|
1
|
Goodwin GH, Sanders C and Johns EW: A new
group of chromatin-associated proteins with a high content of
acidic and basic amino acids. Eur J Biochem. 38:14–19. 1973.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sohun M and Shen H: The implication and
potential applications of high-mobility group box 1 protein in
breast cancer. Ann Transl Med. 4:2172016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bertheloot D and Latz E: HMGB1, IL-1α,
IL-33 and S100 proteins: Dual-function alarmins. Cell Mol Immunol.
14:43–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
George MG, Tong X and Bowman BA:
Prevalence of cardiovascular risk factors and strokes in younger
adults. JAMA Neurol. 74:695–703. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fotakopoulos G, Tsianaka E, Fountas K,
Makris D, Spyrou M and Hernesniemi J: Clipping versus coiling in
anterior circulation ruptured intracranial aneurysms: A
meta-analysis. World Neurosurg. 104:482–488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ilyas A, Chen CJ, Raper DM, Ding D, Buell
T, Mastorakos P and Liu KC: Endovascular mechanical thrombectomy
for cerebral venous sinus thrombosis: A systematic review. J
Neurointerv Surg. 9:1086–1092. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Musumeci D, Roviello GN and Montesarchio
D: An overview on HMGB1 inhibitors as potential therapeutic agents
in HMGB1-related pathologies. Pharmacol Ther. 141:347–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Andersson U and Tracey KJ: HMGB1 is a
therapeutic target for sterile inflammation and infection. Annu Rev
Immunol. 29:139–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang H, Wang H, Chavan SS and Andersson U:
High mobility group box protein 1 (HMGB1): The prototypical
endogenous danger molecule. Mol Med. 21 Suppl 1:S6–S12. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Antoine DJ, Harris HE, Andersson U, Tracey
KJ and Bianchi ME: A systematic nomenclature for the redox states
of high mobility group box (HMGB) proteins. Mol Med. 20:135–137.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Andersson U, Antoine DJ and Tracey KJ: The
functions of HMGB1 depend on molecular localization and
post-translational modifications. J Intern Med. 276:420–424. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lu B, Antoine DJ, Kwan K, Lundbäck P,
Wähämaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J,
et al: JAK/STAT1 signaling promotes HMGB1 hyperacetylation and
nuclear translocation. Proc Natl Acad Sci USA. 111:3068–3073. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lu B, Nakamura T, Inouye K, Li J, Tang Y,
Lundbäck P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, et al:
Novel role of PKR in inflammasome activation and HMGB1 release.
Nature. 488:670–674. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sánchez-Giraldo R, Acosta-Reyes FJ,
Malarkey CS, Saperas N, Churchill ME and Campos JL: Two
high-mobility group box domains act together to underwind and kink
DNA. Acta Crystallogr D Biol Crystallogr. 71:1423–1432. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Martinotti S, Patrone M and Ranzato E:
Emerging roles for HMGB1 protein in immunity, inflammation, and
cancer. Immunotargets Ther. 4:101–109. 2015.PubMed/NCBI
|
|
16
|
Kang R, Zhang Q, Zeh HJ III, Lotze MT and
Tang D: HMGB1 in cancer: Good, bad, or both? Clin Cancer Res.
19:4046–4057. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yanai H, Ban T, Wang Z, Choi MK, Kawamura
T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, et al: HMGB
proteins function as universal sentinels for nucleic-acid-mediated
innate immune responses. Nature. 462:99–103. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Franchi L, Muñoz-Planillo R and Núñez G:
Sensing and reacting to microbes through the inflammasomes. Nat
Immunol. 13:325–332. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lu B, Wang H, Andersson U and Tracey KJ:
Regulation of HMGB1 release by inflammasomes. Protein Cell.
4:163–167. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yanai H, Matsuda A, An J, Koshiba R,
Nishio J, Negishi H, Ikushima H, Onoe T, Ohdan H, Yoshida N, et al:
Conditional ablation of HMGB1 in mice reveals its protective
function against endotoxemia and bacterial infection. Proc Natl
Acad Sci USA. 110:20699–20704. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
He SJ, Cheng J, Feng X, Yu Y, Tian L and
Huang Q: The dual role and therapeutic potential of high-mobility
group box 1 in cancer. Oncotarget. 8:64534–64550. 2017.PubMed/NCBI
|
|
22
|
van Beijnum JR, Buurman WA and Griffioen
AW: Convergence and amplification of toll-like receptor (TLR) and
receptor for advanced glycation end products (RAGE) signaling
pathways via high mobility group B1 (HMGB1). Angiogenesis.
11:91–99. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fiuza C, Bustin M, Talwar S, Tropea M,
Gerstenberger E, Shelhamer JH and Suffredini AF:
Inflammation-promoting activity of HMGB1 on human microvascular
endothelial cells. Blood. 101:2652–2660. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pradere JP, Dapito DH and Schwabe RF: The
Yin and Yang of Toll-like receptors in cancer. Oncogene.
