|
1
|
Varol C, Mildner A and Jung S:
Macrophages: Development and tissue specialization. Annu Rev
Immunol. 33:643–675. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Martinez-Pomares L and Gordon S:
CD169+ macrophages at the crossroads of antigen
presentation. Trends Immunol. 33:66–70. 2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Fagerberg L, Hallström BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Chávez-Galán L, Olleros ML, Vesin D and
Garcia I: Much more than M1 and M2 macrophages, there are also
CD169(+) and TCR(+) macrophages. Front Immunol.
6(263)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang
S, Guo X, Huang Y, Zhang S, Han Y, et al: Identification and
transcriptome analysis of erythroblastic island macrophages. Blood.
134:480–491. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Komohara Y, Ohnishi K and Takeya M:
Possible functions of CD169-positive sinus macrophages in lymph
nodes in anti-tumor immune responses. Cancer Sci. 108:290–295.
2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Bao G, Han Z, Yan Z, Wang Q, Zhou Y, Yao
D, Gu M, Chen B, Chen S, Deng A and Zhong R: Increased Siglec-1
expression in monocytes of patients with primary biliary cirrhosis.
Immunol Invest. 39:645–660. 2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Strömvall K, Sundkvist K, Ljungberg B,
Halin Bergström S and Bergh A: Reduced number of CD169(+)
macrophages in pre-metastatic regional lymph nodes is associated
with subsequent metastatic disease in an animal model and with poor
outcome in prostate cancer patients. Prostate. 77:1468–1477.
2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Biesen R, Demir C, Barkhudarova F, Grün
JR, Steinbrich-Zöllner M, Backhaus M, Häupl T, Rudwaleit M,
Riemekasten G, Radbruch A, et al: Sialic acid-binding Ig-like
lectin 1 expression in inflammatory and resident monocytes is a
potential biomarker for monitoring disease activity and success of
therapy in systemic lupus erythematosus. Arthritis Rheum.
58:1136–1145. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhang J, Xu J, Zhang RX, Zhang Y, Ou QJ,
Li JQ, Jiang ZZ, Wu XJ, Fang YJ and Zheng L: CD169 identifies an
activated CD8(+) T cell subset in regional lymph nodes that
predicts favorable prognosis in colorectal cancer patients.
Oncoimmunology. 5(e1177690)2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Nycholat CM, Rademacher C, Kawasaki N and
Paulson JC: In silico-aided design of a glycan ligand of
sialoadhesin for in vivo targeting of macrophages. J Am Chem Soc.
134:15696–15699. 2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Oetke C, Vinson MC, Jones C and Crocker
PR: Sialoadhesin-deficient mice exhibit subtle changes in B- and
T-cell populations and reduced immunoglobulin M levels. Mol Cell
Biol. 26:1549–1557. 2006.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Edgar LJ, Kawasaki N, Nycholat CM and
Paulson JC: Targeted delivery of antigen to activated CD169(+)
macrophages induces bias for expansion of CD8(+) T cells. Cell Chem
Biol. 26:131–136.e4. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ravishankar B, Shinde R, Liu H, Chaudhary
K, Bradley J, Lemos HP, Chandler P, Tanaka M, Munn DH, Mellor AL
and McGaha TL: Marginal zone CD169+ macrophages
coordinate apoptotic cell-driven cellular recruitment and
tolerance. Proc Natl Acad Sci USA. 111:4215–4220. 2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Panduro M, Benoist C and Mathis D: Tissue
tregs. Annu Rev Immunol. 34:609–633. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Sakaguchi S, Yamaguchi T, Nomura T and Ono
M: Regulatory T cells and immune tolerance. Cell. 133:775–787.
2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Sakaguchi S, Ono M, Setoguchi R, Yagi H,
Hori S, Fehervari Z, Shimizu J, Takahashi T and Nomura T:
Foxp3+ CD25+ CD4+ natural
regulatory T cells in dominant self-tolerance and autoimmune
disease. Immunol Rev. 212:8–27. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wu C, Rauch U, Korpos E, Song J, Loser K,
Crocker PR and Sorokin LM: Sialoadhesin-positive macrophages bind
regulatory T cells, negatively controlling their expansion and
autoimmune disease progression. J Immunol. 182:6508–6516.
