|
1
|
National Clinical Guideline Centre (UK):
Osteoarthritis-Care and Μanagement in Αdults. London: National
Institute for Health and Care Excellence (UK), 2014.
|
|
2
|
James SL, Abate D, Hassen Abate K, Abay
SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J,
Abdelalim A, et al: Global, regional, and national incidence,
prevalence, and years lived with disability for 354 diseases and
injuries for 195 countries and territories, 1990-2017: A systematic
analysis for the Global Burden of Disease Study 2017. Lancet.
392:1789–1858. 2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Blagojevic M, Jinks C, Jeffery A and
Jordan KP: Risk factors for onset of osteoarthritis of the knee in
older adults: A systemic review and meta-analysis. Osteoarthritis
Cartilage. 18:24–33. 2010.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Loeser RF: Molecular mechanisms of
cartilage destruction: Mechanics, inflammatory mediators, and aging
collide. Arthritis Rheum. 54:1357–1360. 2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ng HY, Alvin Lee KX and Shen KX: Articular
cartilage: Structure, composition, injuries and repair. JSM Bone Jt
Dis. 1(1010)2017.
|
|
6
|
Ostrowska M, Maśliński W,
Prochorec-Sobieszek M, Nieciecki M and Sudoł-Szopińska I: Cartilage
and bone damage in rheumatoid arthritis. Reumatologia. 56:111–120.
2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Mahajan A, Verma S and Tandon V:
Osteoarthritis. J Assoc Physicians India. 53:634–641.
2005.PubMed/NCBI
|
|
8
|
Houard X, Goldring MB and Berenbaum F:
Homeostatic mechanisms in articular cartilage and role of
inflammation in osteoarthritis. Curr Rheumatol Rep.
15(375)2013.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Gignac MAM, Irvin E, Cullen K, Van Eerd D,
Beaton DE, Mahood Q, McLeod C and Backman CL: Men and women's
occupational activities and the risk of developing osteoarthritis
of the knee, hip, or hands: A systematic review and recommendations
for future research. Arthritis Care Res (Hoboken). 72:378–396.
2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Michael JW, Schlüter-Brust KU and Eysel P:
The epidemiology, etiology, diagnosis, and treatment of
osteoarthritis of the knee. Dtsch Arztebl Int. 107:152–162.
2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Helliwell P: Osteoarthritis and Paget's
disease. Br J Rheumatol. 34:1061–1063. 1995.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mora JC, Przkora R and Cruz-Almeida Y:
Knee osteoarthritis: Pathophysiology and current treatment
modalities. J Pain Res. 11:2189–2196. 2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
de l'Escalopier N, Anract P and Biau D:
Surgical treatments for osteoarthritis. Ann Phys Rehabil Med.
59:227–233. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Øiestad BE, Juhl CB, Eitzen I and Thorlund
JB: Knee extensor muscle weakness is a risk factor for development
of knee osteoarthritis. A systematic review and meta-analysis.
Osteoarthritis Cartilage. 23:171–177. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
March LM and Bagga H: Epidemiology of
osteoarthritis in Australia. Med J Aust. 180:S6–S10.
2004.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Messier SP: Obesity and osteoarthritis:
Disease genesis and nonpharmacologic weight management. Rheum Dis
Clin North Am. 34:713–729. 2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Vincent KR and Vincent HK: Resistance
exercise for knee osteoarthritis. PM R. 4 (Suppl 5):S45–S52.
2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Rogers MW and Wilder FV: The effects of
strength training among persons with hand osteoarthritis: A
two-year follow-up study. J Hand Ther. 20:244–249; quiz 250.
2007.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Latham N and Liu CJ: Strength training in
older adults: The benefits for osteoarthritis. Clin Geriatr Med.
26:445–459. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Aguiar GC, Rocha SG, da Silva Rezende GA,
do Nascimento MR and Scalzo PL: Effects of resistance training in
individuals with knee osteoarthritis. Fisioter Mov. 29:589–596.
