|
1
|
Proksch E, Brandner JM and Jensen JM: The
skin: An indispensable barrier. Exp Dermatol. 17:1063–1072. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kanitakis J: Anatomy, histology and
immunohistochemistry of normal human skin. Eur J Dermatol.
12:390–399; quiz 400–401. 2002.PubMed/NCBI
|
|
3
|
Martin PE, Easton JA, Hodgins MB and
Wright CS: Connexins: Sensors of epidermal integrity that are
therapeutic targets. FEBS Lett. 588:1304–1314. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Söhl G and Willecke K: Gap junctions and
the connexin protein family. Cardiovasc Res. 62:228–232. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Söhl G and Willecke K: An update on
connexin genes and their nomenclature in mouse and man. Cell Commun
Adhes. 10:173–180. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kumar NM and Gilula NB: The gap junction
communication channel. Cell. 84:381–388. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Alexander DB and Goldberg GS: Transfer of
biologically important molecules between cells through gap junction
channels. Curr Med Chem. 10:2045–2058. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hervé JC, Derangeon M, Bahbouhi B, Mesnil
M and Sarrouilhe D: The connexin turnover, an important modulating
factor of the level of cell-to-cell junctional communication:
Comparison with other integral membrane proteins. J Membr Biol.
217:21–33. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Berthoud VM, Minogue PJ, Laing JG and
Beyer EC: Pathways for degradation of connexins and gap junctions.
Cardiovasc Res. 62:256–267. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kretz M, Euwens C, Hombach S, Eckardt D,
Teubner B, Traub O, Willecke K and Ott T: Altered connexin
expression and wound healing in the epidermis of connexin-deficient
mice. J Cell Sci. 116:3443–3452. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Di WL, Rugg EL, Leigh IM and Kelsell DP:
Multiple epidermal connexins are expressed in different
keratinocyte subpopulations including connexin 31. J Invest
Dermatol. 117:958–964. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Risek B, Klier FG and Gilula NB: Multiple
gap junction genes are utilized during rat skin and hair
development. Development. 116:639–651. 1992.PubMed/NCBI
|
|
13
|
Wu M, Moh MC and Schwarz H: HepaCAM
associates with connexin 43 and enhances its localization in
cellular junctions. Sci Rep. 6:362182016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Garcia IE, Maripillán J, Jara O, Ceriani
R, Palacios-Muñoz A, Ramachandran J, Olivero P, Perez-Acle T,
González C, Sáez JC, et al: Keratitis-ichthyosis-deafness
syndrome-associated Cx26 mutants produce nonfunctional gap
junctions but hyperactive hemichannels when co-expressed with wild
type Cx43. J Invest Dermatol. 135:1338–1347. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shuja Z, Li L, Gupta S, Mese G and White
TW: Connexin26 mutations causing palmoplantar keratoderma and
deafness interact with connexin43, modifying gap junction and
hemichannel properties. J Invest Dermatol. 136:225–235. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Geimonen E, Jiang W, Ali M, Fishman GI,
Garfield RE and Andersen J: Activation of protein kinase C in human
uterine smooth muscle induces connexin-43 gene transcription
through an AP-1 site in the promoter sequence. J Biol Chem.
271:23667–23674. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Geimonen E, Boylston E, Royek A and
Andersen J: Elevated connexin-43 expression in term human
myometrium correlates with elevated c-Jun expression and is
independent of myometrial estrogen receptors. J Clin Endocrinol
Metab. 83:1177–1185. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
van der Heyden MA, Rook MB, Hermans MM,
Rijksen G, Boonstra J, Defize LH and Destrée OH: Identification of
connexin43 as a functional target for Wnt signalling. J Cell Sci.
111:1741–1749. 1998.PubMed/NCBI
|
|
19
|
Bao X, Lee SC, Reuss L and Altenberg GA:
Change in permeant size selectivity by phosphorylation of connexin
43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci USA.
