Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
November-2020 Volume 13 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 13 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review)

  • Authors:
    • Olga V. Zhukova
    • Tatiana F. Kovaleva
    • Evgenia V. Arkhipova
    • Sergey A. Ryabov
    • Irina V. Mukhina
  • View Affiliations / Copyright

    Affiliations: Department of Pharmaceutical Technology, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia, Department of Molecular and Cellular Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia, Pre‑Clinical Research Center, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia, Department of High‑Molecular and Colloid Chemistry, National Research Lobachevsky State University, Nizhny Novgorod 603950, Russia, Fundamental Medicine Institute and Physiology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
  • Article Number: 47
    |
    Published online on: August 28, 2020
       https://doi.org/10.3892/br.2020.1354
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to evaluate the current body of knowledge regarding tumor‑associated macrophages (TAMs) and their potential use in antitumor therapy, based on their role in the pathological process of tumorigenesis. For this purpose, a critical analysis of published data and summarization of the findings available from original studies, focusing on the role of TAMs in the pathological process, and their potential therapeutic application was performed. Promising key avenues of research were identified in this field. The following issues seem the most promising and thus worth further investigation: i) The process of M1/M2 macrophage polarization, macrophage characteristics at intermediate polarization steps and their role in the tumor process; ii) determining the conditions necessary for transitions between the M1 and M2 macrophage phenotypes and the role of signals from the microenvironment in this process; iii) cause‑and‑effect associations between the quantity and quality of macrophages, and the prognosis and outcome of the pathological process; iv) modulation of macrophages and stimulation of their phagocytic activity with drugs; v) targeted vector‑based systems for drug delivery to macrophages; and vi) targeted drug delivery systems with macrophages as carriers, thus potentially combining chemotherapy and immunotherapy.
View Figures

Figure 1

Figure 2

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar

2 

DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS and Jemal A: Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 64:252–271. 2014.PubMed/NCBI View Article : Google Scholar

3 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000.PubMed/NCBI View Article : Google Scholar

4 

Mitra AK, Agrahari V, Mandal A, Cholkar K, Natarajan C, Shah S, Joseph M, Trinh HM, Vaishya R, Yang X, et al: Novel delivery approaches for cancer therapeutics. J Control Release. 219:248–268. 2015.PubMed/NCBI View Article : Google Scholar

5 

Talekar M, Tran TH and Amiji M: Translational nano-medicines: Targeted therapeutic delivery for cancer and inflammatory diseases. AAPS J. 17:813–827. 2015.PubMed/NCBI View Article : Google Scholar

6 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar

7 

You W and Henneberg M: Cancer incidence increasing globally: The role of relaxed natural selection. Evol Appl. 11:140–152. 2017.PubMed/NCBI View Article : Google Scholar

8 

Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y and Huang C: Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther. 5(113)2020.PubMed/NCBI View Article : Google Scholar

9 

World Health Organization (WHO): Cancer: Key facts. WHO, Geneva, 2018. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed September 12, 2018.

10 

Lewis LD: Cancer pharmacotherapy: 21st century ‘magic bullets’ and changing paradigms. Br J Clin Pharmacol. 62:1–4. 2006.PubMed/NCBI View Article : Google Scholar

11 

Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, et al: A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 35 (Suppl):S151–S184. 2015.PubMed/NCBI View Article : Google Scholar

12 

Shaked Y: The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer. 19:667–685. 2019.PubMed/NCBI View Article : Google Scholar

13 

Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, Xu X, He S, Chen S, Shi Z, et al: Corrigendum to ‘New mechanisms of tumor-associated macrophages on promoting tumor progression: Recent research advances and potential targets for tumor immunotherapy’. J Immunol Res. 2018(6728474)2018.PubMed/NCBI View Article : Google Scholar

14 

Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8(1596004)2019.PubMed/NCBI View Article : Google Scholar

15 

Mantovani A and Allavena P: The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 212:435–445. 2015.PubMed/NCBI View Article : Google Scholar

16 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017.PubMed/NCBI View Article : Google Scholar

