Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
July-2021 Volume 15 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 15 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review)

  • Authors:
    • Martha Laysla Ramos Da Silva
    • Beatriz Helena Dantas Rodrigues De Albuquerque
    • Thales Araújo De Medeiros Fernandes Allyrio
    • Valéria Duarte De Almeida
    • Ricardo Ney De Oliveira Cobucci
    • Fabiana Lima Bezerra
    • Vania Sousa Andrade
    • Daniel Carlos Ferreira Lanza
    • Jenner Christian Veríssimo De Azevedo
    • Josélio Maria Galvão De Araújo
    • José Veríssimo Fernandes
  • View Affiliations / Copyright

    Affiliations: Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078‑970, Brazil, Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078‑970, Brazil, Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607‑360, Brazil, Department of Gynecology and Obstetrics, Potiguar University, Natal 59056‑000, Brazil, Department of Pediatrics, Federal University of Rio Grande do Norte, Natal 59012‑570, Brazil
    Copyright: © Da Silva et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 60
    |
    Published online on: May 20, 2021
       https://doi.org/10.3892/br.2021.1436
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV‑induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long‑term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high‑risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non‑coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Liang J, Zhang S, Wang W, Xu Y, Kawuli A, Lu J and Xiu X: Long non-coding RNA DSCAM-AS1 contributes to the tumorigenesis of cervical cancer by targeting miR-877-5p/ATXN7L3 axis. Biosci Rep. 40(BSR20192061)2020.PubMed/NCBI View Article : Google Scholar

2 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.PubMed/NCBI View Article : Google Scholar

3 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar

4 

INCA: Estimativa 2018: Incidência de câncer no Brasil/Instituto Nacional de Câncer Jose Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância, Rio de Janeiro, 2017.

5 

Chen L, Qiu X, Zhang N, Wang Y, Wang M, Li D, Wang L and Du Y: APOBEC-mediated genomic alterations link immunity and viral infection during human papillomavirus-driven cervical carcinogenesis. Biosci Trends. 11:383–388. 2017.PubMed/NCBI View Article : Google Scholar

6 

Sen P, Ganguly P and Ganguly N: Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett. 15:11–22. 2018.PubMed/NCBI View Article : Google Scholar

7 

Senapati R, Senapati NN and Dwibedi B: Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer. 11(59)2016.PubMed/NCBI View Article : Google Scholar

8 

Steenbergen RD, Snijders PJ, Heideman DA and Meijer CJ: Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 14:395–405. 2014.PubMed/NCBI View Article : Google Scholar

9 

Morel A, Baguet A, Perrard J, Demeret C, Jacquin E, Guenat D, Mougin C and Prétet JL: 5azadC treatment upregulates miR-375 level and represses HPV16 E6 expression. Oncotarget. 8:46163–46176. 2017.PubMed/NCBI View Article : Google Scholar

10 

Fernandes JV, de Medeiros Fernandes TA, de Azevedo JC, Cobucci RN, de Carvalho MG, Andrade VS and de Araújo JM: Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett. 9:1015–1026. 2015.PubMed/NCBI View Article : Google Scholar

11 

Soto D, Song C and McLaughlin-Drubin ME: Epigenetic alterations in human papillomavirus-associated cancers. Viruses. 9(248)2017.PubMed/NCBI View Article : Google Scholar

12 

Durzynska J, Lesniewicz K and Poreba E: Human papillomaviruses in epigenetic regulations. Mutat Res Rev Mutat Res. 772:36–50. 2017.PubMed/NCBI View Article : Google Scholar

13 

Amaro-Filho SM, Pereira Chaves CB, Felix SP, Basto DL, de Almeida LM and Moreira MAM: HPV DNA methylation at the early promoter and E1/E2 integrity: A comparison between HPV16, HPV18 and HPV45 in cervical cancer. Papillomavirus Res. 5:172–179. 2018.PubMed/NCBI View Article : Google Scholar

14 

Jacquin E, Baraquin A, Ramanah R, Carcopino X, Morel A, Valmary-Degano S, Bravo IG, de Sanjosé S, Riethmuller D, Mougin C and Prétet JL: Methylation of human papillomavirus type 16 CpG sites at E2-binding site 1 (E2BS1), E2BS2, and the Sp1-binding site in cervical cancer samples as determined by high-resolution melting analysis-PCR. J Clin Microbiol. 51:3207–3215. 2013.PubMed/NCBI View Article : Google Scholar

15 

Loscalzo J and Handy DE: Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm Circ. 4:169–174. 2014.PubMed/NCBI View Article : Google Scholar

16 

Shamsi MB, Firoz AS, Imam SN, Alzaman N and Samman MA: Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci. 212:205–211. 2017.PubMed/NCBI View Article : Google Scholar

17 

Vogt G: Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet. 3(dvx002)2017.PubMed/NCBI View Article : Google Scholar

18 

Marsit CJ: Influence of environmental exposure on human epigenetic regulation. J Exp Biology. 218:71–79. 2015.PubMed/NCBI View Article : Google Scholar

19 

Li Y and Tollefsbol TO: Age-related epigenetic drift and phenotypic plasticity loss: Implications in prevention of age-related human diseases. Epigenomics. 8:1637–1651. 2016.PubMed/NCBI View Article : Google Scholar

20 

Zannas AS and Chrousos GP: Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry. 22:640–646. 2017.PubMed/NCBI View Article : Google Scholar

21 

Osborne A: The role of epigenetics in human evolution. Biosc Horizons. 10(hzx007)2017.