33:3485–3495. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xi Y, Shao F, Bai XY, Cai G, Lv Y and Chen
X: Changes in the expression of the Toll-like receptor system in
the aging rat kidneys. PLoS One. 9:e963512014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang G, Zhang L, Ma L, Jiang R, Kuang G,
Li K, Tie H, Wang B, Chen X, Xie T, et al: Glycyrrhetinic acid
prevents acetaminophen-induced acute liver injury via the
inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in
mice. Int Immunopharmacol. 50:186–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tian J, Avalos AM, Mao SY, Chen B, Senthil
K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, et al:
Toll-like receptor 9-dependent activation by DNA-containing immune
complexes is mediated by HMGB1 and RAGE. Nat Immunol. 8:487–496.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hiraku Y, Guo F, Ma N, Yamada T, Wang S,
Kawanishi S and Murata M: Multi-walled carbon nanotube induces
nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE
interaction and Toll-like receptor 9 activation. Part Fibre
Toxicol. 13:162016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Das N, Dewan V, Grace PM, Gunn RJ, Tamura
R, Tzarum N, Watkins LR, Wilson IA and Yin H: HMGB1 activates
proinflammatory signaling via TLR5 leading to allodynia. Cell
Reports. 17:1128–1140. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Magna M and Pisetsky DS: The role of HMGB1
in the pathogenesis of inflammatory and autoimmune diseases. Mol
Med. 20:138–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Godinho J, de Oliveira RMW, de
Sa-Nakanishi AB, Bacarin CC, Huzita CH, Longhini R, Mello JCP,
Nakamura CV, Previdelli IS, Dal Molin Ribeiro MH, et al:
Ethyl-acetate fraction of Trichilia catigua restores long-term
retrograde memory and reduces oxidative stress and inflammation
after global cerebral ischemia in rats. Behav Brain Res.
337:173–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tsukagawa T, Katsumata R, Fujita M, Yasui
K, Akhoon C, Ono K, Dohi K and Aruga T: Elevated serum
high-mobility group box-1 protein level Is associated with poor
functional outcome in ischemic stroke. J Stroke Cerebrovasc Dis.
26:2404–2411. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qiu J, Nishimura M, Wang Y, Sims JR, Qiu
S, Savitz SI, Salomone S and Moskowitz MA: Early release of HMGB-1
from neurons after the onset of brain ischemia. J Cereb Blood Flow
Metab. 28:927–938. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shichita T, Sakaguchi R, Suzuki M and
Yoshimura A: Post-ischemic inflammation in the brain. Front
Immunol. 3:1322012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang J, Takahashi HK, Liu K, Wake H, Liu
R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, et al: Anti-high
mobility group box-1 monoclonal antibody protects the blood-brain
barrier from ischemia-induced disruption in rats. Stroke.
42:1420–1428. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li WA, Moore-Langston S, Chakraborty T,
Rafols JA, Conti AC and Ding Y: Hyperglycemia in stroke and
possible treatments. Neurol Res. 35:479–491. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang J, Wu Y, Weng Z, Zhou T, Feng T and
Lin Y: Glycyrrhizin protects brain against ischemia-reperfusion
injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain
Res. 1582:176–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai
L, Yin L and Dong H: Protective effect of glycyrrhizin, a direct
HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced
inflammation, oxidative stress, and apoptosis in rats. PLoS One.
9:e894502014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Umahara T, Uchihara T, Hirokawa K, Hirao
K, Shimizu S, Hashimoto T, Terasi H and Hanyu H: Time-dependent and
lesion-dependent HMGB1-selective localization in brains of patients
with cerebrovascular diseases. Histol Histopathol. 33:215–222.
2018.PubMed/NCBI
|
|
40
|
Chen JY, Yu Y, Yuan Y, Zhang YJ, Fan XP,
Yuan SY, Zhang JC and Yao SL: Enriched housing promotes post-stroke
functional recovery through astrocytic HMGB1-IL-6-mediated
angiogenesis. Cell Death Discov. 3:170542017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu X, Liu S, Hu Z, Zhu G, Zheng G and Wang
G: Enriched housing promotes post-stroke neurogenesis through
calpain 1-STAT3/HIF-1α/VEGF signaling. Brain Res Bull. 139133–143.
(201841)2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang D, Wu W, Yan H, Jiang T, Liu M, Yu
Z, Li H and Hang C: Upregulation of HMGB1 in wall of ruptured and
unruptured human cerebral aneurysms: Preliminary results. Neurol
Sci. 37:219–226. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chalouhi N, Ali MS, Jabbour PM,
Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ and Dumont AS:
Biology of intracranial aneurysms: Role of inflammation. J Cereb
Blood Flow Metab. 32:1659–1676. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aoki T, Kataoka H, Nishimura M, Ishibashi
R, Morishita R and Miyamoto S: Regression of intracranial aneurysms
by simultaneous inhibition of nuclear factor-κB and Ets with
chimeric decoy oligodeoxynucleotide treatment. Neurosurgery.