17 

Nielsen SR and Schmid MC: Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017(9624760)2017.PubMed/NCBI View Article : Google Scholar

18 

Prill S, Rebstock J, Tennemann A, Körfer J, Sönnichsen R, Thieme R, Gockel I, Lyros O, Monecke A, Wittekind C, et al: Tumor-associated macrophages and individual chemo-susceptibility are influenced by iron chelation in human slice cultures of gastric cancer. Oncotarget. 10:4731–4742. 2019.PubMed/NCBI View Article : Google Scholar

19 

Lampiasi N, Russo R and Zito F: The alternative faces of macrophage generate osteoclasts. Biomed Res Int. 2016(9089610)2016.PubMed/NCBI View Article : Google Scholar

20 

Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12(76)2019.PubMed/NCBI View Article : Google Scholar

21 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004.PubMed/NCBI View Article : Google Scholar

22 

Porta C, Riboldi E, Ippolito A and Sica A: Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol. 27:237–248. 2015.PubMed/NCBI View Article : Google Scholar

23 

Schliefsteiner C, Peinhaupt M, Kopp S, Lögl J, Lang-Olip I, Hiden U, Heinemann A, Desoye G and Wadsack C: Human placental hofbauer cells maintain an anti-inflammatory M2 phenotype despite the presence of gestational diabetes mellitus. Front. Immunol. 8(888)2017.PubMed/NCBI View Article : Google Scholar

24 

Yao Y, Xu XH and Jin L: Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10(792)2019.PubMed/NCBI View Article : Google Scholar

25 

Mantovani A, Bottazzi B, Colotta F, Sozzani S and Ruco L: The origin and function of tumor-associated macrophages. Immunol Today. 13:265–270. 1992.PubMed/NCBI View Article : Google Scholar

26 

Mantovani A and Locati M: Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: Lessons and open questions. Arterioscler Thromb Vasc Biol. 33:1478–1483. 2013.PubMed/NCBI View Article : Google Scholar

27 

Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992.PubMed/NCBI View Article : Google Scholar

28 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014.PubMed/NCBI View Article : Google Scholar

29 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010.PubMed/NCBI View Article : Google Scholar

30 

Sawa-Wejksza K and Kandefer-Szerszeń M: Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Exp (Warsz). 66:97–111. 2018.PubMed/NCBI View Article : Google Scholar

31 

Zhou J, Tang Z, Gao S, Li C, Feng Y and Zhou X: Tumor-Associated Macrophages: Recent insights and therapies. Front Oncol. 10(188)2020.PubMed/NCBI View Article : Google Scholar

32 

Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K and Goerdt S: Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 53:386–392. 2001.PubMed/NCBI View Article : Google Scholar

33 

Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A, Yu X, Mamidi S, Stonehouse-Usselmann E, Muller-Molinet I, Gooi L and Goerdt S: Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGFbeta receptor II. J Immunol. 180:6553–6565. 2008.PubMed/NCBI View Article : Google Scholar

34 

Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N, Klemke CD, Dippel E, Kodelja V and Orfanos CE: Alternative versus classical activation of macrophages. Pathobiology. 67:222–226. 1999.PubMed/NCBI View Article : Google Scholar

35 

Glass CK and Natoli G: Molecular control of activation and priming in macrophages. Nat Immunol. 17:26–33. 2016.PubMed/NCBI View Article : Google Scholar

36 

Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G and De Baetselier P: Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology. 211:487–501. 2006.PubMed/NCBI View Article : Google Scholar

37 

Osborn O and Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18:363–374. 2012.PubMed/NCBI View Article : Google Scholar

38 

Rőszer T: Understanding the Mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015(816460)2015.PubMed/NCBI View Article : Google Scholar

39 

Tamura R, Tanaka T, Yamamoto Y, Akasaki Y and Sasaki H: Dual role of macrophage in tumor immunity. Immunotherapy. 10:899–909. 2018.PubMed/NCBI View Article : Google Scholar

40 

Jinushi M and Komohara Y: Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochim Biophys Acta. 1855:123–1230. 2015.PubMed/NCBI View Article : Google Scholar

41 

Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013.PubMed/NCBI View Article : Google Scholar