2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Ramos-Leví AM and Marazuela M:
Pathogenesis of thyroid autoimmune disease: The role of cellular
mechanisms. Endocrinol Nutr. 63:421–429. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Hashimoto K, Nishihara E, Matsumoto M,
Matsumoto S, Nakajima Y, Tsujimoto K, Yamakage H, Satoh-Asahara N,
Noh JY, Ito K, et al: Sialic acid-binding immunoglobulin-like
lectin1 as a novel predictive biomarker for relapse in Graves'
disease: A multicenter study. Thyroid. 28:50–59. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Ruffin N, Gea-Mallorquí E, Brouiller F,
Jouve M, Silvin A, See P, Dutertre CA, Ginhoux F and Benaroch P:
Constitutive Siglec-1 expression confers susceptibility to HIV-1
infection of human dendritic cell precursors. Proc Natl Acad Sci
USA. 116:21685–21693. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Fraschilla I and Pillai S: Viewing Siglecs
through the lens of tumor immunology. Immunol Rev. 276:178–191.
2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shiota T, Miyasato Y, Ohnishi K,
Yamamoto-Ibusuki M, Yamamoto Y, Iwase H, Takeya M and Komohara Y:
The clinical significance of CD169-positive lymph node macrophage
in patients with breast cancer. PLoS One.
11(e0166680)2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Saunderson SC, Dunn AC, Crocker PR and
McLellan AD: CD169 mediates the capture of exosomes in spleen and
lymph node. Blood. 123:208–216. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Camara A, Cordeiro OG, Alloush F, Sponsel
J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, et
al: Lymph node mesenchymal and endothelial stromal cells cooperate
via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage
niche. Immunity. 50:1467–1481. 2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Hiemstra IH, Beijer MR, Veninga H,
Vrijland K, Borg EG, Olivier BJ, Mebius RE, Kraal G and den Haan
JM: The identification and developmental requirements of colonic
CD169+ macrophages. Immunology. 142:269–278. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Lescoat A, Ballerie A, Augagneur Y,
Morzadec C, Vernhet L, Fardel O, Jégo P, Jouneau S and Lecureur V:
Distinct properties of human M-CSF and GM-CSF monocyte-derived
macrophages to simulate pathological lung conditions in vitro:
Application to systemic and inflammatory disorders with pulmonary
involvement. Int J Mol Sci. 19(894)2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Vance J, Santos A, Sadofsky L, Morice A
and Cervantes J: Effect of high glucose on human alveolar
macrophage phenotype and phagocytosis of mycobacteria. Lung.
197:89–94. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Friedrich SK, Lang PA, Friebus-Kardash J,
Duhan V, Bezgovsek J and Lang KS: Mechanisms of lymphatic
system-specific viral replication and its potential role in
autoimmune disease. Clin Exp Immunol. 195:64–73. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Xu HC, Huang J, Khairnar V, Duhan V,
Pandyra AA, Grusdat M, Shinde P, McIlwain DR, Maney SK, Gommerman
J, et al: Deficiency of the B cell-activating factor receptor
results in limited CD169+ macrophage function during
viral infection. J Virol. 89:4748–4759. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kikuchi K, Iida M, Ikeda N, Moriyama S,
Hamada M, Takahashi S, Kitamura H, Watanabe T, Hasegawa Y, Hase K,
et al: Macrophages switch their phenotype by regulating Maf
expression during different phases of inflammation. J Immunol.
201:635–651. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yao H, Zhang Y, Xie B, Shang Y, Yuan S and
Zhang J: Sleep-restriction inhibits neurogenesis through decreasing
the infiltration of CD169(+) macrophages to ischemic brain after
stroke. Neuroscience. 431:222–236. 2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Spaulding E, Fooksman D, Moore JM, Saidi
A, Feintuch CM, Reizis B, Chorro L, Daily J and Lauvau G:
STING-licensed macrophages prime type I IFN production by
plasmacytoid dendritic cells in the bone marrow during severe
plasmodium yoelii malaria. PLoS Pathog. 12(e1005975)2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Chavez M, Silvestrini MT, Ingham ES, Fite
BZ, Mahakian LM, Tam SM, Ilovitsh A, Monjazeb AM, Murphy WJ,
Hubbard NE, et al: Distinct immune signatures in directly treated
and distant tumors result from TLR adjuvants and focal ablation.