22 

Stefansson OA and Esteller M: Epigenetic modifications in breast cancer and their role in personalized medicine. Am J Pathol. 183:1052–1063. 2013.PubMed/NCBI View Article : Google Scholar

23 

Llinàs-Arias P and Esteller M: Epigenetic inactivation of tumor suppressor coding and non-coding genes in human cancer: An update. Open Biol. 7(170152)2017.PubMed/NCBI View Article : Google Scholar

24 

Ramassone A, Pagotto S, Veronese A and Visone R: Epigenetics and microRNAs in cancer. Int J Mol Sci. 19(459)2018.PubMed/NCBI View Article : Google Scholar

25 

Kurdyukov S and Bullock M: DNA methylation analysis: Choosing the right method. Biology (Basel). 5(3)2016.PubMed/NCBI View Article : Google Scholar

26 

Zhang X, Hu M, Lyu X, Li C, Thannickal VJ and Sanders YY: DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis. 1863:2389–2397. 2017.PubMed/NCBI View Article : Google Scholar

27 

Yang X, Han H, de Carvalho DD, Lay FD, Jones PA and Liang G: Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 26:577–590. 2014.PubMed/NCBI View Article : Google Scholar

28 

Jin Z and Liu Y: DNA methylation in human diseases. Genes Dis. 5:1–8. 2018.PubMed/NCBI View Article : Google Scholar

29 

Moore LD, Le T and Fan G: DNA Methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013.PubMed/NCBI View Article : Google Scholar

30 

Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics. 1:239–259. 2009.PubMed/NCBI View Article : Google Scholar

31 

Yang HJ: Aberrant DNA methylation in cervical carcinogenesis. Chin J Cancer. 32:42–48. 2013.PubMed/NCBI View Article : Google Scholar

32 

Lu Q, Ma D and Zhao S: DNA methylation changes in cervical cancers. Methods Mol Biol. 863:155–176. 2012.PubMed/NCBI View Article : Google Scholar

33 

Liu G: CDH1 promoter methylation in patients with cervical carcinoma: A systematic meta-analysis with trial sequential analysis. Future Oncol. 14:51–63. 2018.PubMed/NCBI View Article : Google Scholar

34 

Snoek BC, Splunter AP, Bleeker MC, Ruiten MC, Heideman DA, Rurup WF, Verlaat W, Schotman H, Gent MV, Trommel NE and Steenbergen RD: Cervical cancer detection by DNA methylation analysis in urine. Sci Rep. 9(3088)2019.PubMed/NCBI View Article : Google Scholar

35 

McCormick TM, Canedo NH, Furtado YL, Silveira FA, de Lima RJ, Rosman AD, Almeida Filho GL and Carvalho Mda G: Association between human papillomavirus and Epstein-Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: A transversal study. Diagn Pathol. 10(59)2015.PubMed/NCBI View Article : Google Scholar

36 

Cardoso MF, Castelletti CH, Lima-Filho JL, Martins DB and Teixeira JA: Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles. Mutat Res. 773:161–173. 2017.PubMed/NCBI View Article : Google Scholar

37 

Fernandes JV, Araújo JM and Fernandes TA: Biology and natural history of human papillomavirus infection. Open Access J Clin Trials. 2013(5)2013.

38 

Bashaw AA, Leggatt GR, Chandra J, Tuong ZK and Frazer IH: Modulation of antigen presenting cell functions during chronic HPV infection. Papillomavirus Res. 4:58–65. 2017.PubMed/NCBI View Article : Google Scholar

39 

Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K and Tang A: Wnt signaling in cervical cancer? J Cancer. 9:1277–1286. 2018.PubMed/NCBI View Article : Google Scholar

40 

Ayala-Calvillo A, Mojica-Vázquer LH, García-Carrancá A and González-Maya L: Wnt/β-catenin pathway activation and silencing of the APC gene in HPV-positive human cervical cancer-derived cells. Mol Med Rep. 17:200–208. 2018.PubMed/NCBI View Article : Google Scholar

41 

Lee J and Kim SS: The function of p27 KIP1 during tumor development. Exp Mol Med. 41:765–771. 2009.PubMed/NCBI View Article : Google Scholar

42 

Qi Q, Ling Y, Zhu M, Zhou L, Wan M, Bao Y and Liu Y: Promoter region methylation and loss of protein expression of PTEN and significance in cervical cancer. Biomed Rep. 2:653–658. 2014.PubMed/NCBI View Article : Google Scholar

43 

Li JY, Huang T, Zhang C, Jiang DJ, Hong QX, Ji HH, Ye M and Duan SW: Association between RASSF1A promoter hypermethylation and oncogenic HPV infection status in invasive cervical cancer: A meta-analysis. Asian Pac J Cancer Prev. 16:5749–754. 2015.PubMed/NCBI View Article : Google Scholar

44 

Sherr CJ and Bartek J: Cell cycle-targeted cancer therapies. Ann Rev Cancer Biol. 1:41–57. 2017.

45 

Li X, Tao L, Tan Q, Dong Y, Pan X, Pang L, Qi Y, Zou H, Liang W, Liu W, et al: CpG island methylation of the CADM1 gene correlates with cervical carcinogenesis in the Uighur and Han populations of Xinjiang, China. Int J Clin Exp Pathol. 9:6977–6987. 2016.