2016.
|
|
21
|
Thoumie P, Marty M, Avouac B, Pallez A,
Vaumousse A, Pipet LPT, Monroche A, Graveleau N, Bonnin A, Amor CB
and Coudeyre E: Effect of unloading brace treatment on pain and
function in patients with symptomatic knee osteoarthritis: The
ROTOR randomized clinical trial. Sci Rep. 8(10519)2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chew KT, Lew HL, Date E and Fredericson M:
Current evidence and clinical applications of therapeutic knee
braces. Am J Phys Med Rehabil. 86:678–686. 2007.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Lee PY, Winfield TG, Harris SR, Storey E
and Chandratreya A: Unloading knee brace is a cost-effective method
to bridge and delay surgery in unicompartmental knee arthritis. BMJ
Open Sport Exerc Med. 2(e000195)2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Ostrander RV, Leddon CE, Hackel JG,
O'Grady CP and Roth CA: Efficacy of unloader bracing in reducing
symptoms of knee osteoarthritis. Am J Orthop (Belle Mead NJ).
45:306–311. 2016.PubMed/NCBI
|
|
25
|
Wilson B, Rankin H and Barnes CL:
Long-term results of an unloader brace in patients with
unicompartmental knee osteoarthritis. Orthopedics. 34:e334–e337.
2011.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Yu SP, Williams M, Eyles JP, Chen JS,
Makovey J and Hunter DJ: Effectiveness of knee bracing in
osteoarthritis: Pragmatic trial in a multidisciplinary clinic. Int
J Rheum Dis. 19:279–286. 2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Squyer E, Stamper DL, Hamilton DT, Sabin
JA and Leopold SS: Unloader knee braces for osteoarthritis: Do
patients actually wear them? Clin Orthop Relat Res. 471:1982–1991.
2013.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Nejati P, Farzinmehr A and Moradi-Lakeh M:
The effect of exercise therapy on knee osteoarthritis: A randomized
clinical trial. Med J Islam Repub Iran. 29(186)2015.PubMed/NCBI
|
|
29
|
Reid MC, Eccleston C and Pillemer K:
Management of chronic pain in older adults. BMJ.
350(h532)2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Rönn K, Reischl N, Gautier E and Jacobi M:
Current surgical treatment of knee osteoarthritis. Arthritis.
2011(454873)2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wang X, Wanyan P, Wang JM, Tian JH, Hu L,
Shen XP and Yang KH: A randomized, controlled trial to assess the
efficacy of arthroscopic debridement in combination with oral
medication versus oral medication in patients with gouty knee
arthritis. Indian J Surg. 77 (Suppl 2):S628–S634. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kirkley A, Birmingham TB, Litchfield RB,
Giffin JR, Willits KR, Wong CJ, Feagan BG, Donner A, Griffin SH,
D'Ascanio LM, et al: A randomized trial of arthroscopic surgery for
osteoarthritis of the knee. N Engl J Med. 359:1097–1107.
2008.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Moseley JB, O'Malley K, Petersen NJ, Menke
TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM and Wray
NP: A controlled trial of arthroscopic surgery for osteoarthritis
of the knee. N Engl J Med. 347:81–88. 2002.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Choi HG, Kwon BC, Kim JI and Lee JK: Total
knee arthroplasty reduces the risk of mortality in osteoarthritis
patients up to 12 years: A Korean national cohort longitudinal
follow-up study. J Orthop Surg (Hong Kong).
28(2309499020902589)2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Rajabzadeh N, Fathi E and Farahzadi R:
Stem cell-based regenerative medicine. Stem Cell Investig.
6(19)2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Landry DW and Zucker HA: Embryonic death
and the creation of human embryonic stem cells. J Clin Invest.
114:1184–1186. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ede V and Obeagu EI: Ethical issues in
human embryonic stem cell research: A christian perspective. Int J
Med Sci Dent Res. 1:8–14. 2019.
|
|
38
|
Lo B and Parham L: Ethical issues in stem
cell research. Endocr Rev. 30:204–213. 2009.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Shi Y, Inoue H, Wu JC and Yamanaka S:
Induced pluripotent stem cell technology: A decade of progress. Nat
Rev Drug Discov. 16:115–130. 2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Gutierrez-Aranda I, Ramos-Mejia V, Bueno
C, Munoz-Lopez M, Real PJ, Mácia A, Sanchez L, Ligero G,
Garcia-Parez JL and Menendez P: Human induced pluripotent stem
cells develop teratoma more efficiently and faster than human
embryonic stem cells regardless the site of injection. Stem Cells.