42 

Ginhoux F and Jung S: Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat Rev Immunol. 14:392–404. 2014.PubMed/NCBI View Article : Google Scholar

43 

Lewis CE, Harney AS and Pollard JW: The multifaceted role of perivascular macrophages in tumors. Cancer Cell. 30:18–25. 2016.PubMed/NCBI View Article : Google Scholar

44 

Ngambenjawong CH, Heather H and Suzie H: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017.PubMed/NCBI View Article : Google Scholar

45 

Evans R and Alexander P: Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 228:620–622. 1970.PubMed/NCBI View Article : Google Scholar

46 

Chen Y, Song Y, Du W, Gong L, Chang H and Zou Z: Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26(78)2019.PubMed/NCBI View Article : Google Scholar

47 

Jeannin P, Paolini L, Adam C and Delneste Y: The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J. 285:680–699. 2018.PubMed/NCBI View Article : Google Scholar

48 

Wang HW and Joyce JA: Alternative activation of tumor-associated macrophages by IL-4: Priming for protumoral functions. Cell Cycle. 9:4824–4835. 2010.PubMed/NCBI View Article : Google Scholar

49 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013.PubMed/NCBI View Article : Google Scholar

50 

Caux C, Ramos RN, Prendergast GC, Bendriss-Vermare N and Ménétrier-Caux C: A milestone review on how macrophages affect tumor growth. Cancer Res. 76:6439–6442. 2016.PubMed/NCBI View Article : Google Scholar

51 

Allavena P, Sica A, Solinas G, Porta C and Mantovani A: The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol Hematol. 66:1–9. 2008.PubMed/NCBI View Article : Google Scholar

52 

Ostuni R, Kratochvill F, Murray PJ and Natoli G: Macrophages and cancer: From mechanisms to therapeutic implications. Trends Immunol. 36:229–239. 2017.

53 

Kreider T, Anthony RM, Urban JF Jr and Gause WC: Alternatively activated macrophages in helminth infections. Curr Opin Immunol. 19:448–453. 2007.PubMed/NCBI View Article : Google Scholar

54 

Wang Q, Ni H, Lan L, Wei X, Xiang R and Wang Y: Fra-1 pro-tooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20:701–712. 2010.PubMed/NCBI View Article : Google Scholar

55 

Quail DF and Joyce JA: Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res. 23:876–884. 2017.PubMed/NCBI View Article : Google Scholar

56 

Yuan ZY, Luo RZ, Peng RJ, Wang SS and Xue C: High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 7:1475–1480. 2014.PubMed/NCBI View Article : Google Scholar

57 

He Y, Zhang M, Wu X, Sun X, Xu T, He Q and Di W: High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time. PLoS One. 8(e79769)2013.PubMed/NCBI View Article : Google Scholar

58 

Ding P, Wang W, Wang J, Yang Z and Xue L: Expression of tumor-associated macrophage in progression of human glioma. Cell Biochem Biophys. 70:1625–1631. 2014.PubMed/NCBI View Article : Google Scholar

59 

Pantano F, Berti P, Guida FM, Perrone G, Vincenzi B, Amato MM, Righi D, Dell'Aquila E, Graziano F, Catalano V, et al: The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med. 17:1415–1421. 2013.PubMed/NCBI View Article : Google Scholar

60 

Ruffell B, Affara NI and Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33:119–126. 2012.PubMed/NCBI View Article : Google Scholar

61 

Mei J, Xiao Z, Guo C, Pu Q, Ma L, Liu C, Lin F, Liao H, You Z and Liu L: Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget. 7:34217–34228. 2016.PubMed/NCBI View Article : Google Scholar

62 

Chanmee T, Ontong P, Konno K and Itano N: Tumor-associated macrophages as major players in the tumor icroenvironment. Cancers (Basel). 6:1670–1690. 2014.PubMed/NCBI View Article : Google Scholar

63 

Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, et al: Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov. 5:35–42. 2015.PubMed/NCBI View Article : Google Scholar

64 

Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, Holen I, Monkkonen H, Boccadoro M, Forni G, et al: Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med. 14:2803–2815. 2010.PubMed/NCBI View Article : Google Scholar

