|
1
|
Ehrlich YH, Davis TB, Bock E, Kornecki E
and Lenox RH: Ecto protein kinase activity on the external surface
of neural cells. Nature. 320:67–70. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kübler D and Barnekow A: Ecto kinase
activities in normal and transformed cells. Eur J Cell Biol.
40:58–63. 1986.PubMed/NCBI
|
|
3
|
Chen W, Wieraszko A, Hogan MV, Yang HA,
Kornecki E and Ehrlich YH: Surface protein phosphorylation by
ecto-protein kinase is required for the maintenance of hippocampal
long-term potentiation. Proc Natl Acad Sci USA. 93:pp. 8688–8693.
1996; View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Paas Y and Fishelson Z: Shedding of
tyrosine and serine/threonine ecto-protein kinases from human
leukemic cells. Arch Biochem Biophys. 316:780–788. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ekdahl KN and Nilsson B: Alterations in C3
activation and binding caused by phosphorylation by a casein kinase
released from activated human platelets. J Immunol. 162:7426–7433.
1999.PubMed/NCBI
|
|
6
|
Kalafatis M, Rand MD, Jenny RJ, Ehrlich YH
and Mann KG: Phosphorylation of factor Va and factor VIIIa by
activated platelets. Blood. 81:704–719. 1993.PubMed/NCBI
|
|
7
|
Rand MD, Kalafatis M and Mann KG: Platelet
coagulation factor Va: The major secretory platelet phosphoprotein.
Blood. 83:2180–2190. 1994.PubMed/NCBI
|
|
8
|
Martin SC: Phosphorylation of complement
factor C3 in vivo. Biochem J. 261:1051–1054. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hamilton KK and Sims PJ: Changes in
cytosolic Ca2+ associated with von Willebrand factor release in
human endothelial cells exposed to histamine. Study of microcarrier
cell monolayers using the fluorescent probe indo-1. J Clin Invest.
79:600–608. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gödecke S, Roderigo C, Rose CR, Rauch BH,
Gödecke A and Schrader J: Thrombin-induced ATP release from human
umbilical vein endothelial cells. Am J Physiol Cell Physiol.
302:C915–C923. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kübler D, Pyerin W, Bill O, Hotz A, Sonka
J and Kinzel V: Evidence for ecto-protein kinase activity that
phosphorylates Kemptide in a cyclic AMP-dependent mode. J Biol
Chem. 264:14549–14555. 1989.PubMed/NCBI
|
|
12
|
Kübler D, Pyerin W, Burow E and Kinzel V:
Substrate-effected release of surface-located protein kinase from
intact cells. Proc Natl Acad Sci USA. 80:pp. 4021–4025. 1983;
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Skubitz KM, Ehresmann DD and Ducker TP:
Characterization of human neutrophil ecto-protein kinase activity
released by kinase substrates. J Immunol. 147:638–650.
1991.PubMed/NCBI
|
|
14
|
Walter J, Schnölzer M, Pyerin W, Kinzel V
and Kübler D: Induced release of cell surface protein kinase yields
CK1- and CK2-like enzymes in tandem. J Biol Chem. 271:111–119.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Al-Nedawi KN, Pawłowska Z and Cierniewski
CS: Interferon gamma bound to endothelial cells is phosphorylated
by ecto-protein kinases. Acta Biochim Pol. 46:693–702.
1999.PubMed/NCBI
|
|
16
|
Hartmann M and Schrader J: Exo-protein
kinase release from intact cultured aortic endothelial cells.
Biochim Biophys Acta. 1136:189–195. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Eriksson S, Alston-Smith J and Ekman P:
Endothelial cells release casein kinase II - like activity capable
of phosphorylating fibrinogen in response to thrombin. Thromb Res.
72:315–320. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Litchfield DW: Protein kinase CK2:
Structure, regulation and role in cellular decisions of life and
death. Biochem J. 369:1–15. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Meggio F and Pinna LA:
One-thousand-and-one substrates of protein kinase CK2? FASEB J.