46 

Holubeková V, Mendelová A, Grendár M, Meršaková S, Kapustová I, Jašek K, Vaňochová A, Danko J and Lasabová Z: Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens. Oncol Lett. 12:2613–2621. 2016.PubMed/NCBI View Article : Google Scholar

47 

Siegel EM, Riggs BM, Delmas AL, Koch A, Hakam A and Brown KD: Quantitative DNA methylation analysis of candidate genes in cervical cancer. PLoS One. 10(e0122495)2015.PubMed/NCBI View Article : Google Scholar

48 

Lorincz AT: Virtues and weaknesses of DNA methylation as a test for cervical cancer prevention. Acta Cytol. 60:501–512. 2016.PubMed/NCBI View Article : Google Scholar

49 

Kim MK, Lee IH, Lee KH, Lee YK, So KA, Hong SR, Hwang CS, Kee MK, Rhee JE, Kang C, et al: DNA methylation in human papillomavirus-infected cervical cells is elevated in high-grade squamous intraepithelial lesions and cancer. J Gynecol Oncol. 27(e14)2016.PubMed/NCBI View Article : Google Scholar

50 

Chang CC, Huang RL, Wang HC, Liao YP, Yu MH and Lai HC: High methylation rate of LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582 genes in cervical adenocarcinoma. Int J Gynecol Cancer. 24:201–209. 2014.PubMed/NCBI View Article : Google Scholar

51 

Xu L, Xu J, Hu Z, Yang B, Wang L, Lin X, Xia Z, Zhang Z and Zhu Y: Quantitative DNA methylation analysis of paired box gene 1 and LIM homeobox transcription factor 1α genes in cervical cancer. Oncol Lett. 15:4477–4484. 2018.PubMed/NCBI View Article : Google Scholar

52 

Flamini MI, Gauna GV, Sottile ML, Nadin BS, Sanchez AM and Vargas-Roig LM: Retinoic acid reduces migration of human breast cancer cells: Role of retinoic acid receptor beta. J Cell Mol Med. 18:1113–1123. 2014.PubMed/NCBI View Article : Google Scholar

53 

Yin FF, Wang N, Bi XN, Yu X, Xu XH, Wang YL, Zhao CQ, Luo B and Wang YK: Serine/threonine kinases 31(STK31) may be a novel cellular target gene for the HPV16 oncogene E7 with potential as a DNA hypomethylation biomarker in cervical cancer. Virol J. 13(60)2016.PubMed/NCBI View Article : Google Scholar

54 

Molano M, Moreno-Acosta P, Morales N, Burgos M, Buitrago L, Gamboa O, Alvarez R, Garland SM, Tabrizi SN, Steenbergen RD and Mejía JC: Association between type-specific HPV infections and hTERT DNA methylation in patients with invasive cervical cancer. Cancer Genomics Proteomics. 13:483–491. 2016.PubMed/NCBI View Article : Google Scholar

55 

Johannsen E and Lambert PF: Epigenetics of human papillomaviruses. Virology. 445:205–212. 2013.PubMed/NCBI View Article : Google Scholar

56 

Simanaviciene V, Popendikyte V, Gudleviciene Z and Zvirbliene A: Different DNA methylation pattern of HPV16, HPV18 and HPV51 genomes in asymptomatic HPV infection as compared to cervical neoplasia. Virology. 484:227–233. 2015.PubMed/NCBI View Article : Google Scholar

57 

Wang W, Sun Z, Liu J, Wang G, Lu Z, Zhou W, Qi T and Ruan Q: Increased methylation of human papillomavirus type 16 DNA is associated with the severity of cervical lesions in infected females from northeast China. Oncol Lett. 13:3809–3816. 2017.PubMed/NCBI View Article : Google Scholar

58 

McBride AA and Warburton A: The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 13(e1006211)2017.PubMed/NCBI View Article : Google Scholar

59 

Vinokurova S and von Knebel Doeberitz M: Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS One. 6(e24451)2011.PubMed/NCBI View Article : Google Scholar

60 

McBride AA: The papillomavirus E2 proteins. Virology. 445:57–79. 2013.PubMed/NCBI View Article : Google Scholar

61 

Filho SM, Bertoni N, Brant AC, Vidal JP, Felix SP, Cavalcanti SM, Carestiato FN, Martins LF, Almeida LM and Moreira MA: Methylation at 3'LCR of HPV16 can be affected by patient age and disruption of E1 or E2 genes. Virus Res. 232:48–53. 2017.PubMed/NCBI View Article : Google Scholar

62 

Fertey J, Hagmann J, Ruscheweyh HJ, Munk C, Kjaer S, Huson D, Haedicke-Jarboui J, Stubenrauch F and Iftner T: Methylation of CpG 5962 in L1 of the human papillomavirus 16 genome as a potential predictive marker for viral persistence: A prospective large cohort study using cervical swab samples. Cancer Med. 9:1058–1068. 2019.PubMed/NCBI View Article : Google Scholar

63 

Niyazi M, Sui S, Zhu K, Wang L, Jiao Z and Lu P: Correlation between methylation of human papillomavirus-16 L1 gene and cervical carcinoma in Uyghur women. Gynecol Obstet Invest. 82:22–29. 2017.PubMed/NCBI View Article : Google Scholar

64 

Huang J, Tan ZR, Yu J, Li H, Lv QL, Shao YY and Zhou HH: DNA hypermethylated status and gene expression of PAX1/SOX1 in patients with colorectal carcinoma. Onco Targets Ther. 10:4739–4751. 2017.PubMed/NCBI View Article : Google Scholar