104:pp. 4919–4924. 2007; View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Riquelme MA, Burra S, Kar R, Lampe PD and
Jiang JX: Mitogen-activated protein kinase (MAPK) activated by
prostaglandin E2 phosphorylates connexin 43 and closes osteocytic
hemichannels in response to continuous flow shear stress. J Biol
Chem. 290:28321–28328. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pahujaa M, Anikin M and Goldberg GS:
Phosphorylation of connexin43 induced by Src: Regulation of gap
junctional communication between transformed cells. Exp Cell Res.
313:4083–4090. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cooper CD and Lampe PD: Casein kinase 1
regulates connexin-43 gap junction assembly. J Biol Chem.
277:44962–44968. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
TenBroek EM, Lampe PD, Solan JL, Reynhout
JK and Johnson RG: Ser364 of connexin43 and the upregulation of gap
junction assembly by cAMP. J Cell Biol. 155:1307–1318. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kjenseth A, Fykerud T, Rivedal E and
Leithe E: Regulation of gap junction intercellular communication by
the ubiquitin system. Cell Signal. 22:1267–1273. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kjenseth A, Fykerud TA, Sirnes S, Bruun J,
Yohannes Z, Kolberg M, Omori Y, Rivedal E and Leithe E: The gap
junction channel protein connexin 43 is covalently modified and
regulated by SUMOylation. J Biol Chem. 287:15851–15861. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Giepmans BN, Verlaan I and Moolenaar WH:
Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin.
Cell Commun Adhes. 8:219–223. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Giepmans BN, Verlaan I, Hengeveld T,
Janssen H, Calafat J, Falk MM and Moolenaar WH: Gap junction
protein connexin-43 interacts directly with microtubules. Curr
Biol. 11:1364–1368. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shaw RM, Fay AJ, Puthenveedu MA, von
Zastrow M, Jan YN and Jan LY: Microtubule plus-end-tracking
proteins target gap junctions directly from the cell interior to
adherens junctions. Cell. 128:547–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Plante I, Stewart MK, Barr K, Allan AL and
Laird DW: Cx43 suppresses mammary tumor metastasis to the lung in a
Cx43 mutant mouse model of human disease. Oncogene. 30:1681–1692.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim MO, Ryu JM, Suh HN, Park SH, Oh YM,
Lee SH and Han HJ: cAMP promotes cell migration through cell
junctional complex dynamics and actin cytoskeleton remodeling:
Implications in skin wound healing. Stem Cells Dev. 24:2513–2524.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang H, Cao X, Lin Z, Lee M, Jia X, Ren Y,
Dai L, Guan L, Zhang J, Lin X, et al: Exome sequencing reveals
mutation in GJA1 as a cause of
keratoderma-hypotrichosis-leukonychia totalis syndrome. Hum Mol
Genet. 24:243–250. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sargen MR, Gormley RH, Pasha TL, Yum S,
Acs G, Xu X and Zhang PJ: Melanocytic tumors express connexin 43
but not 26: Immunohistochemical analysis with potential
significance in melanocytic oncogenesis. Am J Dermatopathol.
35:813–817. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rezze GG, Fregnani JH, Duprat J and
Landman G: Cell adhesion and communication proteins are
differentially expressed in melanoma progression model. Hum Pathol.
42:409–418. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shaw TJ and Martin P: Wound repair at a
glance. J Cell Sci. 122:3209–3213. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Falanga V: Wound healing and its
impairment in the diabetic foot. Lancet. 366:1736–1743. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Janis JE, Kwon RK and Lalonde DH: A
practical guide to wound healing. Plast Reconstr Surg.
125:230e–244e. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dunn CA and Lampe PD: Injury-triggered Akt
phosphorylation of Cx43: A ZO-1-driven molecular switch that
regulates gap junction size. J Cell Sci. 127:455–464. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cogliati B, Vinken M, Silva TC, Araújo CM,
Aloia TP, Chaible LM, Mori CM and Dagli ML: Connexin 43 deficiency
accelerates skin wound healing and extracellular matrix remodeling
in mice. J Dermatol Sci. 79:50–56. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ghatnekar GS, O'Quinn MP, Jourdan LJ,
Gurjarpadhye AA, Draughn RL and Gourdie RG: Connexin43
carboxyl-terminal peptides reduce scar progenitor and promote
regenerative healing following skin wounding. Regen Med. 4:205–223.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mori R, Power KT, Wang CM, Martin P and
Becker DL: Acute downregulation of connexin43 at wound sites leads
to a reduced inflammatory response, enhanced keratinocyte
proliferation and wound fibroblast migration. J Cell Sci.
