Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
February-2021 Volume 14 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 14 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functions of CD169 positive macrophages in human diseases (Review)

  • Authors:
    • Yu Liu
    • Yuan Xia
    • Chun-Hong Qiu
  • View Affiliations / Copyright

    Affiliations: Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China, Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 26
    |
    Published online on: December 17, 2020
       https://doi.org/10.3892/br.2020.1402
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

CD169+ macrophages are a unique type of macrophage subset that differ from M1 and M2 macrophages. CD169+ macrophages are present in multiple tissues and organs throughout the body and are primarily expressed in secondary lymphoid organs. These cells are primarily divided across three locations in secondary lymphoid organs: The metallophilic marginal zone of the spleen, the subcapsular sinus and the medulla of the lymph nodes. Due to their unique location distribution in vivo and the presence of the CD169 molecule on their surfaces, CD169+ macrophages are reported to serve important roles in several processes, such as phagocytosis, antigen presentation, immune tolerance, viral infection and inflammatory responses. At the same time, it has been reported that CD169+ macrophages may also serve an important role in anti‑tumour immunity. The present review focuses on the research progress surrounding the function of CD169+ macrophages in a variety of diseases, such as viral infection, autoimmune diseases and tumours.
View Figures

Figure 1

Figure 2

View References

1 

Varol C, Mildner A and Jung S: Macrophages: Development and tissue specialization. Annu Rev Immunol. 33:643–675. 2015.PubMed/NCBI View Article : Google Scholar

2 

Martinez-Pomares L and Gordon S: CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol. 33:66–70. 2012.PubMed/NCBI View Article : Google Scholar

3 

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014.PubMed/NCBI View Article : Google Scholar

4 

Chávez-Galán L, Olleros ML, Vesin D and Garcia I: Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 6(263)2015.PubMed/NCBI View Article : Google Scholar

5 

Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, et al: Identification and transcriptome analysis of erythroblastic island macrophages. Blood. 134:480–491. 2019.PubMed/NCBI View Article : Google Scholar

6 

Komohara Y, Ohnishi K and Takeya M: Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci. 108:290–295. 2017.PubMed/NCBI View Article : Google Scholar

7 

Bao G, Han Z, Yan Z, Wang Q, Zhou Y, Yao D, Gu M, Chen B, Chen S, Deng A and Zhong R: Increased Siglec-1 expression in monocytes of patients with primary biliary cirrhosis. Immunol Invest. 39:645–660. 2010.PubMed/NCBI View Article : Google Scholar

8 

Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S and Bergh A: Reduced number of CD169(+) macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate. 77:1468–1477. 2017.PubMed/NCBI View Article : Google Scholar

9 

Biesen R, Demir C, Barkhudarova F, Grün JR, Steinbrich-Zöllner M, Backhaus M, Häupl T, Rudwaleit M, Riemekasten G, Radbruch A, et al: Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 58:1136–1145. 2008.PubMed/NCBI View Article : Google Scholar

10 

Zhang J, Xu J, Zhang RX, Zhang Y, Ou QJ, Li JQ, Jiang ZZ, Wu XJ, Fang YJ and Zheng L: CD169 identifies an activated CD8(+) T cell subset in regional lymph nodes that predicts favorable prognosis in colorectal cancer patients. Oncoimmunology. 5(e1177690)2016.PubMed/NCBI View Article : Google Scholar

11 

Nycholat CM, Rademacher C, Kawasaki N and Paulson JC: In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J Am Chem Soc. 134:15696–15699. 2012.PubMed/NCBI View Article : Google Scholar

12 

Oetke C, Vinson MC, Jones C and Crocker PR: Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol. 26:1549–1557. 2006.PubMed/NCBI View Article : Google Scholar

13 

Edgar LJ, Kawasaki N, Nycholat CM and Paulson JC: Targeted delivery of antigen to activated CD169(+) macrophages induces bias for expansion of CD8(+) T cells. Cell Chem Biol. 26:131–136.e4. 2019.PubMed/NCBI View Article : Google Scholar