28:1568–1570. 2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang M, Wang L, An K, Cai J, Li G, Yang
C, Liu H, Du F, Han X, Zhang Z, et al: Lower genomic stability of
induced pluripotent stem cells reflects increased non-homologous
end joining. Cancer Commun (Lond). 38(49)2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Christensen R and Serakinci N: Adult Stem
Cells. In: Encyclopedia of Cancer. Springer, Heidelberg, pp1-5,
2015.
|
|
45
|
Centeno C, Markle J, Dodson E, Stemper I,
Williams CJ, Hyzy M, Ichim T and Freeman M: Treatment of lumbar
degenerative disc disease-associated radicular pain with
culture-expanded autologous mesenchymal stem cells: A pilot study
on safety and efficacy. J Transl Med. 15(197)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Berry JD, Cudkowicz ME, Windebank AJ,
Staff NP, Owegi M, Nicholson K, McKenna-Yasek D, Levy YS, Abramov
N, Kaspi H, et al: NurOwn, phase 2, randomized, clinical trial in
patients with ALS: Safety, clinical, and biomarker results.
Neurology. 93:e2294–e2305. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Riecke J, Johns KM, Cai C, Vahidy FS,
Parsha K, Furr-Stimming E, Schiess M and Savitz SI: A meta-analysis
of mesenchymal stem cells in animal models of Parkinson's disease.
Stem Cells Dev. 24:2082–2090. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ng AP and Alexander WS: Haematopoietic
stem cells: Past, present and future. Cell Death Discov.
3(17002)2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yamamoto R, Wilkinson AC and Nakauchi H:
Changing concepts in hematopoietic stem cells. Science.
362:895–896. 2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Domen J, Wagers A and Weissman IL: Bone
marrow (Hematopoietic) stem cells. Stem Cell Information: The
National Institutes of Health resource for stem cell research:
13-34, 2006.
|
|
51
|
Morgan RA, Gray D, Lomova A and Kohn DB:
Hematopoietic stem cell gene therapy: Progress and lessons learned.
Cell Stem Cell. 21:574–590. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Taylor M, Khan S, Stapleton M, Wang J,
Chen J, Wynn R, Yabe H, Chinen Y, Boelens JJ, Mason RW, et al:
Hematopoietic stem cell transplantation for mucopolysaccharidoses:
Past, present, and future. Biol Blood Marrow Transplant.
25:e226–e246. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Walters MC: Update of hematopoietic cell
transplantation for sickle cell disease. Curr Opin Hematol.
22:227–233. 2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Abdelmoaty N, Alattar E, Ahmed K, Ibrahim
Y and Darwish B: Regenerative power of autologous peripheral blood
stem cell injection in knee osteoarthritis by a non-invasive
approach-MRI Study. Ann Rheum Dis. 73(1066)2014.
|
|
55
|
U.S Food and Drug Administration: Approved
Cellular and Gene Therapy Products, 2021.
|
|
56
|
Prockop DJ: Marrow stromal cells as stem
cells for nonhematopoietic tissues. Science. 276:71–74.
1997.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Makino S, Fukuda K, Miyoshi S, Konishi F,
Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, et al:
Cardiomyocytes can be generated from marrow stromal cells in vitro.
J Clin Invest. 103:697–705. 1999.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wakitani S, Saito T and Caplan AI:
Myogenic cells derived from rat bone marrow mesenchymal stem cells
exposed to 5-azacytidine. Muscle Nerve. 18:1417–1426.
1995.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Nuttall ME, Patton AJ, Olivera DL, Nadeau
DP and Gowen M: Human trabecular bone cells are able to express
both osteoblastic and adipocytic phenotype: Implications for
osteopenic disorders. J Bone Miner Res. 13:371–382. 1998.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bianco P, Robey PG and Simmons PJ:
Mesenchymal stem cells: Revisiting history, concepts, and assays.
Cell Stem Cell. 2:313–319. 2008.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Roufosse CA, Direkze NC, Otto WR and
Wright NA: Circulating mesenchymal stem cells. Int J Biochem Cell
Biol. 36:585–597. 2004.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lindroos B, Suuronen R and Miettinen S:
The potential of adipose stem cells in regenerative medicine. Stem
Cell Rev Rep. 7:269–291. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Erices A, Conget P and Minguell JJ:
Mesenchymal progenitor cells in human umbilical cord blood. Br J
Haematol. 109:235–242. 2000.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:13625–13630.