119:5193–5203. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang HH, Su CH, Wu YJ, Li JY, Tseng YM,
Lin YC, Hsieh CL, Tsai CH and Yeh HI: Reduction of connexin43 in
human endothelial progenitor cells impairs the angiogenic
potential. Angiogenesis. 16:553–560. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gartner C, Ziegelhöffer B, Kostelka M,
Stepan H, Mohr FW and Dhein S: Knock-down of endothelial connexins
impairs angiogenesis. Pharmacol Res. 65:347–357. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gottrup F: A specialized wound-healing
center concept: Importance of a multidisciplinary department
structure and surgical treatment facilities in the treatment of
chronic wounds. Am J Surg. 187 Suppl 5A:38S–43S. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Reiber GE, Lipsky BA and Gibbons GW: The
burden of diabetic foot ulcers. Am J Surg. 176 Suppl 2A:5S–10S.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang CM, Lincoln J, Cook JE and Becker DL:
Abnormal connexin expression underlies delayed wound healing in
diabetic skin. Diabetes. 56:2809–2817. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mendoza-Naranjo A, Cormie P, Serrano AE,
Wang CM, Thrasivoulou C, Sutcliffe JE, Gilmartin DJ, Tsui J, Serena
TE, Phillips AR and Becker DL: Overexpression of the gap junction
protein Cx43 as found in diabetic foot ulcers can retard fibroblast
migration. Cell Biol Int. 36:661–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Vinnik IuS, Salmina AB, Tepliakova OV,
Drobushevskaia AI, Malinovskaia NA, Pozhilenkova EA, Morgun AV and
Gitlina AG: Dynamics of local expression of connexin-43 and basic
fibroblast growth factor receptors in patients with skin and
soft-tissue infections against the background of diabetes mellitus
type II. Vestn Khir Im I I Grek. 173:47–52. 2014.(In Russian).
PubMed/NCBI
|
|
48
|
Mendoza-Naranjo A, Cormie P, Serrano AE,
Hu R, O'Neill S, Wang CM, Thrasivoulou C, Power KT, White A, Serena
T, et al: Targeting Cx43 and N-cadherin, which are abnormally
upregulated in venous leg ulcers, influences migration, adhesion
and activation of Rho GTPases. PLoS One. 7:e373742012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Paznekas WA, Boyadjiev SA, Shapiro RE,
Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C,
Hannibal MC and Jabs EW: Connexin 43 (GJA1) mutations cause the
pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum
Genet. 72:408–418. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kogame T, Dainichi T, Shimomura Y, Tanioka
M, Kabashima K and Miyachi Y: Palmoplantar keratosis in
oculodentodigital dysplasia with a GJA1 point mutation out of the
C-terminal region of connexin 43. J Dermatol. 41:1095–1097. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
van Steensel MA, Spruijt L, van der Burgt
I, Bladergroen RS, Vermeer M, Steijlen PM and van Geel M: A 2-bp
deletion in the GJA1 gene is associated with oculo-dento-digital
dysplasia with palmoplantar keratoderma. Am J Med Genet A.
132A:171–174. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Boyden LM, Craiglow BG, Zhou J, Hu R,
Loring EC, Morel KD, Lauren CT, Lifton RP and Bilguvar K: Yale
Center for Mendelian Genomics et al. Dominant de novo mutations in
GJA1 cause erythrokeratodermia variabilis et progressiva, without
features of oculodentodigital dysplasia. J Invest Dermatol.
135:1540–1547. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mou YY, Zhao GQ, Lin JY, Zhao J, Lin H, Hu
LT, Xu Q, Wang Q and Sun WR: Expression of connexin 43 and
E-cadherin in choroidal melanoma. Int J Ophthalmol. 4:156–161.