65 

Luan T, Hua Q, Liu X, Xu P, Gu Y, Qian H, Yan L, Xu X, Geng R, Zeng X and Li P: PAX1 Methylation as a potential biomarker to predict the progression of cervical intraepithelial neoplasia: A Meta-analysis of related studies. Int J Gynecol Cancer. 27:1480–1488. 2017.PubMed/NCBI View Article : Google Scholar

66 

Lin YW, Tsao CM, Yu PN, Shih YL, Lin CH and Yan MD: SOX1 suppresses cell growth and invasion in cervical cancer. Gynecol Oncol. 131:174–181. 2013.PubMed/NCBI View Article : Google Scholar

67 

Bowden SJ, Kalliala I, Veroniki AA, Arbyn M, Mitra A, Lathouras K, Mirabello L, Chadeau-Hyam M, Paraskevaidis E, Flanagan JM and Kyrgiou M: The use of human papillomavirus DNA methylation in cervical intraepithelial neoplasia: A systematic review and meta-analysis. EBioMedicine. 50:246–59. 2019.PubMed/NCBI View Article : Google Scholar

68 

Torres-Rojas FI, Alarcón-Romero LC, Leyva-Vázquez MA, Ortiz-Ortiz J, Mendoza-Catalán MÁ, Hernández-Sotelo D, Moral-Hernández OD, Rodríguez-Ruiz HA, Leyva-Illades D, Flores-Alfaro E and Illades-Aguiar B: Methylation of the L1 gene and integration of human papillomavirus 16 and 18 in cervical carcinoma and premalignant lesions. Oncol Lett. 15:2278–2286. 2018.PubMed/NCBI View Article : Google Scholar

69 

Clarke MA, Gradissimo A, Schiffman M, Lam J, Sollecito CC, Fetterman B, Lorey T, Poitras N, Raine-Bennett TR, Castle PE, et al: Human papillomavirus DNA methylation as a biomarker for cervical precancer: Consistency across 12 genotypes and potential impact on management of HPV-positive women. Clin Cancer Res. 24:2194–2202. 2018.PubMed/NCBI View Article : Google Scholar

70 

Shestakova EA and Nakatani Y: Characterization of histone predeposition complexes from different cellular compartments. J Investig Genomics. 2:25–28. 2015.

71 

Bornelöv S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, Ralser M, Signolet J, Loos R, Dietmann S, et al: The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol Cell. 71:56–72.e4. 2018.PubMed/NCBI View Article : Google Scholar

72 

Feng T, Wang H, Su H, Lu H, Yu L, Zhang X, Sun H and You Q: Novel N-hydroxyfurylacrylamide-based histone deacetylase (HDAC) inhibitors with branched CAP group (Part 2). Bioorg Med Chem. 21:5339–5354. 2013.PubMed/NCBI View Article : Google Scholar

73 

Li B, Carey M and Workman JL: The role of chromatin during transcription. Cell. 128:707–719. 2007.PubMed/NCBI View Article : Google Scholar

74 

Zhang H, Dai X, Qi Y, He Y, Du W and Pang JJ: Histone deacetylases inhibitors in the treatment of retinal degenerative diseases: Overview and perspectives. J Ophthalmol. 2015(250812)2015.PubMed/NCBI View Article : Google Scholar

75 

Song C, Zhu S, Wu C and Kang J: Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem. 288:28021–2833. 2013.PubMed/NCBI View Article : Google Scholar

76 

Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, et al: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 40:741–750. 2008.PubMed/NCBI View Article : Google Scholar

77 

Hiragami-Hamada K, Xie SQ, Saveliev A, Uribe-Lewis S, Pombo A and Festenstein R: The molecular basis for stability of heterochromatin-mediated silencing in mammals. Epigenetics Chromatin. 2(14)2009.PubMed/NCBI View Article : Google Scholar

78 

Scarpini CG, Groves IJ, Pett MR, Ward D and Coleman N: Virus transcript levels and cell growth rates after naturally occurring HPV16 integration events in basal cervical keratinocytes. J Pathol. 233:281–293. 2014.PubMed/NCBI View Article : Google Scholar

79 

Yeo-Teh NSL, Ito Y and Jha S: High-Risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis. Int J Mol Sci. 19(1706)2018.PubMed/NCBI View Article : Google Scholar

80 

Uchida C: Roles of pRB in the regulation of nucleosome and chromatin structures. Biomed Res Int. 2016(5959721)2016.PubMed/NCBI View Article : Google Scholar

81 

Fischer M: Census and evaluation of p53 target genes. Oncogene. 36:3943–3956. 2017.PubMed/NCBI View Article : Google Scholar

82 

Zhang Y, Dakic A, Chen R, Dai Y, Schlegel R and Liu X: Direct HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation. Oncotarget. 8:96323–96339. 2017.PubMed/NCBI View Article : Google Scholar

83 

Johansson C, Jamal Fattah T, Yu H, Nygren J, Mossberg AK and Schwartz S: Acetylation of intragenic histones on HPV16 correlates with enhanced HPV16 gene expression. Virology. 482:244–259. 2015.PubMed/NCBI View Article : Google Scholar

84 

Zhang L, Yuan C, Wang Y and Zhao S: Histone deacetylases 3 (HDAC3) is highly expressed in cervical cancer and inhibited by siRNA. Int J Clin Exp Pathol. 9:3600–3605. 2016.