17:349–368. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
St-Denis NA and Litchfield DW: Protein
kinase CK2 in health and disease: From birth to death: the role of
protein kinase CK2 in the regulation of cell proliferation and
survival. Cell Mol Life Sci. 66:1817–1829. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ahmad KA, Wang G, Unger G, Slaton J and
Ahmed K: Protein kinase CK2 - a key suppressor of apoptosis. Adv
Enzyme Regul. 48:179–187. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Montenarh M: Protein kinase CK2 in DNA
damage and repair. Transl Cancer Res. 5:49–63. 2016.
|
|
24
|
Götz C and Montenarh M: Protein kinase CK2
in development and differentiation. Biomed Rep. 6:127–133. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Al Quobaili F and Montenarh M: CK2 and the
regulation of the carbohydrate metabolism. Metabolism.
61:1512–1517. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lolli G, Naressi D, Sarno S and
Battistutta R: Characterization of the oligomeric states of the CK2
α2β2 holoenzyme in solution. Biochem J. 474:2405–2416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Filhol O, Martiel JL and Cochet C: Protein
kinase CK2: A new view of an old molecular complex. EMBO Rep.
5:351–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Pinna LA: The raison d'être of
constitutively active protein kinases: The lesson of CK2. Acc Chem
Res. 36:378–384. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Meggio F, Boldyreff B, Marin O, Pinna LA
and Issinger OG: Role of the beta subunit of casein kinase-2 on the
stability and specificity of the recombinant reconstituted
holoenzyme. Eur J Biochem. 204:293–297. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bidwai AP, Hanna DE and Glover CV:
Purification and characterization of casein kinase II (CKII) from
delta cka1 delta cka2 Saccharomyces cerevisiae rescued by
Drosophila CKII subunits. The free catalytic subunit of casein
kinase II is not toxic in vivo. J Biol Chem. 267:18790–18796.
1992.PubMed/NCBI
|
|
31
|
Grankowski N, Boldyreff B and Issinger OG:
Isolation and characterization of recombinant human casein kinase
II subunits alpha and beta from bacteria. Eur J Biochem. 198:25–30.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cochet C and Chambaz EM: Oligomeric
structure and catalytic activity of G type casein kinase. Isolation
of the two subunits and renaturation experiments. J Biol Chem.
258:1403–1406. 1983.PubMed/NCBI
|
|
33
|
Meggio F, Boldyreff B, Marin O, Marchiori
F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on
casein-kinase-2 activity is influenced by both the structure of the
protein/peptide substrates and the subunit composition of the
enzyme. Eur J Biochem. 205:939–945. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Boldyreff B, Meggio F, Pinna LA and
Issinger OG: Reconstitution of normal and hyperactivated forms of
casein kinase-2 by variably mutated beta-subunits. Biochemistry.
32:12672–12677. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Filhol O, Cochet C, Delagoutte T and
Chambaz EM: Polyamine binding activity of casein kinase II. Biochem
Biophys Res Commun. 180:945–952. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ulges A, Klein M, Reuter S, Gerlitzki B,
Hoffmann M, Grebe N, Staudt V, Stergiou N, Bohn T, Brühl TJ, et al:
Protein kinase CK2 enables regulatory T cells to suppress excessive
TH2 responses in vivo. Nat Immunol. 16:267–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bolanos-Garcia VM, Fernandez-Recio J,
Allende JE and Blundell TL: Identifying interaction motifs in
CK2beta - a ubiquitous kinase regulatory subunit. Trends Biochem
Sci. 31:654–661. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Boldyreff B and Issinger OG: A-Raf kinase
is a new interacting partner of protein kinase CK2 β subunit. FEBS
Lett. 403:197–199. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Singal SS, Nygard K, Dhruv MR, Biggar K,
Shehab MA, Li SS, Jansson T and Gupta MB: Co-Localization of
Insulin-Like Growth Factor Binding Protein-1, Casein Kinase-2β, and
Mechanistic Target of Rapamycin in Human Hepatocellular Carcinoma
Cells as Demonstrated by Dual Immunofluorescence and in Situ
Proximity Ligation Assay. Am J Pathol. 188:111–124. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kraiss S, Barnekow A and Montenarh M:
Protein kinase activity associated with immunopurified p53 protein.