14 

Ravishankar B, Shinde R, Liu H, Chaudhary K, Bradley J, Lemos HP, Chandler P, Tanaka M, Munn DH, Mellor AL and McGaha TL: Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci USA. 111:4215–4220. 2014.PubMed/NCBI View Article : Google Scholar

15 

Panduro M, Benoist C and Mathis D: Tissue tregs. Annu Rev Immunol. 34:609–633. 2016.PubMed/NCBI View Article : Google Scholar

16 

Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008.PubMed/NCBI View Article : Google Scholar

17 

Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T and Nomura T: Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 212:8–27. 2006.PubMed/NCBI View Article : Google Scholar

18 

Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR and Sorokin LM: Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. J Immunol. 182:6508–6516. 2009.PubMed/NCBI View Article : Google Scholar

19 

Ramos-Leví AM and Marazuela M: Pathogenesis of thyroid autoimmune disease: The role of cellular mechanisms. Endocrinol Nutr. 63:421–429. 2016.PubMed/NCBI View Article : Google Scholar

20 

Hashimoto K, Nishihara E, Matsumoto M, Matsumoto S, Nakajima Y, Tsujimoto K, Yamakage H, Satoh-Asahara N, Noh JY, Ito K, et al: Sialic acid-binding immunoglobulin-like lectin1 as a novel predictive biomarker for relapse in Graves' disease: A multicenter study. Thyroid. 28:50–59. 2018.PubMed/NCBI View Article : Google Scholar

21 

Ruffin N, Gea-Mallorquí E, Brouiller F, Jouve M, Silvin A, See P, Dutertre CA, Ginhoux F and Benaroch P: Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc Natl Acad Sci USA. 116:21685–21693. 2019.PubMed/NCBI View Article : Google Scholar

22 

Fraschilla I and Pillai S: Viewing Siglecs through the lens of tumor immunology. Immunol Rev. 276:178–191. 2017.PubMed/NCBI View Article : Google Scholar

23 

Shiota T, Miyasato Y, Ohnishi K, Yamamoto-Ibusuki M, Yamamoto Y, Iwase H, Takeya M and Komohara Y: The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS One. 11(e0166680)2016.PubMed/NCBI View Article : Google Scholar

24 

Saunderson SC, Dunn AC, Crocker PR and McLellan AD: CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 123:208–216. 2014.PubMed/NCBI View Article : Google Scholar

25 

Camara A, Cordeiro OG, Alloush F, Sponsel J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, et al: Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage niche. Immunity. 50:1467–1481. 2019.PubMed/NCBI View Article : Google Scholar

26 

Hiemstra IH, Beijer MR, Veninga H, Vrijland K, Borg EG, Olivier BJ, Mebius RE, Kraal G and den Haan JM: The identification and developmental requirements of colonic CD169+ macrophages. Immunology. 142:269–278. 2014.PubMed/NCBI View Article : Google Scholar

27 

Lescoat A, Ballerie A, Augagneur Y, Morzadec C, Vernhet L, Fardel O, Jégo P, Jouneau S and Lecureur V: Distinct properties of human M-CSF and GM-CSF monocyte-derived macrophages to simulate pathological lung conditions in vitro: Application to systemic and inflammatory disorders with pulmonary involvement. Int J Mol Sci. 19(894)2018.PubMed/NCBI View Article : Google Scholar

28 

Vance J, Santos A, Sadofsky L, Morice A and Cervantes J: Effect of high glucose on human alveolar macrophage phenotype and phagocytosis of mycobacteria. Lung. 197:89–94. 2019.PubMed/NCBI View Article : Google Scholar

29 

Friedrich SK, Lang PA, Friebus-Kardash J, Duhan V, Bezgovsek J and Lang KS: Mechanisms of lymphatic system-specific viral replication and its potential role in autoimmune disease. Clin Exp Immunol. 195:64–73. 2019.PubMed/NCBI View Article : Google Scholar

30 

Xu HC, Huang J, Khairnar V, Duhan V, Pandyra AA, Grusdat M, Shinde P, McIlwain DR, Maney SK, Gommerman J, et al: Deficiency of the B cell-activating factor receptor results in limited CD169+ macrophage function during viral infection. J Virol. 89:4748–4759. 2015.PubMed/NCBI View Article : Google Scholar