65 

Rogers TL and Holen I: Tumour macrophages as potential targets of bisphosphonates. J Transl Med. 9(177)2011.PubMed/NCBI View Article : Google Scholar

66 

Rogers TL, Wind N, Hughes R, Nutter F, Brown HK, Vasiliadou I, Ottewell PD and Holen I: Macrophages as potential targets for zoledronic acid outside the skeleton-evidence from in vitro and in vivo models. Cell Oncol (Dordr). 36:505–514. 2013.PubMed/NCBI View Article : Google Scholar

67 

Ali N, Jurczyluk J, Shay G, Tnimov Z, Alexandrov K, Munoz MA, Skinner OP, Pavlos NJ and Rogers MJ: A highly sensitive prenylation assay reveals in vivo effects of bisphosphonate drug on the Rab prenylome of macrophages outside the skeleton. Small GTPases. 6:202–211. 2015.PubMed/NCBI View Article : Google Scholar

68 

Tardoski S, Ngo J, Gineyts E, Roux JP, Clézardin PH and Melodelima D: Low-intensity continuous ultrasound triggers effective bisphosphonate anticancer activity in breast cancer. Sci Rep. 5(16354)2015.PubMed/NCBI View Article : Google Scholar

69 

Sousa S, Auriola S, Mönkkönen J and Mааttа J: Liposome encapsulated zoledronate favours M1-like behaviour in murine macrophages cultured with soluble factors from breast cancer cells. BMC Cancer. 15(4)2015.PubMed/NCBI View Article : Google Scholar

70 

Hiroshima Y, Maawy A, Hassanein MK, Menen R, Momiyama M, Murakami T, Miwa S, Yamamoto M, Uehara F, Yano S, et al: The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid. PLoS One. 9(e103382)2014.PubMed/NCBI View Article : Google Scholar

71 

Esser AK, Schmieder AH, Ross MH, Xiang J, Su X, Cui G, Zhang H, Yang X, Allen JS, Williams T, et al: Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model. Nanomedicine. 12:201–211. 2016.PubMed/NCBI View Article : Google Scholar

72 

Zekri J, Mansour M and Karim SM: The anti-tumour effects of zoledronic acid. J Bone Oncol. 3:25–35. 2014.PubMed/NCBI View Article : Google Scholar

73 

Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Pinzòn-Daza ML, Giordano A, Desiderio V, Ghigo D, De Rosa G, et al: Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: A combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors. Oncotarget. 7:20753–20772. 2016.PubMed/NCBI View Article : Google Scholar

74 

Fowler DW, Copier J, Dalgleish AG and Bodman-Smith MD: Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2+ γδ T cell cytotoxicity in a perforin-dependent manner. Cancer Immunol Immunother. 66:1205–1215. 2017.PubMed/NCBI View Article : Google Scholar

75 

Lavin Y and Merad M: Macrophages: Gatekeepers of tissue integrity. Cancer Immunol Res. 1:201–209. 2013.PubMed/NCBI View Article : Google Scholar

76 

Gul N and van Egmond M: Antibody-dependent phagocytosis of tumor cells by macrophages: A potent effector mechanism of monoclonal antibody. Therapy of cancer. Cancer Res. 75:5008–5013. 2015.PubMed/NCBI View Article : Google Scholar

77 

Tipton TR, Roghanian A, Oldham RJ, Carter MJ, Cox KL, Mockridge CI, French RR, Dahal LN, Duriez PJ, Hargreaves PG, et al: Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood. 125:1901–1909. 2015.PubMed/NCBI View Article : Google Scholar

78 

Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, Strohl WR, Zou Q, Zhang N and An Z: Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcgamma receptors on macrophages. J Immunol. 194:4379–4386. 2015.PubMed/NCBI View Article : Google Scholar

79 

Grugan KD, McCabe FL, Kinder M, Greenplate AR, Harman BC, Ekert JE, van Rooijen N, Anderson GM, Nemeth JA, Strohl WR, et al: Tumor-associated macrophages promote invasion while retaining Fc-dependent anti-tumor function. J Immunol. 189:5457–5466. 2012.PubMed/NCBI View Article : Google Scholar