2000.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Haniffa MA, Wang XN, Holtick U, Rae M,
Isaacs JD, Dickinson AM, Hilkens CM and Collin MP: Adult human
fibroblasts are potent immunoregulatory cells and functionally
equivalent to mesenchymal stem cells. J Immunol. 179:1595–1604.
2007.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Sessarego N, Parodi A, Podesta M,
Benvenuto F, Mogni M, Raviolo V, Lituania M, Kunkl A, Ferlazzo G,
Bricarelli FD, et al: Multipotent mesenchymal stromal cells from
amniotic fluid: Solid perspectives for clinical application.
Haematologica. 93:339–346. 2008.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop DJ and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Gianakos AL, Sun L, Patel JN, Adams DM and
Liporace FA: Clinical application of concentrated bone marrow
aspirate in orthopaedics: A systematic review. World J Orthop.
8:491–506. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mohamed-Ahmed S, Fristad I, Lie SA,
Suliman S, Mustafa K, Vindenes H and Idris SB: Adipose-derived and
bone marrow mesenchymal stem cells: A donor-matched comparison.
Stem Cell Res Ther. 9(168)2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Gabr MM, Zakaria MM, Refaie AF,
Abdel-Rahman EA, Reda AM, Ali SS, Khater SM, Ashamallah SA, Ismail
AM, Ismail HEA, et al: From human mesenchymal stem cells to
insulin-producing cells: Comparison between bone marrow- and
adipose tissue-derived cells. Biomed Res Int.
2017(3854232)2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
da Silva Meirelles L, Chagastelles PC and
Nardi NB: Mesenchymal stem cells reside in virtually all post-natal
organs and tissues. J Cell Sci. 119:2204–2213. 2006.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Crisan M, Yap S, Casteilla L, Chen CW,
Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al: A
perivascular origin for mesenchymal stem cells in multiple human
organs. Cell Stem Cell. 3:301–313. 2008.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Orozco L, Munar A, Soler R, Alberca M,
Soler F, Huguet M, Sentís J, Sánchez A and García-Sancho J:
Treatment of knee osteoarthritis with autologous mesenchymal stem
cells: A pilot study. Transplantation. 95:1535–1541.
2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lamo-Espinosa JM, Mora G, Blanco JF,
Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, Bondía JM,
Aquerreta JD, Andreu EJ, Ornilla E, et al: Intra-articular
injection of two different doses of autologous bone marrow
mesenchymal stem cells versus hyaluronic acid in the treatment of
knee osteoarthritis: Multicenter randomized controlled clinical
trial (phase I/II). J Transl Med. 14(246)2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Garay-Mendoza D, Villarreal-Martínez L,
Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cavazos F,
Diaz-Hutchinson C, Gómez-Almaguer D, Jaime-Pérez JC and
Mancías-Guerra C: The effect of intra-articular injection of
autologous bone marrow stem cells on pain and knee function in
patients with osteoarthritis. Int J Rheum Dis. 21:140–147.
2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Vega A, Martín-Ferrero MA, Del Canto F,
Alberca M, García V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet
M, et al: Treatment of knee osteoarthritis with allogeneic bone
marrow mesenchymal stem cells: A randomized controlled trial.
Transplantation. 99:1681–1690. 2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Shadmanfar S, Labibzadeh N, Emadedin M,
Jaroughi N, Azimian V, Mardpour S, Kakroodi FA, Bolurieh T,
Hosseini SE, Chehrazi M, et al: Intra-articular knee implantation
of autologous bone marrow-derived mesenchymal stromal cells in
rheumatoid arthritis patients with knee involvement: Results of a
randomized, triple-blind, placebo-controlled phase 1/2 clinical
trial. Cytotherapy. 20:499–506. 2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Al-Najar M, Khalil H, Al-Ajlouni J,
Al-Antary E, Hamdan M, Rahmeh R, Alhattab D, Samara O, Yasin M,
Abdullah AA, et al: Intra-articular injection of expanded
autologous bone marrow mesenchymal cells in moderate and severe
knee osteoarthritis is safe: A phase I/II study. J Orthop Surg Res.