Theranostics. 8:3611–3628. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ferreira RC, Guo H, Coulson RM, Smyth DJ,
Pekalski ML, Burren OS, Cutler AJ, Doecke JD, Flint S, McKinney EF,
et al: A type I interferon transcriptional signature precedes
autoimmunity in children genetically at risk for type 1 diabetes.
Diabetes. 63:2538–2550. 2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Rose T, Szelinski F, Lisney A, Reiter K,
Fleischer SJ, Burmester GR, Radbruch A, Hiepe F, Grützkau A, Biesen
R and Dörner T: Siglec1 is a biomarker of disease activity and
indicates extraglandular manifestation in primary Sjögren's
syndrome. RMD Open. 2(e000292)2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Seu KG, Papoin J, Fessler R, Hom J, Huang
G, Mohandas N, Blanc L and Kalfa TA: Unraveling macrophage
heterogeneity in erythroblastic islands. Front Immunol.
8(1140)2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Falchi M, Varricchio L, Martelli F,
Masiello F, Federici G, Zingariello M, Girelli G, Whitsett C,
Petricoin EF III, Moestrup SK, et al: Dexamethasone targeted
directly to macrophages induces macrophage niches that promote
erythroid expansion. Haematologica. 100:178–187. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jacobsen RN, Forristal CE, Raggatt LJ,
Nowlan B, Barbier V, Kaur S, van Rooijen N, Winkler IG, Pettit AR
and Levesque JP: Mobilization with granulocyte colony-stimulating
factor blocks medullar erythropoiesis by depleting
F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island
macrophages in the mouse. Exp Hematol. 42:547–561.e4.
2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Chow A, Huggins M, Ahmed J, Hashimoto D,
Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N,
et al: CD169+ macrophages provide a niche promoting
erythropoiesis under homeostasis and stress. Nat Med. 19:429–436.
2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kaur S, Raggatt LJ, Millard SM, Wu AC,
Batoon L, Jacobsen RN, Winkler IG, MacDonald KP, Perkins AC, Hume
DA, et al: Self-repopulating recipient bone marrow resident
macrophages promote long-term hematopoietic stem cell engraftment.
Blood. 132:735–749. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Gbotosho OT, Kapetanaki MG, Ross M, Ghosh
S, Weidert F, Bullock GC, Watkins S, Ofori-Acquah SF and Kato GJ:
Nrf2 deficiency in mice attenuates erythropoietic stress-related
macrophage hypercellularity. Exp Hematol. 84:19–28.e4.
2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang RR and Zhu XF: Relationship between
macrophages and erythropoiesis. Zhongguo Dang Dai Er Ke Za Zhi.
18:94–99. 2016.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
44
|
Batoon L, Millard SM, Wullschleger ME,
Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ
and Pettit AR: CD169(+) macrophages are critical for osteoblast
maintenance and promote intramembranous and endochondral
ossification during bone repair. Biomaterials. 196:51–66.
2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Asano K, Kikuchi K and Tanaka M: CD169
macrophages regulate immune responses toward particulate materials
in the circulating fluid. J Biochem. 164:77–85. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
De Schryver M, Leemans A, Pintelon I,
Cappoen D, Maes L, Caljon G, Cos P and Delputte PL: Comparative
analysis of the internalization of the macrophage receptor
sialoadhesin in human and mouse primary macrophages and cell lines.
Immunobiology. 222:797–806. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Louie DAP and Liao S: Lymph Node
Subcapsular sinus macrophages as the frontline of lymphatic immune
defense. Front Immunol. 10(347)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Heath WR, Kato Y, Steiner TM and Caminschi
I: Antigen presentation by dendritic cells for B cell activation.