80 

Taylor RP and Lindorfer MA: Analyses of CD20 monoclonal antibody-mediated tumor cell killing mechanisms: Rational design of dosing strategies. Mol Pharmacol. 86:485–491. 2014.PubMed/NCBI View Article : Google Scholar

81 

Richards JO, Karki S, Lazar GA, Chen H, Dang W and Desjarlais JR: Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther. 7:2517–2527. 2008.PubMed/NCBI View Article : Google Scholar

82 

Brandsma AM, Ten Broeke T, Nederend M, Meulenbroek LA, van Tetering G, Meyer S, Jansen JH, Beltrán Buitrago MA, Nagelkerke SQ, Németh I, et al: Simultaneous Targeting of FcgammaRs and FcalphaRI enhances tumor cell killing. Cancer Immunol Res. 3:1316–1324. 2015.PubMed/NCBI View Article : Google Scholar

83 

Josephs DH, Bax HJ, Dodev T, Georgouli M, Nakamura M, Pellizzari G, Saul L, Karagiannis P, Cheung A, Herraiz C, et al: Anti-folate receptor-α IgE but not IgG recruits macrophages to attack tumors via TNF-α/MCP-1 signaling. Cancer Res. 77:1127–1141. 2017.PubMed/NCBI View Article : Google Scholar

84 

Cespedes MV, Guillen MJ, Lopez-Casas PP, Sarno F, Gallardo A, Álamo P, Cuevas C, Hidalgo M, Galmarini CM, Allavena P, et al: Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models. Dis Model Mech. 9:1461–1471. 2016.PubMed/NCBI View Article : Google Scholar

85 

Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013.PubMed/NCBI View Article : Google Scholar

86 

Liguori M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiovine C and Allavena P: Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget. 7:41662–41676. 2016.PubMed/NCBI View Article : Google Scholar

87 

De Palma M and Lewis CE: Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23:277–286. 2013.PubMed/NCBI View Article : Google Scholar

88 

Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S and Djeu JY: A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 16:4583–4594. 2010.PubMed/NCBI View Article : Google Scholar

89 

Guerriero JL, Ditsworth D, Catanzaro JM, Sabino G, Furie MB, Kew RR, Crawford HC and Zong WX: DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J Immunol. 186:3517–3526. 2011.PubMed/NCBI View Article : Google Scholar

90 

Bryniarski K, Szczepanik M, Ptak M, Zemelka M and Ptak W: Influence of cyclophosphamide and its metabolic products on the activity of peritoneal macrophages in mice. Pharmacol Rep. 61:550–557. 2009.PubMed/NCBI View Article : Google Scholar

91 

Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, et al: Chemotherapy-Induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells. Cancer Res. 76:6030–6042. 2016.PubMed/NCBI View Article : Google Scholar

92 

Zhou Y and Dai Z: New Strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem Asian J. 13:3333–3340. 2018.PubMed/NCBI View Article : Google Scholar

93 

Niu M, Naguib YW, Aldayel AM, Shi YC, Hursting SD, Hersh MA and Cui Z: Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm. 11:4425–4436. 2014.PubMed/NCBI View Article : Google Scholar

94 

Ngambenjawong C, Cieslewicz M, Schellinger JG and Pun SH: Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2macrophages. J Control Release. 224:103–111. 2016.PubMed/NCBI View Article : Google Scholar

95 

Silva VL and Al-Jamal WT: Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for Nano-based therapy. J Control Release. 253:82–96. 2017.PubMed/NCBI View Article : Google Scholar

96 

Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ and Allavena P: Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol. 34:103–113. 2017.PubMed/NCBI View Article : Google Scholar

97 

Li M, Zhang F, Su Y, Zhou J and Wang W: Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci. 201:37–44. 2018.PubMed/NCBI View Article : Google Scholar

98 

Tabata Y and Ikada Y: Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 9:356–362. 1988.PubMed/NCBI View Article : Google Scholar

99 

Champion JA and Mitragotri S: Role of target geometry in phagocytosis. Proc Natl Acad Sci USA. 103:4930–4934. 2006.PubMed/NCBI View Article : Google Scholar