12(190)2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Anz AW, Hubbard R, Rendos NK, Everts PA,
Andrews JR and Hackel JG: Bone marrow aspirate concentrate is
equivalent to platelet-rich plasma for the treatment of knee
osteoarthritis at 1 year: A prospective, randomized trial. Orthop J
Sports Med. 2(2325967119900958)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Chahal J, Gómez-Aristizábal A,
Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, Chisholm J, Weston
A, Chiovitti J, Keating A, et al: Bone marrow mesenchymal stromal
cell treatment in patients with osteoarthritis results in overall
improvement in pain and symptoms and reduces synovial inflammation.
Stem Cells Transl Med. 8:746–757. 2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell
JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage
cells from human adipose tissue: Implications for cell-based
therapies 2. Tissue Eng. 7:211–228. 2001.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zuk PA, Zhu M, Ashjian P, De Ugarte DA,
Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P and Hedrick
MH: Human adipose tissue is a source of multipotent stem cells.
Raff M (ed). Mol Biol Cell. 13:4279–4295. 2002.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Coughlin RP, Oldweiler A, Mickelson DT and
Moorman CT III: Adipose-derived stem cell transplant technique for
degenerative joint disease. Arthrosc Tech. 6:e1761–e1766.
2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Freitag J, Bates D, Wickham J, Shah K,
Huguenin L, Tenen A, Paterson K and Boyd R: Adipose-derived
mesenchymal stem cell therapy in the treatment of knee
osteoarthritis: A randomized controlled trial. Regen Med.
14:213–230. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary
A, Zhu M, Ashjian P, Benhaim P, Hedrick MH and Fraser JK:
Differential expression of stem cell mobilization-associated
molecules on multi-lineage cells from adipose tissue and bone
marrow. Immunol Lett. 89:267–270. 2003.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Yang ZX, Han ZB, Ji YR, Wang YW, Liang L,
Chi Y, Yang SG, Li LN, Luo WF, Li JP, et al: CD106 identifies a
subpopulation of mesenchymal stem cells with unique
immunomodulatory properties. PLoS One. 8(e59354)2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Krampera M, Marconi S, Pasini A, Galiè M,
Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A,
et al: Induction of neural-like differentiation in human
mesenchymal stem cells derived from bone marrow, fat, spleen and
thymus. Bone. 40:382–390. 2007.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kennea NL, Waddington SN, Chan J,
O'Donoghue K, Yeung D, Taylor DL, Al-Allaf FA, Pirianov G, Themis
M, Edwards AD, et al: Differentiation of human fetal mesenchymal
stem cells into cells with an oligodendrocyte phenotype. Cell
Cycle. 8:1069–1079. 2009.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Shah S, Yin PT, Uehara TM, Chueng ST, Yang
L and Lee KB: Guiding stem cell differentiation into
oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv
Mater. 26:3673–3680. 2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Steffenhagen C, Dechant FX, Oberbauer E,
Furtner T, Weidner N, Küry P, Aigner L and Rivera FJ: Mesenchymal
stem cells prime proliferating adult neural progenitors toward an
oligodendrocyte fate. Stem Cells Dev. 21:1838–1851. 2012.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Allahverdi A, Abroun S, Jafarian A,
Soleimani M, Taghikhani M and Eskandari F: Differentiation of human
mesenchymal stem cells into insulin producing cells by using a
lentiviral vector carrying PDX1. Cell J. 17:231–242.
2015.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Chen LB, Jiang XB and Yang L:
Differentiation of rat marrow mesenchymal stem cells into
pancreatic islet beta-cells. World J Gastroenterol. 10:3016–3020.
2004.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Singh A, Singh A and Sen D: Mesenchymal
stem cells in cardiac regeneration: A detailed progress report of
the last 6 years (2010-2015). Stem Cell Res Ther.
7(82)2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Solis MA, Moreno Velásquez I, Correa R and
Huang LLH: Stem cells as a potential therapy for diabetes mellitus:
A call-to-action in Latin America. Diabetol Metab Syndr.
11(20)2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Sun R, Li X, Liu M, Zeng Y, Chen S and
Zhang P: Advances in stem cell therapy for cardiovascular disease
(Review). Int J Mol Med. 38:23–29. 2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Terashvili M and Bosnjak ZJ: Stem cell
therapies in cardiovascular disease. J Cardiothorac Vasc Anesth.