85 

Chen X, Loo JX, Shi X, Xiong W, Guo Y, Ke H, Yang M, Jiang Y, Xia S, Zhao M, et al: E6 protein expressed by high-risk HPV activates super-enhancers of the EGFR and c-MET oncogenes by destabilizing the histone demethylase KDM5C. Cancer. 78:1418–1430. 2018.PubMed/NCBI View Article : Google Scholar

86 

Wang WT, Han C, Sun YM, Chen TQ and Chen YQ: Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12(55)2019.PubMed/NCBI View Article : Google Scholar

87 

Sadri Nahand J, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei-Salim F, Mirzaei H and Hamblin MR: Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer. 146:305–320. 2020.PubMed/NCBI View Article : Google Scholar

88 

Łaniewski P, Cui H, Roe DJ, Barnes D, Goulder A, Monk BJ, Greenspan DL, Chase DM and Herbst-Kralovetz MM: Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis. Sci Rep. 9(7333)2019.PubMed/NCBI View Article : Google Scholar

89 

Gupta SM and Mania-Pramanik J: Retraction note: Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci. 26(50)2019.PubMed/NCBI View Article : Google Scholar

90 

Zheng ZM and Wang X: Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta. 26:668–677. 2011.PubMed/NCBI View Article : Google Scholar

91 

Liu Z, Luo S, Wu M, Huang C, Shi H and Song X: LncRNA GHET1 promotes cervical cancer progression through regulating AKT/mTOR and Wnt/β-catenin signaling pathways. Biosci Rep. 40(BSR20191265)2020.PubMed/NCBI View Article : Google Scholar

92 

Fouad YA and Aanei C: Revisiting the hallmarks of cancer. Am J Cancer Res. 7:1016–1036. 2017.PubMed/NCBI

93 

Oliveto S, Mancino M, Manfrini N and Biffo S: Role of microRNAs in translation regulation and cancer. World J Biol Chem. 8:45–56. 2017.PubMed/NCBI View Article : Google Scholar

94 

Zamani S, Sohrabi A, Hosseini SM, Rahnamaye-Farzami M and Akbari A: Deregulation of miR-21 and miR-29a in cervical cancer related to HPV infection. Microrna. 8:110–115. 2019.PubMed/NCBI View Article : Google Scholar

95 

Vaschetto LM: miRNA activation is an endogenous gene expression pathway. RNA Biol. 156:826–828. 2018.PubMed/NCBI View Article : Google Scholar

96 

Zhou K, Liu M and Cao Y: New insight into microRNA fnctions in cancer: Oncogene-microRNA-tumor suppressor gene network. Front Mol Biosci. 4(46)2017.PubMed/NCBI View Article : Google Scholar

97 

Yeung CLA, Tsang TY, Yau PL and Kwok TT: Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget. 8:12158–12173. 2017.PubMed/NCBI View Article : Google Scholar

98 

Chen AH, Qin YE, Tang WF, Tao J, Song HM and Zuo M: miR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int. 17(63)2017.PubMed/NCBI View Article : Google Scholar

99 

Dong P, Xiong Y, Hanley SJB, Yue J and Watari H: Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. J Exp Clin Cancer Res. 36(150)2017.PubMed/NCBI View Article : Google Scholar

100 

Ofir M, Hacohen D and Ginsberg D: miR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res. 9:440–447. 2011.PubMed/NCBI View Article : Google Scholar

101 

Chen X, Cao R, Liu H, Zhang T, Yuan X and Xu S: MicroRNA-15a-5p-targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells. Int J Mol Med. 46:1301–1310. 2020.PubMed/NCBI View Article : Google Scholar

102 

Zhou M, Chen X, Wu J, He X and Ren R: MicroRNA-143 regulates cell migration and invasion by targeting GOLM1 in cervical cancer. Oncol Lett. 16:6393–6400. 2018.PubMed/NCBI View Article : Google Scholar

103 

Sannigrahi MK, Sharma R, Singh V, Panda NK, Rattan V and Khullar M: Role of host miRNA Hsa-miR-139-3p in HPV-16-induced carcinomas. Clin Cancer Res. 23:3884–3895. 2017.PubMed/NCBI View Article : Google Scholar

104 

Jiang Z, Song Q, Zeng R, Li J, Li J, Lin X, Chen X, Zhang J and Zheng Y: MicroRNA-218 inhibits EMT, migration and invasion by targeting SFMBT1 and DCUN1D1 in cervical cancer. Oncotarget. 7:45622–45636. 2016.PubMed/NCBI View Article : Google Scholar

105 

Zhu L, Tu H, Liang Y and Tang D: miR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J Surg Oncol. 16(204)2018.PubMed/NCBI View Article : Google Scholar

106 

McLaughlin-Drubin ME and Münger K: The human papillomavirus E7 oncoprotein. Virology. 384:335–344. 2009.PubMed/NCBI View Article : Google Scholar

107 

Myklebust MP, Bruland O, Fluge Ø, Skarstein A, Balteskard L and Dahl O: MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer. Br J Cancer. 105:1719–1725. 2011.PubMed/NCBI View Article : Google Scholar

108 

Liu Z, Wu M, Shi H, Huang C, Luo S and Song X: DDN-AS1-miR-15a/16-TCF3 feedback loop regulates tumor progression in cervical cancer. J Cell Biochem. 120:10228–10238. 2019.PubMed/NCBI View Article : Google Scholar

109 

Cheng Y, Geng L, Zhao L, Zuo P and Wang J: Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol Med Rep. 16:5464–5470. 2017.PubMed/NCBI View Article : Google Scholar