31 

Kikuchi K, Iida M, Ikeda N, Moriyama S, Hamada M, Takahashi S, Kitamura H, Watanabe T, Hasegawa Y, Hase K, et al: Macrophages switch their phenotype by regulating Maf expression during different phases of inflammation. J Immunol. 201:635–651. 2018.PubMed/NCBI View Article : Google Scholar

32 

Yao H, Zhang Y, Xie B, Shang Y, Yuan S and Zhang J: Sleep-restriction inhibits neurogenesis through decreasing the infiltration of CD169(+) macrophages to ischemic brain after stroke. Neuroscience. 431:222–236. 2020.PubMed/NCBI View Article : Google Scholar

33 

Spaulding E, Fooksman D, Moore JM, Saidi A, Feintuch CM, Reizis B, Chorro L, Daily J and Lauvau G: STING-licensed macrophages prime type I IFN production by plasmacytoid dendritic cells in the bone marrow during severe plasmodium yoelii malaria. PLoS Pathog. 12(e1005975)2016.PubMed/NCBI View Article : Google Scholar

34 

Chavez M, Silvestrini MT, Ingham ES, Fite BZ, Mahakian LM, Tam SM, Ilovitsh A, Monjazeb AM, Murphy WJ, Hubbard NE, et al: Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics. 8:3611–3628. 2018.PubMed/NCBI View Article : Google Scholar

35 

Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, Cutler AJ, Doecke JD, Flint S, McKinney EF, et al: A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 63:2538–2550. 2014.PubMed/NCBI View Article : Google Scholar

36 

Rose T, Szelinski F, Lisney A, Reiter K, Fleischer SJ, Burmester GR, Radbruch A, Hiepe F, Grützkau A, Biesen R and Dörner T: Siglec1 is a biomarker of disease activity and indicates extraglandular manifestation in primary Sjögren's syndrome. RMD Open. 2(e000292)2016.PubMed/NCBI View Article : Google Scholar

37 

Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N, Blanc L and Kalfa TA: Unraveling macrophage heterogeneity in erythroblastic islands. Front Immunol. 8(1140)2017.PubMed/NCBI View Article : Google Scholar

38 

Falchi M, Varricchio L, Martelli F, Masiello F, Federici G, Zingariello M, Girelli G, Whitsett C, Petricoin EF III, Moestrup SK, et al: Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica. 100:178–187. 2015.PubMed/NCBI View Article : Google Scholar

39 

Jacobsen RN, Forristal CE, Raggatt LJ, Nowlan B, Barbier V, Kaur S, van Rooijen N, Winkler IG, Pettit AR and Levesque JP: Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Exp Hematol. 42:547–561.e4. 2014.PubMed/NCBI View Article : Google Scholar

40 

Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, et al: CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 19:429–436. 2013.PubMed/NCBI View Article : Google Scholar

41 

Kaur S, Raggatt LJ, Millard SM, Wu AC, Batoon L, Jacobsen RN, Winkler IG, MacDonald KP, Perkins AC, Hume DA, et al: Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood. 132:735–749. 2018.PubMed/NCBI View Article : Google Scholar

42 

Gbotosho OT, Kapetanaki MG, Ross M, Ghosh S, Weidert F, Bullock GC, Watkins S, Ofori-Acquah SF and Kato GJ: Nrf2 deficiency in mice attenuates erythropoietic stress-related macrophage hypercellularity. Exp Hematol. 84:19–28.e4. 2020.PubMed/NCBI View Article : Google Scholar

43 

Zhang RR and Zhu XF: Relationship between macrophages and erythropoiesis. Zhongguo Dang Dai Er Ke Za Zhi. 18:94–99. 2016.PubMed/NCBI View Article : Google Scholar : (In Chinese).