33:209–222. 2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Paspaliaris V and Kolios G: Stem cells in
osteoporosis: From biology to new therapeutic approaches. Stem
Cells Int. 2019(1730978)2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Mercado-Sáenz S, Ruiz-Gómez MJ,
Morales-Moreno F and Martínez-Morillo M: Cellular aging: Theories
and technological influence. Brazilian Arch Biol Technol.
53:1319–1332. 2010.
|
|
100
|
Shay JW and Wright WE: Role of telomeres
and telomerase in cancer. Semin Cancer Biol. 21:349–353.
2011.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Keating A: Mesenchymal stromal cells: New
directions. Cell Stem Cell. 10:709–716. 2012.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Le Blanc K and Mougiakakos D: Multipotent
mesenchymal stromal cells and the innate immune system. Nat Rev
Immunol. 12:383–396. 2012.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Prockop DJ and Oh JY: Mesenchymal
stem/stromal cells (MSCs): Role as guardians of inflammation. Mol
Ther. 20:14–20. 2012.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Ryan JM, Barry FP, Murphy JM and Mahon BP:
Mesenchymal stem cells avoid allogeneic rejection. J Inflamm
(Lond). 2(8)2005.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Klyushnenkova E, Mosca JD, Zernetkina V,
Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ and McIntosh KR: T
cell responses to allogeneic human mesenchymal stem cells:
Immunogenicity, tolerance, and suppression. J Biomed Sci. 12:47–57.
2005.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Di Nicola M, Carlo-Stella C, Magni M,
Milanesi M, Longoni PD, Matteucci P, Grisanti S and Gianni AM:
Human bone marrow stromal cells suppress T-lymphocyte proliferation
induced by cellular or nonspecific mitogenic stimuli. Blood.
99:3838–3843. 2002.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Tse WT, Pendleton JD, Beyer WM, Egalka MC
and Guinan EC: Suppression of allogeneic T-cell proliferation by
human marrow stromal cells: Implications in transplantation.
Transplantation. 75:389–397. 2003.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lee H, Shamy GA, Elkabetz Y, Schofield CM,
Harrsion NL, Panagiotakos G, Socci ND, Tabar V and Studer L:
Directed differentiation and transplantation of human embryonic
stem cell-derived motoneurons. Stem Cells. 25:1931–1939.
2007.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Su W, Zhou M, Zheng Y, Fan Y, Wang L, Han
Z, Kong D, Zhao RC, Wu JC, Xiang R and Li Z: Bioluminescence
reporter gene imaging characterize human embryonic stem
cell-derived teratoma formation. J Cell Biochem. 112:840–848.
2011.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Aggarwal S and Pittenger MF: Human
mesenchymal stem cells modulate allogeneic immune cell responses.
Blood. 105:1816–1822. 2005.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Li H and Fu X: Mechanisms of action of
mesenchymal stem cells in cutaneous wound repair and regeneration.
Cell Tissue Res. 348:371–377. 2012.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Maxson S, Lopez EA, Yoo D,
Danilkovitch-Miagkova A and Leroux MA: Concise review: Role of
mesenchymal stem cells in wound repair. Stem Cells Transl Med.
1:142–149. 2012.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Williams CG, Kim TK, Taboas A, Malik A,
Manson P and Elisseeff J: In vitro chondrogenesis of bone
marrow-derived mesenchymal stem cells in a photopolymerizing
hydrogel. Tissue Eng. 9:679–688. 2003.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Zhang W, Ge W, Li C, You S, Liao L, Han Q,
Deng W and Zhao RC: Effects of mesenchymal stem cells on
differentiation, maturation, and function of human monocyte-derived
dendritic cells. Stem Cells Dev. 13:263–271. 2004.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Choi H, Lee RH, Bazhanov N, Oh JY and
Prockop DJ: Anti-inflammatory protein TSG-6 secreted by activated
MSCs attenuates zymosan-induced mouse peritonitis by decreasing
TLR2/NF-κB signaling in resident macrophages. Blood. 118:330–338.
2011.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Németh K, Leelahavanichkul A, Yuen PS,
Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller
BH, Brown JM, et al: Bone marrow stromal cells attenuate sepsis via
prostaglandin E(2)-dependent reprogramming of host macrophages to
increase their interleukin-10 production. Nat Med. 15:42–49.