Oncogene. 5:845–855. 1990.PubMed/NCBI
|
|
41
|
Wagner P, Appel K, Issinger O and
Montenarh M: On the interaction of p53 with casein kinase-ii. Int J
Oncol. 4:491–498. 1994.PubMed/NCBI
|
|
42
|
Schuster N and Montenarh M: The role of
protein kinase CK2 in p53 mediated growth arrest in mouse
fibroblasts. Eur J Cell Biol. 72:71. 1997.
|
|
43
|
Schuster N, Götz C, Faust M, Schneider E,
Prowald A, Jungbluth A and Montenarh M: Wild-type p53 inhibits
protein kinase CK2 activity. J Cell Biochem. 81:172–183. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cox ML and Meek DW: Phosphorylation of
serine 392 in p53 is a common and integral event during p53
induction by diverse stimuli. Cell Signal. 22:564–571. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hériché JK, Lebrin F, Rabilloud T, Leroy
D, Chambaz EM and Goldberg Y: Regulation of protein phosphatase 2A
by direct interaction with casein kinase 2alpha. Science.
276:952–955. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Redwood C, Davies SL, Wells NJ, Fry AM and
Hickson ID: Casein kinase II stabilizes the activity of human
topoisomerase IIalpha in a phosphorylation-independent manner. J
Biol Chem. 273:3635–3642. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Llorens F, Roher N, Miró FA, Sarno S, Ruiz
FX, Meggio F, Plana M, Pinna LA and Itarte E: Eukaryotic
translation-initiation factor eIF2β binds to protein kinase CK2:
Effects on CK2α activity. Biochem J. 375:623–631. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ruzzene M, Brunati AM, Sarno S,
Donella-Deana A and Pinna LA: Hematopoietic lineage cell specific
protein 1 associates with and down-regulates protein kinase CK2.
FEBS Lett. 461:32–36. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Montenarh M: Cellular regulators of
protein kinase CK2. Cell Tissue Res. 342:139–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Guerra B, Issinger OG and Wang JYJ:
Modulation of human checkpoint kinase Chk1 by the regulatory
β-subunit of protein kinase CK2. Oncogene. 22:4933–4942. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kreutzer J and Guerra B: The regulatory
beta-subunit of protein kinase CK2 accelerates the degradation of
CDC25A phosphatase through the checkpoint kinase Chk1. Int J Oncol.
31:1251–1259. 2007.PubMed/NCBI
|
|
52
|
Olsen BB, Kreutzer JN, Watanabe N, Holm T
and Guerra B: Mapping of the interaction sites between Wee1 kinase
and the regulatory beta-subunit of protein kinase CK2. Int J Oncol.
36:1175–1182. 2010.PubMed/NCBI
|
|
53
|
Meggio F, Boldyreff B, Marin O, Issinger
OG and Pinna LA: Phosphorylation and activation of protein kinase
CK2 by p34cdc2 are independent events. Eur J Biochem.
230:1025–1031. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Meggio F, Boldyreff B, Issinger OG and
Pinna LA: The autophosphorylation and p34cdc2 phosphorylation sites
of casein kinase-2 beta-subunit are not essential for
reconstituting the fully-active heterotetrameric holoenzyme.
Biochim Biophys Acta. 1164:223–225. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Filhol O, Nueda A, Martel V,
Gerber-Scokaert D, Benitez MJ, Souchier C, Saoudi Y and Cochet C:
Live-cell fluorescence imaging reveals the dynamics of protein
kinase CK2 individual subunits. Mol Cell Biol. 23:975–987. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ahmed K and Tawfic S: Mechanism of
intracellular regulation of protein kinase CK2: Role of
stimulus-mediated subnuclear association. Cell Mol Biol Res.