44 

Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ and Pettit AR: CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials. 196:51–66. 2019.PubMed/NCBI View Article : Google Scholar

45 

Asano K, Kikuchi K and Tanaka M: CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid. J Biochem. 164:77–85. 2018.PubMed/NCBI View Article : Google Scholar

46 

De Schryver M, Leemans A, Pintelon I, Cappoen D, Maes L, Caljon G, Cos P and Delputte PL: Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines. Immunobiology. 222:797–806. 2017.PubMed/NCBI View Article : Google Scholar

47 

Louie DAP and Liao S: Lymph Node Subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front Immunol. 10(347)2019.PubMed/NCBI View Article : Google Scholar

48 

Heath WR, Kato Y, Steiner TM and Caminschi I: Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol. 58:44–52. 2019.PubMed/NCBI View Article : Google Scholar

49 

Veninga H, Borg EG, Vreeman K, Taylor PR, Kalay H, van Kooyk Y, Kraal G, Martinez-Pomares L and den Haan JM: Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur J Immunol. 45:747–757. 2015.PubMed/NCBI View Article : Google Scholar

50 

Grabowska J, Lopez-Venegas MA, Affandi AJ and den-Haan JMM: CD169+ macrophages capture and Dendritic cells instruct: The interplay of the gatekeeper and the general of the immune system. Front Immunol. 9(2472)2018.PubMed/NCBI View Article : Google Scholar

51 

Van Dinther D, Veninga H, Iborra S, Borg EGF, Hoogterp L, Olesek K, Beijer MR, Schetters STT, Kalay H, Garcia-Vallejo JJ, et al: Functional CD169 on macrophages mediates interaction with Dendritic cells for CD8(+) T Cell cross-priming. Cell Rep. 22:1484–1495. 2018.PubMed/NCBI View Article : Google Scholar

52 

Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V and Batista FD: CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol. 11:303–312. 2010.PubMed/NCBI View Article : Google Scholar

53 

Kawasaki N, Vela JL, Nycholat CM, Rademacher C, Khurana A, van Rooijen N, Crocker PR, Kronenberg M and Paulson JC: Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc Natl Acad Sci USA. 110:7826–7831. 2013.PubMed/NCBI View Article : Google Scholar

54 

Covarrubias R, Wilhelm AJ and Major AS: Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells. PLoS One. 9(e102236)2014.PubMed/NCBI View Article : Google Scholar

55 

Trahtemberg U and Mevorach D: Apoptotic cells induced signaling for immune homeostasis in macrophages and Dendritic cells. Front Immunol. 8(1356)2017.PubMed/NCBI View Article : Google Scholar

56 

Vives-Pi M, Rodríguez-Fernández S and Pujol-Autonell I: How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: A review. Apoptosis. 20:263–272. 2015.PubMed/NCBI View Article : Google Scholar

57 

Tanaka M and Miyake Y: Apoptotic cell clearance and autoimmune disorder. Curr Med Chem. 14:2892–2897. 2007.PubMed/NCBI View Article : Google Scholar

58 

Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M and Tanaka M: Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest. 117:2268–2278. 2007.PubMed/NCBI View Article : Google Scholar

59 

Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, Kanagawa O, Fujii S and Tanaka M: CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 34:85–95. 2011.PubMed/NCBI View Article : Google Scholar

60 

Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, Munn DH, Mellor AL, Karlsson MC and McGaha TL: Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci USA. 109:3909–3914. 2012.PubMed/NCBI View Article : Google Scholar

61 

Black LV, Saunderson SC, Coutinho FP, Muhsin-Sharafaldine MR, Damani TT, Dunn AC and McLellan AD: The CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to tumour apoptotic vesicles. Immunol Cell Biol. 94:430–438. 2016.PubMed/NCBI View Article : Google Scholar

62 

Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O and Tanaka M: Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol. 182:4127–4136. 2009.PubMed/NCBI View Article : Google Scholar

63 

Hao S, Han X, Wang D, Yang Y, Li Q, Li X and Qiu CH: Critical role of CCL22/CCR4 axis in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) dendritic cells. Immunology. 148:174–186. 2016.PubMed/NCBI View Article : Google Scholar

64 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018.PubMed/NCBI View Article : Google Scholar

65 

Detienne S, Welsby I, Collignon C, Wouters S, Coccia M, Delhaye S, Van Maele L, Thomas S, Swertvaegher M, Detavernier A, et al: Central role of CD169(+) lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 6(39475)2016.PubMed/NCBI View Article : Google Scholar