Curr Opin Immunol. 58:44–52. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Veninga H, Borg EG, Vreeman K, Taylor PR,
Kalay H, van Kooyk Y, Kraal G, Martinez-Pomares L and den Haan JM:
Antigen targeting reveals splenic CD169+ macrophages as
promoters of germinal center B-cell responses. Eur J Immunol.
45:747–757. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Grabowska J, Lopez-Venegas MA, Affandi AJ
and den-Haan JMM: CD169+ macrophages capture and
Dendritic cells instruct: The interplay of the gatekeeper and the
general of the immune system. Front Immunol. 9(2472)2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Van Dinther D, Veninga H, Iborra S, Borg
EGF, Hoogterp L, Olesek K, Beijer MR, Schetters STT, Kalay H,
Garcia-Vallejo JJ, et al: Functional CD169 on macrophages mediates
interaction with Dendritic cells for CD8(+) T Cell cross-priming.
Cell Rep. 22:1484–1495. 2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Barral P, Polzella P, Bruckbauer A, van
Rooijen N, Besra GS, Cerundolo V and Batista FD: CD169(+)
macrophages present lipid antigens to mediate early activation of
iNKT cells in lymph nodes. Nat Immunol. 11:303–312. 2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kawasaki N, Vela JL, Nycholat CM,
Rademacher C, Khurana A, van Rooijen N, Crocker PR, Kronenberg M
and Paulson JC: Targeted delivery of lipid antigen to macrophages
via the CD169/sialoadhesin endocytic pathway induces robust
invariant natural killer T cell activation. Proc Natl Acad Sci USA.
110:7826–7831. 2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Covarrubias R, Wilhelm AJ and Major AS:
Specific deletion of LDL receptor-related protein on macrophages
has skewed in vivo effects on cytokine production by invariant
natural killer T cells. PLoS One. 9(e102236)2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Trahtemberg U and Mevorach D: Apoptotic
cells induced signaling for immune homeostasis in macrophages and
Dendritic cells. Front Immunol. 8(1356)2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Vives-Pi M, Rodríguez-Fernández S and
Pujol-Autonell I: How apoptotic β-cells direct immune response to
tolerance or to autoimmune diabetes: A review. Apoptosis.
20:263–272. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tanaka M and Miyake Y: Apoptotic cell
clearance and autoimmune disorder. Curr Med Chem. 14:2892–2897.
2007.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Miyake Y, Asano K, Kaise H, Uemura M,
Nakayama M and Tanaka M: Critical role of macrophages in the
marginal zone in the suppression of immune responses to apoptotic
cell-associated antigens. J Clin Invest. 117:2268–2278.
2007.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Asano K, Nabeyama A, Miyake Y, Qiu CH,
Kurita A, Tomura M, Kanagawa O, Fujii S and Tanaka M:
CD169-positive macrophages dominate antitumor immunity by
crosspresenting dead cell-associated antigens. Immunity. 34:85–95.
2011.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Ravishankar B, Liu H, Shinde R, Chandler
P, Baban B, Tanaka M, Munn DH, Mellor AL, Karlsson MC and McGaha
TL: Tolerance to apoptotic cells is regulated by indoleamine
2,3-dioxygenase. Proc Natl Acad Sci USA. 109:3909–3914.
2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Black LV, Saunderson SC, Coutinho FP,
Muhsin-Sharafaldine MR, Damani TT, Dunn AC and McLellan AD: The
CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to
tumour apoptotic vesicles. Immunol Cell Biol. 94:430–438.
2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Qiu CH, Miyake Y, Kaise H, Kitamura H,
Ohara O and Tanaka M: Novel subset of CD8{alpha}+ dendritic cells
localized in the marginal zone is responsible for tolerance to
cell-associated antigens. J Immunol. 182:4127–4136. 2009.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hao S, Han X, Wang D, Yang Y, Li Q, Li X
and Qiu CH: Critical role of CCL22/CCR4 axis in the maintenance of
immune homeostasis during apoptotic cell clearance by splenic
CD8α(+) CD103(+) dendritic cells. Immunology. 148:174–186.
2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Detienne S, Welsby I, Collignon C, Wouters
S, Coccia M, Delhaye S, Van Maele L, Thomas S, Swertvaegher M,
Detavernier A, et al: Central role of CD169(+) lymph node resident
macrophages in the adjuvanticity of the QS-21 component of AS01.