100 

He C, Hu Y, Yin L, Tang C and Yin C: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31:3657–3666. 2010.PubMed/NCBI View Article : Google Scholar

101 

Chang YN, Guo H, Li J, Song Y, Zhang M, Jin J, Xing G and Zhao Y: Adjusting the balance between effective loading and vector migration of macrophage vehicles to deliver nanoparticles. PLoS One. 8(e76024)2013.PubMed/NCBI View Article : Google Scholar

102 

Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, Hubbell JA and Giorgio TD: Size- and charge-dependent nonspecific uptake of PEGylated nanoparticles by macrophages. Int J Nanomedicine. 7:799–813. 2012.PubMed/NCBI View Article : Google Scholar

103 

Herd H, Daum N, Jones AT, Huwer H, Ghandehari H and Lehr CM: Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano. 7:1961–1973. 2013.PubMed/NCBI View Article : Google Scholar

104 

Li Z, Sun L, Zhang Y, Dove AP, O'Reilly RK and Chen G: Shape effect of Glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 5:1059–1064. 2016.PubMed/NCBI View Article : Google Scholar

105 

Cieslewicz M, Tang J, Yu JL, Cao H, Zavaljevski M, Motoyama K, Lieber A, Raines EW and Pun SH: Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci USA. 110:15919–15924. 2013.PubMed/NCBI View Article : Google Scholar

106 

Ngambenjawong C and Pun SH: Multivalent polymers displaying M2 macrophage-targeting peptides improve target binding avidity and serum stability. ACS Biomater Sci Eng. 3:2050–2053. 2017.PubMed/NCBI View Article : Google Scholar

107 

Huang WC, Chen SH, Chiang WH, Huang CW, Lo CL, Chern CS and Chiu HC: Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor. Biomacromolecules. 17:3883–3892. 2016.PubMed/NCBI View Article : Google Scholar

108 

Poupot R, Goursat C and Fruchon S: Multivalent nanosystems: Targeting monocytes/macrophages. Int J Nanomedicine. 13:5511–5521. 2018.PubMed/NCBI View Article : Google Scholar

109 

Cupaioli FA, Zucca FA, Boraschi D and Zecca L: Engineered nanoparticles How brain friendly is this new guest? Prog Neurobiol. 119-120:20–38. 2014.PubMed/NCBI View Article : Google Scholar

110 

Costa A, Sarmento B and Seabra V: Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci. 114:103–113. 2018.PubMed/NCBI View Article : Google Scholar

111 

Sarwar HS, Ashraf S, Akhtar S, Sohail MF, Hussain SZ, Rafay M, Yasinzai M, Hussain I and Shahnaz G: Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine (Lond). 13:25–41. 2018.PubMed/NCBI View Article : Google Scholar

112 

Fallarini S, Paoletti T, Battaglini CO, Ronchi P, Lay L, Bonomi R, Jha S, Mancin F, Scrimin P and Lombardi G: Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale. 5:390–400. 2013.PubMed/NCBI View Article : Google Scholar

113 

He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, Lancina MG III, Zolotarskaya OY, Korzun W, Yang H and Ghosh S: Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: Use of this platform to modulate atherosclerosis. Transl Res. 193:13–30. 2018.PubMed/NCBI View Article : Google Scholar

114 

Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE and Cui Z: In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of Simian Virus. Nano Lett. 16:6164–6171. 2016.PubMed/NCBI View Article : Google Scholar

115 

Zhu S, Niu M, O'Mary H and Cui Z: Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. 10:3525–3530. 2013.PubMed/NCBI View Article : Google Scholar

116 

Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q and Zhang Z: Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 11:9536–9549. 2017.PubMed/NCBI View Article : Google Scholar

117 

Lamanna G, Russier J, Dumortier H and Bianco A: Enhancement of anti-inflammatory drug activity by multivalent adamantane-based dendrons. Biomaterials. 33:5610–5617. 2012.PubMed/NCBI View Article : Google Scholar