40:539–545. 1994.PubMed/NCBI
|
|
57
|
Wang H, Yu S, Davis AT and Ahmed K: Cell
cycle dependent regulation of protein kinase CK2 signaling to the
nuclear matrix. J Cell Biochem. 88:812–822. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yu S, Davis AT, Guo C, Green JE and Ahmed
K: Differential targeting of protein kinase CK2 to the nuclear
matrix upon transient overexpression of its subunits. J Cell
Biochem. 74:127–134. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pyerin W, Burow E, Michaely K, Kübler D
and Kinzel V: Catalytic and molecular properties of highly purified
phosvitin/casein kinase type II from human epithelial cells in
culture (HeLa) and relation to ecto protein kinase. Biol Chem Hoppe
Seyler. 368:215–227. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sargiacomo M, Scherer PE, Tang ZL,
Casanova JE and Lisanti MP: In vitro phosphorylation of
caveolin-rich membrane domains: Identification of an associated
serine kinase activity as a casein kinase II-like enzyme. Oncogene.
9:2589–2595. 1994.PubMed/NCBI
|
|
61
|
Wei T and Tao M: Human erythrocyte casein
kinase II: Characterization and phosphorylation of membrane
cytoskeletal proteins. Arch Biochem Biophys. 307:206–216. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sarrouilhe D, Filhol O, Leroy D, Bonello
G, Baudry M, Chambaz EM and Cochet C: The tight association of
protein kinase CK2 with plasma membranes is mediated by a specific
domain of its regulatory β-subunit. Biochim Biophys Acta.
1403:199–210. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rodriguez FA, Contreras C, Bolanos-Garcia
V and Allende JE: Protein kinase CK2 as an ectokinase: The role of
the regulatory CK2beta subunit. Proc Natl Acad Sci USA. 105:pp.
5693–5698. 2008; View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mikuni-Takagaki Y and Glimcher MJ:
Post-translational processing of chicken bone phosphoproteins.
Identification of bone (phospho)protein kinase. Biochem J.
268:593–597. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rodríguez F, Allende CC and Allende JE:
Protein kinase casein kinase 2 holoenzyme produced ectopically in
human cells can be exported to the external side of the cellular
membrane. Proc Natl Acad Sci USA. 102:pp. 4718–4723. 2005;
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kusk M, Ahmed R, Thomsen B, Bendixen C,
Issinger OG and Boldyreff B: Interactions of protein kinase CK2β
subunit within the holoenzyme and with other proteins. Mol Cell
Biochem. 191:51–58. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guerra B and Issinger OG: CK2: A global
regulator of cell survivalProtein kinase CK2. Pinna LA: John Wiley
& Sons, Inc.; Ames, Chichester, Oxford: pp. 239–266. 2013,
View Article : Google Scholar
|
|
68
|
Sarno S and Pinna LA: Protein kinase CK2
as a druggable target. Mol Biosyst. 4:889–894. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rahnel H, Viht K, Lavogina D, Mazina O,
Haljasorg T, Enkvist E and Uri A: A Selective Biligand Inhibitor of
CK2 Increases Caspase-3 Activity in Cancer Cells and Inhibits
Platelet Aggregation. ChemMedChem. 12:1723–1736. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cozza G, Zanin S, Sarno S, Costa E,
Girardi C, Ribaudo G, Salvi M, Zagotto G, Ruzzene M and Pinna LA:
Design, validation and efficacy of bisubstrate inhibitors
specifically affecting ecto-CK2 kinase activity. Biochem J.
471:415–430. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lavogina D, Enkvist E and Uri A:
Bisubstrate inhibitors of protein kinases: From principle to
practical applications. ChemMedChem. 5:23–34. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Walter J, Schindzielorz A, Hartung B and
Haass C: Phosphorylation of the beta-amyloid precursor protein at
the cell surface by ectocasein kinases 1 and 2. J Biol Chem.
275:23523–23529. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hathaway GM, Lubben TH and Traugh JA:
Inhibition of casein kinase II by heparin. J Biol Chem.
255:8038–8041. 1980.PubMed/NCBI
|
|
74
|
Meggio F, Shugar D and Pinna LA:
Ribofuranosyl-benzimidazole derivatives as inhibitors of casein
kinase-2 and casein kinase-1. Eur J Biochem. 187:89–94. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Münzer P, Walker-Allgaier B, Geue S,
Langhauser F, Geuss E, Stegner D, Aurbach K, Semeniak D, Chatterjee
M, Gonzalez Menendez I, et al: CK2β regulates thrombopoiesis and
Ca2+-triggered platelet activation in arterial thrombosis. Blood.