66 

Wang D, Li Q, Yang Y, Hao S, Han X, Song J, Yin Y, Li X, Tanaka M and Qiu CH: Macrophage subset expressing CD169 in peritoneal cavity-regulated mucosal inflammation together with lower levels of CCL22. Inflammation. 40:1191–1203. 2017.PubMed/NCBI View Article : Google Scholar

67 

Li Q, Wang D, Hao S, Han X, Xia Y, Li X, Chen Y, Tanaka M and Qiu CH: CD169 expressing macrophage, a key subset in mesenteric lymph nodes promotes mucosal inflammation in dextran sulfate sodium-induced colitis. Front Immunol. 8(669)2017.PubMed/NCBI View Article : Google Scholar

68 

Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, Moriyama S, Iida M, Kitamura H, Qiu CH, et al: Intestinal CD169(+) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun. 6(7802)2015.PubMed/NCBI View Article : Google Scholar

69 

Xia Y, Tian LM, Liu Y, Guo KS, Lv M, Li QT, Hao SY, Ma CH, Chen YX, Tanaka M, et al: Low dose of cyanidin-3-O-glucoside alleviated dextran sulfate sodium-induced colitis, mediated by CD169+ macrophage pathway. Inflamm Bowel Dis. 25:1510–1521. 2019.PubMed/NCBI View Article : Google Scholar

70 

Bogie JF, Boelen E, Louagie E, Delputte P, Elewaut D, van Horssen J, Hendriks JJ and Hellings N: CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis. Mult Scle. 24:290–300. 2018.PubMed/NCBI View Article : Google Scholar

71 

Xiong YS, Cheng Y, Lin QS, Wu AL, Yu J, Li C, Sun Y, Zhong RQ and Wu LJ: Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford). 53:250–259. 2014.PubMed/NCBI View Article : Google Scholar

72 

Guo X, Nakamura K, Kohyama K, Harada C, Behanna HA, Watterson DM, Matsumoto Y and Harada T: Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res. 59:457–466. 2007.PubMed/NCBI View Article : Google Scholar

73 

Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M, Iida M, Kuboki E, Yagita H, Uchida K, Nitta K and Tanaka M: Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. J Am Soc Nephrol. 26:896–906. 2015.PubMed/NCBI View Article : Google Scholar

74 

Shinde PV, Xu HC, Maney SK, Kloetgen A, Namineni S, Zhuang Y, Honke N, Shaabani N, Bellora N, Doerrenberg M, et al: Tumor necrosis factor-mediated survival of CD169(+) cells promotes immune activation during vesicular stomatitis virus infection. J Virol. 92:e01637–e01617. 2018.PubMed/NCBI View Article : Google Scholar

75 

Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G, Sewald X and Mothes W: A protective role for the lectin CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host Microbe. 25:87–100.e10. 2019.PubMed/NCBI View Article : Google Scholar

76 

Frederico B, Chao B, Lawler C, May JS and Stevenson PG: Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol. 96:2314–2327. 2015.PubMed/NCBI View Article : Google Scholar

77 

Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di Paolo NC, et al: Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 450:110–114. 2007.PubMed/NCBI View Article : Google Scholar

78 

Honke N, Shaabani N, Merches K, Gassa A, Kraft A, Ehrhardt K, Häussinger D, Löhning M, Dittmer U, Hengel H, et al: Immunoactivation induced by chronic viral infection inhibits viral replication and drives immunosuppression through sustained IFN-I responses. Eur J Immunol. 46:372–380. 2016.PubMed/NCBI View Article : Google Scholar

79 

Shaabani N, Duhan V, Khairnar V, Gassa A, Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer U, et al: CD169(+) macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis. 7(e2446)2016.PubMed/NCBI View Article : Google Scholar

80 

Teijaro JR: Too much of a good thing: Sustained type 1 interferon signaling limits humoral responses to secondary viral infection. Eur J Immunol. 46:300–302. 2016.PubMed/NCBI View Article : Google Scholar