118 

Lee S, Kivimae S, Dolor A and Szoka FC: Macrophage-based cell therapies: The long and winding road. J Control Release. 240:527–540. 2016.PubMed/NCBI View Article : Google Scholar

119 

Choi J, Kim HY, Ju EJ, Jung J, Park J, Chung HK, Lee JS, Lee JS, Park HJ, Song SY, et al: Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 33:4195–4203. 2012.PubMed/NCBI View Article : Google Scholar

120 

Madsen SJ, Baek SK, Makkouk AR, Krasieva T and Hirschberg H: Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng. 40:507–515. 2012.PubMed/NCBI View Article : Google Scholar

121 

Ikehara Y, Niwa T, Biao L, Ikehara SK, Ohashi N, Kobayashi T, Shimizu Y, Kojima N and Nakanishi H: A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 66:8740–8748. 2006.PubMed/NCBI View Article : Google Scholar

122 

Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, et al: Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 6(8692)2015.PubMed/NCBI View Article : Google Scholar

123 

Tanei T, Leonard F, Liu X, Alexander JF, Saito Y, Ferrari M, Godin B and Yokoi K: Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res. 76:429–439. 2016.PubMed/NCBI View Article : Google Scholar

124 

Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, et al: Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood. 108:2827–2835. 2006.PubMed/NCBI View Article : Google Scholar

125 

Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B and Gendelman HE: Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol. 183:661–669. 2009.PubMed/NCBI View Article : Google Scholar

126 

Zhao Y, Haney MJ, Klyachko NL, Li S, Booth SL, Higginbotham SM, Jones J, Zimmerman MC, Mosley RL, Kabanov AV, et al: Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine (Lond). 6:25–42. 2011.PubMed/NCBI View Article : Google Scholar

127 

Klyachko NL, Haney MJ, Zhao Y, Manickam DS, Mahajan V, Suresh P, Hingtgen SD, Mosley RL, Gendelman HE, Kabanov AV and Batrakova EV: Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine (Lond). 9:1403–1422. 2014.PubMed/NCBI View Article : Google Scholar

128 

Muthana M, Kennerley AJ, Hughes R, Fagnano E, Richardson J, Paul M, Murdoch C, Wright F, Payne C, Lythgoe MF, et al: Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun. 6(8009)2015.PubMed/NCBI View Article : Google Scholar

129 

Han J, Zhen J, Du Nguyen V, Go G, Choi Y, Ko SY, Park JO and Park S: Hybrid-actuating macrophage-based microrobots for active cancer therapy. Sci Rep. 6(28717)2016.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA and Mukhina IV: Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 13: 47, 2020.
APA
Zhukova, O.V., Kovaleva, T.F., Arkhipova, E.V., Ryabov, S.A., & Mukhina, I.V. (2020). Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomedical Reports, 13, 47. https://doi.org/10.3892/br.2020.1354
MLA
Zhukova, O. V., Kovaleva, T. F., Arkhipova, E. V., Ryabov, S. A., Mukhina, I. V."Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review)". Biomedical Reports 13.5 (2020): 47.
Chicago
Zhukova, O. V., Kovaleva, T. F., Arkhipova, E. V., Ryabov, S. A., Mukhina, I. V."Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review)". Biomedical Reports 13, no. 5 (2020): 47. https://doi.org/10.3892/br.2020.1354
Copy and paste a formatted citation
x
Spandidos Publications style
Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA and Mukhina IV: Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 13: 47, 2020.
APA
Zhukova, O.V., Kovaleva, T.F., Arkhipova, E.V., Ryabov, S.A., & Mukhina, I.V. (2020). Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomedical Reports, 13, 47. https://doi.org/10.3892/br.2020.1354
MLA
Zhukova, O. V., Kovaleva, T. F., Arkhipova, E. V., Ryabov, S. A., Mukhina, I. V."Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review)". Biomedical Reports 13.5 (2020): 47.
Chicago
Zhukova, O. V., Kovaleva, T. F., Arkhipova, E. V., Ryabov, S. A., Mukhina, I. V."Tumor‑associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review)". Biomedical Reports 13, no. 5 (2020): 47. https://doi.org/10.3892/br.2020.1354
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team