Sci Rep. 6(39475)2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wang D, Li Q, Yang Y, Hao S, Han X, Song
J, Yin Y, Li X, Tanaka M and Qiu CH: Macrophage subset expressing
CD169 in peritoneal cavity-regulated mucosal inflammation together
with lower levels of CCL22. Inflammation. 40:1191–1203.
2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Li Q, Wang D, Hao S, Han X, Xia Y, Li X,
Chen Y, Tanaka M and Qiu CH: CD169 expressing macrophage, a key
subset in mesenteric lymph nodes promotes mucosal inflammation in
dextran sulfate sodium-induced colitis. Front Immunol.
8(669)2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Asano K, Takahashi N, Ushiki M, Monya M,
Aihara F, Kuboki E, Moriyama S, Iida M, Kitamura H, Qiu CH, et al:
Intestinal CD169(+) macrophages initiate mucosal inflammation by
secreting CCL8 that recruits inflammatory monocytes. Nat Commun.
6(7802)2015.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Xia Y, Tian LM, Liu Y, Guo KS, Lv M, Li
QT, Hao SY, Ma CH, Chen YX, Tanaka M, et al: Low dose of
cyanidin-3-O-glucoside alleviated dextran sulfate sodium-induced
colitis, mediated by CD169+ macrophage pathway. Inflamm Bowel Dis.
25:1510–1521. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Bogie JF, Boelen E, Louagie E, Delputte P,
Elewaut D, van Horssen J, Hendriks JJ and Hellings N: CD169 is a
marker for highly pathogenic phagocytes in multiple sclerosis. Mult
Scle. 24:290–300. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Xiong YS, Cheng Y, Lin QS, Wu AL, Yu J, Li
C, Sun Y, Zhong RQ and Wu LJ: Increased expression of Siglec-1 on
peripheral blood monocytes and its role in mononuclear cell
reactivity to autoantigen in rheumatoid arthritis. Rheumatology
(Oxford). 53:250–259. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Guo X, Nakamura K, Kohyama K, Harada C,
Behanna HA, Watterson DM, Matsumoto Y and Harada T: Inhibition of
glial cell activation ameliorates the severity of experimental
autoimmune encephalomyelitis. Neurosci Res. 59:457–466.
2007.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Karasawa K, Asano K, Moriyama S, Ushiki M,
Monya M, Iida M, Kuboki E, Yagita H, Uchida K, Nitta K and Tanaka
M: Vascular-resident CD169-positive monocytes and macrophages
control neutrophil accumulation in the kidney with
ischemia-reperfusion injury. J Am Soc Nephrol. 26:896–906.
2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Shinde PV, Xu HC, Maney SK, Kloetgen A,
Namineni S, Zhuang Y, Honke N, Shaabani N, Bellora N, Doerrenberg
M, et al: Tumor necrosis factor-mediated survival of CD169(+) cells
promotes immune activation during vesicular stomatitis virus
infection. J Virol. 92:e01637–e01617. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Uchil PD, Pi R, Haugh KA, Ladinsky MS,
Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G,
Sewald X and Mothes W: A protective role for the lectin
CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host
Microbe. 25:87–100.e10. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Frederico B, Chao B, Lawler C, May JS and
Stevenson PG: Subcapsular sinus macrophages limit acute
gammaherpesvirus dissemination. J Gen Virol. 96:2314–2327.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Junt T, Moseman EA, Iannacone M, Massberg
S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di
Paolo NC, et al: Subcapsular sinus macrophages in lymph nodes clear
lymph-borne viruses and present them to antiviral B cells. Nature.
450:110–114. 2007.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Honke N, Shaabani N, Merches K, Gassa A,
Kraft A, Ehrhardt K, Häussinger D, Löhning M, Dittmer U, Hengel H,
et al: Immunoactivation induced by chronic viral infection inhibits
viral replication and drives immunosuppression through sustained
IFN-I responses. Eur J Immunol. 46:372–380. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Shaabani N, Duhan V, Khairnar V, Gassa A,
Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer
U, et al: CD169(+) macrophages regulate PD-L1 expression via type I
interferon and thereby prevent severe immunopathology after LCMV
infection. Cell Death Dis. 7(e2446)2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Teijaro JR: Too much of a good thing:
Sustained type 1 interferon signaling limits humoral responses to
secondary viral infection. Eur J Immunol. 46:300–302.