130:2774–2785. 2017.PubMed/NCBI
|
|
76
|
Sonka J, Kübler D and Kinzel V:
Phosphorylation by cell surface protein kinase of bovine and human
fibrinogen and fibrin. Biochim Biophys Acta. 997:268–277. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Paas Y, Bohana-Kashtan O and Fishelson Z:
Phosphorylation of the complement component, C9, by an ecto-protein
kinase of human leukemic cells. Immunopharmacology. 42:175–185.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yim H, Lee YH, Lee CH and Lee SK: Emodin,
an anthraquinone derivative isolated from the rhizomes of Rheum
palmatum, selectively inhibits the activity of casein kinase II as
a competitive inhibitor. Planta Med. 65:9–13. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ruzzene M, Penzo D and Pinna LA: Protein
kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces
apoptosis and caspase-dependent degradation of haematopoietic
lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J.
364:41–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Müller-Eberhard HJ: The membrane attack
complex of complement. Annu Rev Immunol. 4:503–528. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bohana-Kashtan O, Pinna LA and Fishelson
Z: Extracellular phosphorylation of C9 by protein kinase CK2
regulates complement-mediated lysis. Eur J Immunol. 35:1939–1948.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Stepanova V, Jerke U, Sagach V, Lindschau
C, Dietz R, Haller H and Dumler I: Urokinase-dependent human
vascular smooth muscle cell adhesion requires selective vitronectin
phosphorylation by ectoprotein kinase CK2. J Biol Chem.
277:10265–10272. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Seger D, Seger R and Shaltiel S: The CK2
phosphorylation of vitronectin. Promotion of cell adhesion via the
α(v)β 3-phosphatidylinositol 3-kinase pathway. J Biol Chem.
276:16998–17006. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Seger D, Gechtman Z and Shaltiel S:
Phosphorylation of vitronectin by casein kinase II. Identification
of the sites and their promotion of cell adhesion and spreading. J
Biol Chem. 273:24805–24813. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Trachana V, Christophorides E,
Kouzi-Koliakos K and Koliakos G: Laminin-1 is phosphorylated by
ecto-protein kinases of monocytes. Int J Biochem Cell Biol.
37:478–492. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Teshima R, Onose J, Saito Y, Ikebuchi H,
Kitani S and Sawada J: Casein kinase II-like ectokinase activity on
RBL-2H3 cells. Immunol Lett. 68:369–374. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zimina EP, Fritsch A, Schermer B, Bakulina
AY, Bashkurov M, Benzing T and Bruckner-Tuderman L: Extracellular
phosphorylation of collagen XVII by ecto-casein kinase 2 inhibits
ectodomain shedding. J Biol Chem. 282:22737–22746. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhu X, Luo C, Ferrier JM and Sodek J:
Evidence of ectokinase-mediated phosphorylation of osteopontin and
bone sialoprotein by osteoblasts during bone formation in vitro.
Biochem J. 323:637–643. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jellinek DA, Chang AC, Larsen MR, Wang X,
Robinson PJ and Reddel RR: Stanniocalcin 1 and 2 are secreted as
phosphoproteins from human fibrosarcoma cells. Biochem J.
350:453–461. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dumler I, Stepanova V, Jerke U, Mayboroda
OA, Vogel F, Bouvet P, Tkachuk V, Haller H and Gulba DC:
Urokinase-induced mitogenesis is mediated by casein kinase 2 and
nucleolin. Curr Biol. 9:1468–1476. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ginisty H, Sicard H, Roger B and Bouvet P:
Structure and functions of nucleolin. J Cell Sci. 112:761–772.
1999.PubMed/NCBI
|
|
92
|
Venerando A, Cesaro L and Pinna LA: From
phosphoproteins to phosphoproteomes: A historical account. FEBS J.
284:1936–1951. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Aláez-Versón CR, Lantero E and
Fernàndez-Busquets X: Heparin: New life for an old drug.
Nanomedicine (Lond). 12:1727–1744. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Clement JQ and Wilkinson MF: Rapid
induction of nuclear transcripts and inhibition of intron decay in
response to the polymerase II inhibitor DRB. J MolBiol.
299:1179–1191. 2000. View Article : Google Scholar
|