2011.PubMed/NCBI
|
|
54
|
Lin JH, Takano T, Cotrina ML, Arcuino G,
Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, et al:
Connexin 43 enhances the adhesivity and mediates the invasion of
malignant glioma cells. J Neurosci. 22:4302–4311. 2002.PubMed/NCBI
|
|
55
|
Schiffner S, Zimara N, Schmid R and
Bosserhoff AK: p54nrb is a new regulator of progression of
malignant melanoma. Carcinogenesis. 32:1176–1182. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang WK, Chen MC, Leong HF, Kuo YL, Kuo CY
and Lee CH: Connexin 43 suppresses tumor angiogenesis by
down-regulation of vascular endothelial growth factor via
hypoxic-induced factor-1α. Int J Mol Sci. 16:439–451. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tittarelli A, Guerrero I, Tempio F,
Gleisner MA, Avalos I, Sabanegh S, Ortíz C, Michea L, López MN,
Mendoza-Naranjo A and Salazar-Onfray F: Overexpression of connexin
43 reduces melanoma proliferative and metastatic capacity. Br J
Cancer. 113:259–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lomas A, Leonardi-Bee J and Bath-Hextall
F: A systematic review of worldwide incidence of nonmelanoma skin
cancer. Br J Dermatol. 166:1069–1080. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Stelkovics E, Kiszner G, Meggyeshazi N,
Korom I, Varga E, Nemeth I, Molnar J and Marczinovits I: Selective
in situ protein expression profiles correlate with distinct
phenotypes of basal cell carcinoma and squamous cell carcinoma of
the skin. Histol Histopathol. 28:941–954. 2013.PubMed/NCBI
|
|
60
|
Tada J and Hashimoto K: Ultrastructural
localization of gap junction protein connexin 43 in normal human
skin, basal cell carcinoma, and squamous cell carcinoma. J Cutan
Pathol. 24:628–635. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Arita K, Akiyama M, Tsuji Y, McMillan JR,
Eady RA and Shimizu H: Changes in gap junction distribution and
connexin expression pattern during human fetal skin development. J
Histochem Cytochem. 50:1493–1500. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Choudhry R, Pitts JD and Hodgins MB:
Changing patterns of gap junctional intercellular communication and
connexin distribution in mouse epidermis and hair follicles during
embryonic development. Dev Dyn. 210:417–430. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Goliger JA and Paul DL: Expression of gap
junction proteins Cx26, Cx31.1, Cx37, and Cx43 in developing and
mature rat epidermis. Dev Dyn. 200:1–13. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Butterweck A, Elfgang C, Willecke K and
Traub O: Differential expression of the gap junction proteins
connexin45,−43, −40, −31, and −26 in mouse skin. Eur J Cell Biol.
65:152–163. 1994.PubMed/NCBI
|
|
65
|
Ackert CL, Gittens JE, O'Brien MJ, Eppig
JJ and Kidder GM: Intercellular communication via connexin43 gap
junctions is required for ovarian folliculogenesis in the mouse.
Dev Biol. 233:258–270. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dyce PW, Li D, Barr KJ and Kidder GM:
Connexin43 is required for the maintenance of multipotency in
skin-derived stem cells. Stem Cells De. 23:1636–1646. 2014.
View Article : Google Scholar
|
|
67
|
Lorraine C, Wright CS and Martin PE:
Connexin43 plays diverse roles in co-ordinating cell migration and
wound closure events. Biochem Soc Trans. 43:482–488. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Moore K, Ghatnekar G, Gourdie RG and Potts
JD: Impact of the controlled release of a connexin 43 peptide on
corneal wound closure in an STZ model of type I diabetes. PLoS One.
9:e865702014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gilmartin DJ, Soon A, Thrasivoulou C,
Phillips AR, Jayasinghe SN and Becker DL: Sustained release of Cx43
antisense oligodeoxynucleotides from coated collagen scaffolds
promotes wound healing. Adv Healthc Mater. 5:1786–1799. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Qiu C, Coutinho P, Frank S, Franke S, Law
LY, Martin P, Green CR and Becker DL: Targeting connexin43
expression accelerates the rate of wound repair. Curr Biol.