2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Oh DS, Oh JE, Jung HE and Lee HK:
Transient depletion of CD169(+) cells contributes to impaired early
protection and effector CD8(+) T cell recruitment against mucosal
respiratory syncytial virus infection. Front Immunol.
8(819)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Jans J, Unger WWJ, Vissers M, Ahout IML,
Schreurs I, Wickenhagen A, de Groot R, de Jonge MI and Ferwerda G:
Siglec-1 inhibits RSV-induced interferon gamma production by adult
T cells in contrast to newborn T cells. Eur J Immunol. 48:621–631.
2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hammonds JE, Beeman N, Ding L, Takushi S,
Francis AC, Wang JJ, Melikyan GB and Spearman P: Siglec-1 initiates
formation of the virus-containing compartment and enhances
macrophage-to-T cell transmission of HIV-1. PLoS Pathog.
13(e1006181)2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Jobe O, Kim J and Rao M: The role of
Siglec-1 in HIV-1/macrophage interaction. Macrophage (Houst).
3(e1435)2016.PubMed/NCBI
|
|
85
|
Pino M, Erkizia I, Benet S, Erikson E,
Fernández-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A,
Ciuffi A, et al: HIV-1 immune activation induces Siglec-1
expression and enhances viral trans-infection in blood and tissue
myeloid cells. Retrovirology. 12(37)2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Martinez-Picado J, McLaren PJ, Erkizia I,
Martin MP, Benet S, Rotger M, Dalmau J, Ouchi D, Wolinsky SM,
Penugonda S, et al: Identification of Siglec-1 null individuals
infected with HIV-1. Nat Commun. 7(12412)2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Akiyama H, Ramirez NP, Gibson G, Kline C,
Watkins S, Ambrose Z and Gummuluru S: Interferon-inducible
CD169/Siglec1 attenuates anti-HIV-1 effects of alpha interferon. J
Virol. 91:e00972–e00917. 2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Yu X, Feizpour A, Ramirez NG, Wu L,
Akiyama H, Xu F, Gummuluru S and Reinhard BM:
Glycosphingolipid-functionalized nanoparticles recapitulate
CD169-dependent HIV-1 uptake and trafficking in dendritic cells.
Nat Commun. 5(4136)2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Farhood B, Najafi M and Mortezaee K:
CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J
Cell Physiol. 234:8509–8521. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Joyce JA and Fearon DT: T cell exclusion,
immune privilege, and the tumor microenvironment. Science.
348:74–80. 2015.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Schnurr M, Scholz C, Rothenfusser S,
Galambos P, Dauer M, Röbe J, Endres S and Eigler A: Apoptotic
pancreatic tumor cells are superior to cell lysates in promoting
cross-priming of cytotoxic T cells and activate NK and gammadelta T
cells. Cancer Res. 62:2347–2352. 2002.PubMed/NCBI
|
|
92
|
Jenne L, Arrighi JF, Jonuleit H, Saurat JH
and Hauser C: Dendritic cells containing apoptotic melanoma cells
prime human CD8+ T cells for efficient tumor cell lysis. Cancer
Res. 60:4446–4452. 2000.PubMed/NCBI
|
|
93
|
Van Dinther D, Veninga H, Revet M,
Hoogterp L, Olesek K, Grabowska J, Borg EGF, Kalay H, van Kooyk Y
and den Haan JMM: Comparison of protein and peptide targeting for
the development of a CD169-based vaccination strategy against
melanoma. Front Immunol. 9(1997)2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Asano T, Ohnishi K, Shiota T, Motoshima T,
Sugiyama Y, Yatsuda J, Kamba T, Ishizaka K and Komohara Y:
CD169-positive sinus macrophages in the lymph nodes determine
bladder cancer prognosis. Cancer Sci. 109:1723–1730.