70:1534–1543; discussion 1543. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bianchi ME and Manfredi AA: High-mobility
group box 1 (HMGB1) protein at the crossroads between innate and
adaptive immunity. Immunol Rev. 220:35–46. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Przybycien-Szymanska MM and Ashley WW Jr:
Biomarker discovery in cerebral vasospasm after aneurysmal
subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 24:1453–1464.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chang CZ, Wu SC, Kwan AL and Lin CL:
Rhinacanthin-C, A fat-soluble extract from Rhinacanthus
nasutus, modulates high-mobility group box 1-related
neuro-inflammation and subarachnoid hemorrhage-induced brain
apoptosis in a rat model. World Neurosurg. 86:349–360. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhao XD, Mao HY, Lv J and Lu XJ:
Expression of high-mobility group box-1 (HMGB1) in the basilar
artery after experimental subarachnoid hemorrhage. J Clin Neurosci.
27:161–165. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li H, Wu W, Sun Q, Liu M, Li W, Zhang XS,
Zhou ML and Hang CH: Expression and cell distribution of receptor
for advanced glycation end-products in the rat cortex following
experimental subarachnoid hemorrhage. Brain Res. 1543:315–323.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang XS, Li W, Wu Q, Wu LY, Ye ZN, Liu
JP, Zhuang Z, Zhou ML, Zhang X and Hang CH: Resveratrol attenuates
acute inflammatory injury in experimental subarachnoid hemorrhage
in rats via inhibition of TLR4 pathway. Int J Mol Sci.
17:172016.
|
|
51
|
Hendrix P, Foreman PM, Harrigan MR, Fisher
WSR III, Vyas NA, Lipsky RH, Lin M, Walters BC, Tubbs RS, Shoja MM,
et al: Impact of high-mobility group box 1 polymorphism on delayed
cerebral ischemia after aneurysmal subarachnoid hemorrhage. World
Neurosurg. 101:325–330. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tian X, Sun L, Feng D, Sun Q, Dou Y, Liu
C, Zhou F, Li H, Shen H, Wang Z, et al: HMGB1 promotes
neurovascular remodeling via Rage in the late phase of subarachnoid
hemorrhage. Brain Res. 1670:135–145. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qureshi AI, Mendelow AD and Hanley DF:
Intracerebral haemorrhage. Lancet. 373:1632–1644. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lei C, Wu B, Cao T, Zhang S and Liu M:
Activation of the high-mobility group box 1 protein-receptor for
advanced glycation end-products signaling pathway in rats during
neurogenesis after intracerebral hemorrhage. Stroke. 46:500–506.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang YX, Yan A, Ma ZH, Wang Z, Zhang B,
Ping JL, Zhu JS, Zhou Y and Dai L: Nuclear factor-κB and apoptosis
in patients with intracerebral hemorrhage. J Clin Neurosci.
18:1392–1395. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lei C, Zhang S, Cao T, Tao W, Liu M and Wu
B: HMGB1 may act via RAGE to promote angiogenesis in the later
phase after intracerebral hemorrhage. Neuroscience. 295:39–47.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li D, Lei C, Zhang S, Zhang S, Liu M and
Wu B: Blockade of high mobility group box-1 signaling via the
receptor for advanced glycation end-products ameliorates
inflammatory damage after acute intracerebral hemorrhage. Neurosci
Lett. 609:109–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang D, Liu K, Wake H, Teshigawara K, Mori
S and Nishibori M: Anti-high mobility group box-1 (HMGB1) antibody
inhibits hemorrhage-induced brain injury and improved neurological
deficits in rats. Sci Rep. 7:462432017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shang J, Deguchi K, Ohta Y, Liu N, Zhang
X, Tian F, Yamashita T, Ikeda Y, Matsuura T, Funakoshi H, et al:
Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis
of hepatocyte growth factor in rats brain after transient middle
cerebral artery occlusion. J Neurosci Res. 89:86–95. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sharma KM and Ahn J: Cerebral venous sinus
thrombophlebitis as a complication of acute otitis media. J Emerg
Med. 48:e9–e13. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gu JJ, Chen JB, Zhang JH, Zhang H and Wang
SS: Recombinant human soluble thrombomodulin protects against brain
injury in a CVST rat model, via downregulation of the HMGB1-RAGE
axis. Mol Med Rep. 14:5217–5222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nagai M, Terao S, Yilmaz G, Yilmaz CE,
Esmon CT, Watanabe E and Granger DN: Roles of inflammation and the
activated protein C pathway in the brain edema associated with
cerebral venous sinus thrombosis. Stroke. 41:147–152. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang H, Meng Z, Zhang C, Zhang P and Wang
Q: Establishing a new rat model of central venous sinus thrombosis
and analyzing its pathophysiological and apoptotic changes. J
Neurosci Methods. 203:130–135. 2012. View Article : Google Scholar : PubMed/NCBI
|