13:1697–1703. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boitano S, Dirksen ER and Evans WH:
Sequence-specific antibodies to connexins block intercellular
calcium signaling through gap junctions. Cell Calcium. 23:1–9.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Oviedo-Orta E, Hoy T and Evans WH:
Intercellular communication in the immune system: Differential
expression of connexin40 and 43, and perturbation of gap junction
channel functions in peripheral blood and tonsil human lymphocyte
subpopulations. Immunology. 99:578–590. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang N, de Vuyst E, Ponsaerts R, Boengler
K, Palacios-Prado N, Wauman J, Lai CP, de Bock M, Decrock E, Bol M,
et al: Selective inhibition of Cx43 hemichannels by Gap19 and its
impact on myocardial ischemia/reperfusion injury. Basic Res
Cardiol. 108:3092013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wright CS, van Steensel MA, Hodgins MB and
Martin PE: Connexin mimetic peptides improve cell migration rates
of human epidermal keratinocytes and dermal fibroblasts in vitro.
Wound Repair Regen. 17:240–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kandyba EE, Hodgins MB and Martin PE: A
murine living skin equivalent amenable to live-cell imaging:
Analysis of the roles of connexins in the epidermis. J Invest
Dermatol. 128:1039–1049. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ongstad EL, O'Quinn MP, Ghatnekar GS, Yost
MJ and Gourdie RG: A Connexin43 mimetic peptide promotes
regenerative healing and improves mechanical properties in skin and
heart. Adv Wound Care (New Rochelle). 2:55–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Contreras JE, Sanchez HA, Eugenin EA,
Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV and Sáez
JC: Metabolic inhibition induces opening of unapposed connexin 43
gap junction hemichannels and reduces gap junctional communication
in cortical astrocytes in culture. Proc Natl Acad Sci USA. 99:pp.
495–500. 2002; View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Goldberg GS, Moreno AP, Bechberger JF,
Hearn SS, Shivers RR, MacPhee DJ, Zhang YC and Naus CC: Evidence
that disruption of connexon particle arrangements in gap junction
plaques is associated with inhibition of gap junctional
communication by a glycyrrhetinic acid derivative. Exp Cell Res.
222:48–53. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Davidson JS and Baumgarten IM:
Glycyrrhetinic acid derivatives: A novel class of inhibitors of
gap-junctional intercellular communication. Structure-activity
relationships. J Pharmacol Exp Ther. 246:1104–1107. 1988.PubMed/NCBI
|
|
80
|
Pollok S, Pfeiffer AC, Lobmann R, Wright
CS, Moll I, Martin PE and Brandner JM: Connexin 43 mimetic peptide
Gap27 reveals potential differences in the role of Cx43 in wound
repair between diabetic and non-diabetic cells. J Cell Mol Med.
15:861–873. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wright CS, Berends RF, Flint DJ and Martin
PE: Cell motility in models of wounded human skin is improved by
Gap27 despite raised glucose, insulin and IGFBP-5. Exp Cell Res.
319:390–401. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ishido M and Kasuga N: Characteristics of
the localization of connexin 43 in satellite cells during skeletal
muscle regeneration in vivo. Acta Histochem Cytochem. 48:53–60.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Schulz R, Görge PM, Gorbe A, Ferdinandy P,
Lampe PD and Leybaert L: Connexin 43 is an emerging therapeutic
target in ischemia/reperfusion injury, cardioprotection and
neuroprotection. Pharmacol Ther. 153:90–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Elbadawy HM, Mirabelli P, Xeroudaki M,
Parekh M, Bertolin M, Breda C, Cagini C, Ponzin D, Lagali N and
Ferrari S: Effect of Connexin 43 inhibition by the mimetic peptide
Gap27 on corneal wound healing, inflammation and
neovascularization. Br J Pharmacol. 173:2880–2893. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Becker DL, Phillips AR, Duft BJ, Kim Y and
Green CR: Translating connexin biology into therapeutics. Semin
Cell Dev Biol. 50:49–58. 2016. View Article : Google Scholar : PubMed/NCBI
|