110 

Kong Q, Wang W and Li P: Regulator role of HPV E7 protein on miR-21 expression in cervical carcinoma cells and its functional implication. Int J Clin Exp Pathol. 8:15808–15813. 2015.PubMed/NCBI

111 

Cai L, Wang W, Li X, Dong T, Zhang Q, Zhu B, Zhao H and Wu S: MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor. Oncol Lett. 15:5213–5219. 2018.PubMed/NCBI View Article : Google Scholar

112 

Xu L, Xu Q, Li X and Zhang X: MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α. Mol Med Rep. 16:4659–4663. 2017.PubMed/NCBI View Article : Google Scholar

113 

Liu F, Zhang S, Zhao Z, Mao X, Huang J, Wu Z, Zheng L and Wang Q: MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget. 7:19666–19679. 2016.PubMed/NCBI View Article : Google Scholar

114 

Ding H, Wu YL, Wang YX and Zhu FF: Characterization of the microRNA expression profile of cervical squamous cell carcinoma metastases. Asian Pac J Cancer Prev. 15:1675–1679. 2014.PubMed/NCBI View Article : Google Scholar

115 

Park S, Lee S, Kim J, Kim G, Park KH, Kim TU, Chung D and Lee H: ΔNp63 to TAp63 expression ratio as a potential molecular marker for cervical cancer prognosis. PLoS One. 14(e0214867)2019.PubMed/NCBI View Article : Google Scholar

116 

Coimbra EC, Da Conceição Gomes Leitão M, Júnior MR, De Oliveira TH, Da Costa Silva Neto J and De Freitas AC: Expression profile of microRNA-203 and its ΔNp63 target in cervical carcinogenesis: Prospects for cervical cancer screening. Anticancer Res. 36:3939–3946. 2016.PubMed/NCBI

117 

Mandal P, Saha SS, Sen S, Bhattacharya A, Bhattacharya NP, Bucha S, Sinha M, Chowdhury RR, Mondal NR, Chakravarty B, et al: Cervical cancer subtypes harbouring integrated and/or episomal HPV16 portray distinct molecular phenotypes based on transcriptome profiling of mRNAs and miRNAs. Cell Death Discov. 5(81)2019.PubMed/NCBI View Article : Google Scholar

118 

Balasubramaniam SD, Balakrishnan V, Oon CE and Kaur G: Key molecular events in cervical cancer development. Medicina (Kaunas). 55(384)2019.PubMed/NCBI View Article : Google Scholar

119 

Yi Y, Liu Y, Wu W, Wu K and Zhang W: The role of miR-106p-5p in cervical cancer: From expression to molecular mechanism. Cell Death Discov. 4(36)2018.PubMed/NCBI View Article : Google Scholar

120 

Cheng Y, Guo Y, Zhang Y, You K, Li Z and Geng L: MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Re. 35(11)2016.PubMed/NCBI View Article : Google Scholar

121 

Natalia MA, Alejandro GT, Virginia TJ and Alvarez-Salas LM: MARK1 is a novel target for miR-125a-5p: Implications for cell migration in cervical tumor cells. Microrna. 7:54–61. 2018.PubMed/NCBI View Article : Google Scholar

122 

Xu Y, Zhao S, Cui M and Wang Q: Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. Int J Clin Exp Pathol. 8:10294–10304. 2015.PubMed/NCBI

123 

Li JH, Zhang Z, Du MZ, Guan YC, Yao JN, Yu HY, Wang BJ, Wang XL, Wu SL and Li Z: MicroRNA-141-3p fosters the growth, invasion, and tumorigenesis of cervical cancer cells by targeting FOXA2. Arch Biochem Biophys. 657:23–30. 2018.PubMed/NCBI View Article : Google Scholar

124 

Zhu J and Han S: miR-150-5p promotes the proliferation and epithelial-mesenchymal transition of cervical carcinoma cells via targeting SRCIN1. Pathol Res Pract. 215:738–747. 2019.PubMed/NCBI View Article : Google Scholar

125 

Li N, Cui T, Guo W, Wang D and Mao L: miR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther. 12:3181–3196. 2019.PubMed/NCBI View Article : Google Scholar

126 

Yang M, Zhai X, Ge T, Yang C and Lou G: miR-181a-5p promotes proliferation and invasion and inhibits apoptosis of cervical cancer cells via regulating inositol polyphosphate-5-phosphatase A (INPP5A). Oncol Res. 26:703–712. 2018.PubMed/NCBI View Article : Google Scholar

127 

Farzanehpour M, Mozhgani SH, Jalilvand S, Faghihloo E, Akhavan S, Salimi V and Azad TM: Serum and tissue miRNAs: Potential biomarkers for the diagnosis of cervical cancer. Virol J. 16(116)2019.PubMed/NCBI View Article : Google Scholar

128 

Hou T, Ou J, Zhao X, Huang X, Huang Y and Zhang Y: MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer. 110:1260–1268. 2014.PubMed/NCBI View Article : Google Scholar

129 

Varghese VK, Shukla V, Jishnu PV, Kabekkodu SP, Pandey D, Sharan K and Satyamoorthy K: Characterizing methylation regulated miRNA in carcinoma of the human uterine cervix. Life Sci. 232(116668)2019.PubMed/NCBI View Article : Google Scholar

130 

Zhou LL, Shen Y, Gong JM, Sun P and Sheng JH: MicroRNA-466 with tumor markers for cervical cancer screening. Oncotarget. 8:70821–70827. 2017.PubMed/NCBI View Article : Google Scholar

131 

Chu Y, Ouyang Y, Wang F, Zheng A, Bai L, Han L, Chen Y and Wang H: MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. J Cell Biochem. 115:847–853. 2014.PubMed/NCBI View Article : Google Scholar

132 

Guerrero-Gómez AO and Guerrero-Florez M: MicroRNAs asociados al Cáncer de Cuello Uterino y sus lesiones precursoras: Una revisión sistemática. Univ Salud. 18:345–363. 2016.