2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Takeya H, Shiota T, Yagi T, Ohnishi K,
Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H and
Komohara Y: High CD169 expression in lymph node macrophages
predicts a favorable clinical course in patients with esophageal
cancer. Pathol Int. 68:685–693. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Ohnishi K, Yamaguchi M, Erdenebaatar C,
Saito F, Tashiro H, Katabuchi H, Takeya M and Komohara Y:
Prognostic significance of CD169-positive lymph node sinus
macrophages in patients with endometrial carcinoma. Cancer Sci.
107:846–852. 2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ohnishi K, Komohara Y, Saito Y, Miyamoto
Y, Watanabe M, Baba H and Takeya M: CD169-positive macrophages in
regional lymph nodes are associated with a favorable prognosis in
patients with colorectal carcinoma. Cancer Sci. 104:1237–1244.
2013.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Saito Y, Ohnishi K, Miyashita A, Nakahara
S, Fujiwara Y, Horlad H, Motoshima T, Fukushima S, Jinnin M, Ihn H,
et al: Prognostic significance of CD169+ lymph node
sinus macrophages in patients with malignant melanoma. Cancer
Immunol Res. 3:1356–1363. 2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Marmey B, Boix C, Barbaroux JB,
Dieu-Nosjean MC, Diebold J, Audouin J, Fridman WH, Mueller CG and
Molina TJ: CD14 and CD169 expression in human lymph nodes and
spleen: Specific expansion of CD14+CD169-
monocyte-derived cells in diffuse large B-cell lymphomas. Hum
Pathol. 37:68–77. 2006.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Van Dinther D, Lopez Venegas M, Veninga H,
Olesek K, Hoogterp L, Revet M, Ambrosini M, Kalay H, Stöckl J, van
Kooyk Y and den Haan JMM: Activation of CD8+ T cell responses after
melanoma antigen targeting to CD169+ antigen presenting cells
inmice and humans. Cancers (Basel). 11(183)2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Topf MC, Harshyne L, Tuluc M, Mardekian S,
Vimawala S, Cognetti DM, Curry JM, Rodeck U and Luginbuhl A: Loss
of CD169(+) subcapsular macrophages during metastatic spread of
head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg.
161:67–73. 2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Takeuchi H, Tanaka M, Tanaka A, Tsunemi A
and Yamamoto H: Predominance of M2-polarized macrophages in bladder
cancer affects angiogenesis, tumor grade and invasiveness. Oncol
Lett. 11:3403–3408. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Iftakhar-E-Khuda I, Fair-Mäkelä R,
Kukkonen-Macchi A, Elima K, Karikoski M, Rantakari P, Miyasaka M,
Salmi M and Jalkanen S: Gene-expression profiling of different arms
of lymphatic vasculature identifies candidates for manipulation of
cell traffic. Proc Natl Acad Sci USA. 113:10643–10648.
2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Wang B, Liu H, Dong X, Wu S, Zeng H, Liu
Z, Wan D, Dong W, He W, Chen X, et al: High CD204+
tumor-infiltrating macrophage density predicts a poor prognosis in
patients with urothelial cell carcinoma of the bladder. Oncotarget.
6:20204–20214. 2015.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Li JQ, Yu XJ, Wang YC, Huang LY, Liu CQ,
Zheng L, Fang YJ and Xu J: Distinct patterns and prognostic values
of tumor-infiltrating macrophages in hepatocellular carcinoma and
gastric cancer. J Transl Med. 15(37)2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Al Dubayee MS, Alayed H, Almansour R,
Alqaoud N, Alnamlah R, Obeid D, Alshahrani A, Zahra MM, Nasr A,
Al-Bawab A and Aljada A: Differential expression of human
peripheral mononuclear cells phenotype markers in type 2 diabetic
patients and type 2 diabetic patients on metformin. Front
Endocrinol (Lausanne). 9(537)2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q,
Qiu C, Tanaka M and Zhao Y: Breast cancer cells promote CD169(+)
macrophage-associated immunosuppression through JAK2-mediated PD-L1
upregulation on macrophages. Int Immunopharmacol.
78(106012)2020.PubMed/NCBI View Article : Google Scholar
|