2017.1022
Copy and paste a formatted citation
x
Spandidos Publications style
Sreedhar A and Zhao Y: Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review). Biomed Rep 8: 3-10, 2018.
APA
Sreedhar, A., & Zhao, Y. (2018). Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review). Biomedical Reports, 8, 3-10. https://doi.org/10.3892/br.2017.1022
MLA
Sreedhar, A., Zhao, Y."Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review)". Biomedical Reports 8.1 (2018): 3-10.
Chicago
Sreedhar, A., Zhao, Y."Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells (Review)". Biomedical Reports 8, no. 1 (2018): 3-10. https://doi.org/10.3892/br.2017.1022
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team