133 

Zhang H, Lu Y, Wang S, Sheng X and Zhang S: MicroRNA-152 acts as tumor suppressor microRNA by inhibiting Krüppel-like factor 5 in human cervical cancer. Oncol Res. 27:335–340. 2019.PubMed/NCBI View Article : Google Scholar

134 

Wang S, Gao B, Yang H, Liu X, Wu X and Wang W: MicroRNA-432 is downregulated in cervical cancer and directly targets FN1 to inhibit cell proliferation and invasion. Oncol Lett. 18:1475–1482. 2019.PubMed/NCBI View Article : Google Scholar

135 

Lu Y, Hu J, Sun W, Li S, Deng S and Li M: miR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 9:99–109. 2015.PubMed/NCBI View Article : Google Scholar

136 

Ma L and Li LL: miR-145 contributes to the progression of cervical carcinoma by directly regulating FSCN1. Cell Transplant. 28:1299–1305. 2019.PubMed/NCBI View Article : Google Scholar

137 

Duan S, Wu A, Chen Z, Yang Y, Liu L and Shu Q: miR-204 regulates cell proliferation and invasion by targeting EphB2 in human cervical cancer. Oncol Res. 26:713–723. 2018.PubMed/NCBI View Article : Google Scholar

138 

Shu L, Zhang Z and Cai Y: microRNA-204 inhibits cell migration and invasion in human cervical cancer by regulating transcription factor 12. Oncol Lett. 15:161–166. 2018.PubMed/NCBI View Article : Google Scholar

139 

Li N, Guo X, Liu L, Wang L and Cheng R: Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif Cells Nanomed Biotechnol. 47:2529–2535. 2019.PubMed/NCBI View Article : Google Scholar

140 

Shi C and Zhang Z: MicroRNA-320 suppresses cervical cancer cell viability, migration and invasion via directly targeting FOXM1. Oncol Lett. 14:3809–3816. 2017.PubMed/NCBI View Article : Google Scholar

141 

Hong H, Zhu H, Zhao S, Wang K, Zhang N, Tian Y, Li Y, Wang Y, Lv X, Wei T, et al: The novel circCLK3/miR-320a/FoxM1 axis promotes cervical cancer progression. Cell Death Dis. 10(950)2019.PubMed/NCBI View Article : Google Scholar

142 

Cao XM: Role of miR-337-3p and its target Rap1A in modulating proliferation, invasion, migration and apoptosis of cervical cancer cells. Cancer Biomark. 24:257–267. 2019.PubMed/NCBI View Article : Google Scholar

143 

Hua FF, Liu SS, Zhu LH, Wang YH, Liang X, Ma N and Shi HR: miRNA-338-3p regulates cervical cancer cells proliferation by targeting MACC1 through MAPK signaling pathway. Eur Rev Med Pharmacol Sci. 21:5342–5352. 2017.PubMed/NCBI View Article : Google Scholar

144 

Lu R, Yang Z, Xu G and Yu S: miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer. Biomed Pharmacother. 105:633–644. 2018.PubMed/NCBI View Article : Google Scholar

145 

Jayamohan S, Kannan M, Moorthy RK, Rajasekaran N, Jung HS, Shin YK and Arockiam AJ: Dysregulation of miR-375/AEG-1 axis by human papillomavirus 16/18-E6/E7 promotes cellular proliferation, migration, and invasion in cervical cancer. Front Oncol. 9(847)2019.PubMed/NCBI View Article : Google Scholar

146 

Shang A, Zhou C, Bian G, Chen W, Lu W, Wang W and Li D: miR-381-3p restrains cervical cancer progression by downregulating FGF7. J Cell Biochem. 120:778–789. 2019.PubMed/NCBI View Article : Google Scholar

147 

Teng P, Jiao Y, Hao M and Tang X: microRNA-383 suppresses the PI3K-AKT-MTOR signaling pathway to inhibit development of cervical cancer via down-regulating PARP2. J Cell Biochem. 119:5243–5252. 2018.PubMed/NCBI View Article : Google Scholar

148 

Wang S, Zhang Y, Yuan S and Ji X: MicroRNA-485 targets MACC1 and inhibits cervical cancer cell proliferation and invasion. Mol Med Rep. 18:2407–2416. 2018.PubMed/NCBI View Article : Google Scholar

149 

Lv M, Ou R, Zhang Q, Lin F, Li X, Wang K and Xu Y: MicroRNA-664 suppresses the growth of cervical cancer cells via targeting c-Kit. Drug Des Devel Ther. 13:2371–2379. 2019.PubMed/NCBI View Article : Google Scholar

150 

Xu J, Wan X, Chen X, Fang Y, Cheng X, Xie X and Lu W: miR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6. Sci Rep. 6(28968)2016.PubMed/NCBI View Article : Google Scholar

151 

Jin Y, Zhou X, Yao X, Zhang Z, Cui M and Lin Y: MicroRNA-612 inhibits cervical cancer progression by targeting NOB1. J Cell Mol Med. 24:3149–3156. 2020.PubMed/NCBI View Article : Google Scholar