81 

Oh DS, Oh JE, Jung HE and Lee HK: Transient depletion of CD169(+) cells contributes to impaired early protection and effector CD8(+) T cell recruitment against mucosal respiratory syncytial virus infection. Front Immunol. 8(819)2017.PubMed/NCBI View Article : Google Scholar

82 

Jans J, Unger WWJ, Vissers M, Ahout IML, Schreurs I, Wickenhagen A, de Groot R, de Jonge MI and Ferwerda G: Siglec-1 inhibits RSV-induced interferon gamma production by adult T cells in contrast to newborn T cells. Eur J Immunol. 48:621–631. 2018.PubMed/NCBI View Article : Google Scholar

83 

Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB and Spearman P: Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 13(e1006181)2017.PubMed/NCBI View Article : Google Scholar

84 

Jobe O, Kim J and Rao M: The role of Siglec-1 in HIV-1/macrophage interaction. Macrophage (Houst). 3(e1435)2016.PubMed/NCBI

85 

Pino M, Erkizia I, Benet S, Erikson E, Fernández-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, et al: HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology. 12(37)2015.PubMed/NCBI View Article : Google Scholar

86 

Martinez-Picado J, McLaren PJ, Erkizia I, Martin MP, Benet S, Rotger M, Dalmau J, Ouchi D, Wolinsky SM, Penugonda S, et al: Identification of Siglec-1 null individuals infected with HIV-1. Nat Commun. 7(12412)2016.PubMed/NCBI View Article : Google Scholar

87 

Akiyama H, Ramirez NP, Gibson G, Kline C, Watkins S, Ambrose Z and Gummuluru S: Interferon-inducible CD169/Siglec1 attenuates anti-HIV-1 effects of alpha interferon. J Virol. 91:e00972–e00917. 2017.PubMed/NCBI View Article : Google Scholar

88 

Yu X, Feizpour A, Ramirez NG, Wu L, Akiyama H, Xu F, Gummuluru S and Reinhard BM: Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nat Commun. 5(4136)2014.PubMed/NCBI View Article : Google Scholar

89 

Farhood B, Najafi M and Mortezaee K: CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019.PubMed/NCBI View Article : Google Scholar

90 

Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015.PubMed/NCBI View Article : Google Scholar

91 

Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Röbe J, Endres S and Eigler A: Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res. 62:2347–2352. 2002.PubMed/NCBI

92 

Jenne L, Arrighi JF, Jonuleit H, Saurat JH and Hauser C: Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 60:4446–4452. 2000.PubMed/NCBI

93 

Van Dinther D, Veninga H, Revet M, Hoogterp L, Olesek K, Grabowska J, Borg EGF, Kalay H, van Kooyk Y and den Haan JMM: Comparison of protein and peptide targeting for the development of a CD169-based vaccination strategy against melanoma. Front Immunol. 9(1997)2018.PubMed/NCBI View Article : Google Scholar

94 

Asano T, Ohnishi K, Shiota T, Motoshima T, Sugiyama Y, Yatsuda J, Kamba T, Ishizaka K and Komohara Y: CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci. 109:1723–1730. 2018.PubMed/NCBI View Article : Google Scholar

95 

Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H and Komohara Y: High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int. 68:685–693. 2018.PubMed/NCBI View Article : Google Scholar

96 

Ohnishi K, Yamaguchi M, Erdenebaatar C, Saito F, Tashiro H, Katabuchi H, Takeya M and Komohara Y: Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 107:846–852. 2016.PubMed/NCBI View Article : Google Scholar

97 

Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H and Takeya M: CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 104:1237–1244. 2013.PubMed/NCBI View Article : Google Scholar

98 

Saito Y, Ohnishi K, Miyashita A, Nakahara S, Fujiwara Y, Horlad H, Motoshima T, Fukushima S, Jinnin M, Ihn H, et al: Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 3:1356–1363. 2015.PubMed/NCBI View Article : Google Scholar

99 

Marmey B, Boix C, Barbaroux JB, Dieu-Nosjean MC, Diebold J, Audouin J, Fridman WH, Mueller CG and Molina TJ: CD14 and CD169 expression in human lymph nodes and spleen: Specific expansion of CD14+CD169- monocyte-derived cells in diffuse large B-cell lymphomas. Hum Pathol. 37:68–77. 2006.PubMed/NCBI View Article : Google Scholar