152 

Zhang JJ, Wang DD, Du CX and Wang Y: Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186. Oncol Res. 26:345–352. 2018.PubMed/NCBI View Article : Google Scholar

153 

Liu S, Song L, Yao H, Zhang L, Xu D, Gao F and Li Q: miR-375 is epigenetically downregulated by HPV-16 E6 mediated DNMT1 upregulation and modulates EMT of cervical cancer cells by suppressing lncRNA MALAT1. PLoS One. 11(e0163460)2016.PubMed/NCBI View Article : Google Scholar

154 

Song H, Liu Y, Jin X, Liu Y, Yang Y, Li L, Wang X and Li G: Long non-coding RNA LINC01535 promotes cervical cancer progression via targeting the miR-214/EZH2 feedback loop. J Cell Mol Med. 23:6098–6111. 2019.PubMed/NCBI View Article : Google Scholar

155 

Sun NX, Ye C, Zhao Q, Zhang Q, Xu C, Wang SB, Jin ZJ, Sun SH, Wang F and Li W: Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One. 9(e100340)2014.PubMed/NCBI View Article : Google Scholar

156 

He H, Liu X, Liu Y, Zhang M, Lai Y, Hao Y, Wang Q, Shi D, Wang N, Luo XG, et al: Human papillomavirus E6/E7 and long noncoding RNA TMPOP2 mutually upregulated gene expression in cervical cancer cells. J Virol. 93:e01808–e18. 2019.PubMed/NCBI View Article : Google Scholar

157 

Ma Z, Shuai Y, Gao X, Wen X and Ji J: Circular RNAs in the tumour microenvironment. Mol Cancer. 19(8)2020.PubMed/NCBI View Article : Google Scholar

158 

Bach DH, Lee SK and Sood AK: Circular RNAs in Cancer. Mol Ther Nucleic Acids. 16:118–129. 2019.PubMed/NCBI View Article : Google Scholar

159 

Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 10(2300)2019.PubMed/NCBI View Article : Google Scholar

160 

Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X and Ding Y: Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids. 19:413–420. 2020.PubMed/NCBI View Article : Google Scholar

161 

Chen RX, Liu HL, Yang LL, Kang FH, Xin LP, Huang LR, Guo QF and Wang YL: Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 23:8771–8778. 2019.PubMed/NCBI View Article : Google Scholar

162 

Ding S, Huang X, Zhu J, Xu B, Xu L, Gu D and Zhang W: ADH7, miR-3065 and LINC01133 are associated with cervical cancer progression in different age groups. Oncol Lett. 19:2326–2338. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Da Silva ML, De Albuquerque BH, Allyrio TA, De Almeida VD, Cobucci RN, Bezerra FL, Andrade VS, Lanza DC, De Azevedo JC, De Araújo JM, De Araújo JM, et al: The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 15: 60, 2021.
APA
Da Silva, M.L., De Albuquerque, B.H., Allyrio, T.A., De Almeida, V.D., Cobucci, R.N., Bezerra, F.L. ... Fernandes, J.V. (2021). The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review). Biomedical Reports, 15, 60. https://doi.org/10.3892/br.2021.1436
MLA
Da Silva, M. L., De Albuquerque, B. H., Allyrio, T. A., De Almeida, V. D., Cobucci, R. N., Bezerra, F. L., Andrade, V. S., Lanza, D. C., De Azevedo, J. C., De Araújo, J. M., Fernandes, J. V."The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review)". Biomedical Reports 15.1 (2021): 60.
Chicago
Da Silva, M. L., De Albuquerque, B. H., Allyrio, T. A., De Almeida, V. D., Cobucci, R. N., Bezerra, F. L., Andrade, V. S., Lanza, D. C., De Azevedo, J. C., De Araújo, J. M., Fernandes, J. V."The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review)". Biomedical Reports 15, no. 1 (2021): 60. https://doi.org/10.3892/br.2021.1436
Copy and paste a formatted citation
x
Spandidos Publications style
Da Silva ML, De Albuquerque BH, Allyrio TA, De Almeida VD, Cobucci RN, Bezerra FL, Andrade VS, Lanza DC, De Azevedo JC, De Araújo JM, De Araújo JM, et al: The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 15: 60, 2021.
APA
Da Silva, M.L., De Albuquerque, B.H., Allyrio, T.A., De Almeida, V.D., Cobucci, R.N., Bezerra, F.L. ... Fernandes, J.V. (2021). The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review). Biomedical Reports, 15, 60. https://doi.org/10.3892/br.2021.1436
MLA
Da Silva, M. L., De Albuquerque, B. H., Allyrio, T. A., De Almeida, V. D., Cobucci, R. N., Bezerra, F. L., Andrade, V. S., Lanza, D. C., De Azevedo, J. C., De Araújo, J. M., Fernandes, J. V."The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review)". Biomedical Reports 15.1 (2021): 60.
Chicago
Da Silva, M. L., De Albuquerque, B. H., Allyrio, T. A., De Almeida, V. D., Cobucci, R. N., Bezerra, F. L., Andrade, V. S., Lanza, D. C., De Azevedo, J. C., De Araújo, J. M., Fernandes, J. V."The role of HPV‑induced epigenetic changes in cervical carcinogenesis (Review)". Biomedical Reports 15, no. 1 (2021): 60. https://doi.org/10.3892/br.2021.1436
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team