100 

Van Dinther D, Lopez Venegas M, Veninga H, Olesek K, Hoogterp L, Revet M, Ambrosini M, Kalay H, Stöckl J, van Kooyk Y and den Haan JMM: Activation of CD8+ T cell responses after melanoma antigen targeting to CD169+ antigen presenting cells inmice and humans. Cancers (Basel). 11(183)2019.PubMed/NCBI View Article : Google Scholar

101 

Topf MC, Harshyne L, Tuluc M, Mardekian S, Vimawala S, Cognetti DM, Curry JM, Rodeck U and Luginbuhl A: Loss of CD169(+) subcapsular macrophages during metastatic spread of head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 161:67–73. 2019.PubMed/NCBI View Article : Google Scholar

102 

Takeuchi H, Tanaka M, Tanaka A, Tsunemi A and Yamamoto H: Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncol Lett. 11:3403–3408. 2016.PubMed/NCBI View Article : Google Scholar

103 

Iftakhar-E-Khuda I, Fair-Mäkelä R, Kukkonen-Macchi A, Elima K, Karikoski M, Rantakari P, Miyasaka M, Salmi M and Jalkanen S: Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Proc Natl Acad Sci USA. 113:10643–10648. 2016.PubMed/NCBI View Article : Google Scholar

104 

Wang B, Liu H, Dong X, Wu S, Zeng H, Liu Z, Wan D, Dong W, He W, Chen X, et al: High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder. Oncotarget. 6:20204–20214. 2015.PubMed/NCBI View Article : Google Scholar

105 

Li JQ, Yu XJ, Wang YC, Huang LY, Liu CQ, Zheng L, Fang YJ and Xu J: Distinct patterns and prognostic values of tumor-infiltrating macrophages in hepatocellular carcinoma and gastric cancer. J Transl Med. 15(37)2017.PubMed/NCBI View Article : Google Scholar

106 

Al Dubayee MS, Alayed H, Almansour R, Alqaoud N, Alnamlah R, Obeid D, Alshahrani A, Zahra MM, Nasr A, Al-Bawab A and Aljada A: Differential expression of human peripheral mononuclear cells phenotype markers in type 2 diabetic patients and type 2 diabetic patients on metformin. Front Endocrinol (Lausanne). 9(537)2018.PubMed/NCBI View Article : Google Scholar

107 

Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q, Qiu C, Tanaka M and Zhao Y: Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 78(106012)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Xia Y and Qiu C: Functions of CD169 positive macrophages in human diseases (Review). Biomed Rep 14: 26, 2021.
APA
Liu, Y., Xia, Y., & Qiu, C. (2021). Functions of CD169 positive macrophages in human diseases (Review). Biomedical Reports, 14, 26. https://doi.org/10.3892/br.2020.1402
MLA
Liu, Y., Xia, Y., Qiu, C."Functions of CD169 positive macrophages in human diseases (Review)". Biomedical Reports 14.2 (2021): 26.
Chicago
Liu, Y., Xia, Y., Qiu, C."Functions of CD169 positive macrophages in human diseases (Review)". Biomedical Reports 14, no. 2 (2021): 26. https://doi.org/10.3892/br.2020.1402
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Xia Y and Qiu C: Functions of CD169 positive macrophages in human diseases (Review). Biomed Rep 14: 26, 2021.
APA
Liu, Y., Xia, Y., & Qiu, C. (2021). Functions of CD169 positive macrophages in human diseases (Review). Biomedical Reports, 14, 26. https://doi.org/10.3892/br.2020.1402
MLA
Liu, Y., Xia, Y., Qiu, C."Functions of CD169 positive macrophages in human diseases (Review)". Biomedical Reports 14.2 (2021): 26.
Chicago
Liu, Y., Xia, Y., Qiu, C."Functions of CD169 positive macrophages in human diseases (Review)". Biomedical Reports 14, no. 2 (2021): 26. https://doi.org/10.3892/br.2020.1402
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team