2009.PubMed/NCBI View Article : Google Scholar
|
|
117
|
François M, Romieu-Mourez R, Li M and
Galipeau J: Human MSC suppression correlates with cytokine
induction of indoleamine 2,3-dioxygenase and bystander M2
macrophage differentiation. Mol Ther. 20:187–195. 2012.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Shapiro SA, Kazmerchak SE, Heckman MG,
Zubair AC and O'Connor MI: A prospective, single-blind,
placebo-controlled trial of bone marrow aspirate concentrate for
knee osteoarthritis. Am J Sports Med. 45:82–90. 2017.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kanaya A, Deie M, Adachi N, Nishimori M,
Yanada S and Ochi M: Intra-articular injection of mesenchymal
stromal cells in partially torn anterior cruciate ligaments in a
rat model. Arthroscopy. 23:610–617. 2007.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Eseonu OI and De Bari C: Homing of
mesenchymal stem cells: Mechanistic or stochastic? Implications for
targeted delivery in arthritis. Rheumatology (Oxford). 54:210–218.
2015.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Horie M, Choi H, Lee RH, Reger RL,
Ylostalo J, Muneta T, Sekiya I and Prockop DJ: Intra-articular
injection of human mesenchymal stem cells (MSCs) promote rat
meniscal regeneration by being activated to express Indian hedgehog
that enhances expression of type II collagen. Osteoarthritis
Cartilage. 20:1197–1207. 2012.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Jeong SY, Ha J, Lee M, Jin HJ, Kim DH,
Choi SJ, Oh W, Yang YS, Kim JS, Kim BG, et al: Autocrine action of
thrombospondin-2 determines the chondrogenic differentiation
potential and suppresses hypertrophic maturation of human umbilical
cord blood-derived mesenchymal stem cells. Stem Cells.
33:3291–3303. 2015.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Scarfì S: Use of bone morphogenetic
proteins in mesenchymal stem cell stimulation of cartilage and bone
repair. World J Stem Cells. 8:1–12. 2016.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Oliver KS, Bayes M, Crane D and Pathikonda
C: Clinical outcome of bone marrow concentrate in knee
osteoarthritis. J Prolotherapy. 7:937–946. 2015.
|
|
125
|
Jo CH, Lee YG, Shin WH, Kim H, Chai JW,
Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, et al: Intra-articular
injection of mesenchymal stem cells for the treatment of
osteoarthritis of the knee: A proof-of-concept clinical trial. Stem
Cells. 32:1254–1266. 2014.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Dexheimer V, Mueller S, Braatz F and
Richter W: Reduced reactivation from dormancy but maintained
lineage choice of human mesenchymal stem cells with donor age. PLoS
One. 6(e22980)2011.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Ferone A and Messina G: Sera of overweight
patients alter adipogenesis and osteogenesis of bone marrow
mesenchymal stromal cells, a phenomenon that also persists in
weight loss individuals. J Stem Cell Res Ther. 6(1000347)2016.
|
|
128
|
Mansilla E, Díaz Aquino V, Zambn D, Marin
GH, Mártire K, Roque G, Ichim T, Riordan NH, Patel A, Sturla F, et
al: Could metabolic syndrome, lipodystrophy, and aging be
mesenchymal stem cell exhaustion syndromes? Stem Cells Int.
2011(943216)2011.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Johnstone B, Hering TM, Caplan AI,
Goldberg VM and Yoo JU: In vitro chondrogenesis of bone
marrow-derived mesenchymal progenitor cells. Exp Cell Res.
238:265–272. 1998.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Tatebe M, Nakamura R, Kagami H, Okada K
and Ueda M: Differentiation of transplanted mesenchymal stem cells
in a large osteochondral defect in rabbit. Cytotherapy. 7:520–530.
2005.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Pelttari K, Winter A, Steck E, Goetzke K,
Hennig T, Ochs BG, Aigner T and Richter W: Premature induction of
hypertrophy during in vitro chondrogenesis of human mesenchymal
stem cells correlates with calcification and vascular invasion
after ectopic transplantation in SCID mice. Arthritis Rheum.
54:3254–3266. 2006.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Mackay AM, Beck SC, Murphy JM, Barry FP,
Chichester CO and Pittenger MF: Chondrogenic differentiation of
cultured human mesenchymal stem cells from marrow. Tissue Eng.
4:415–428. 1998.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Turinetto V, Vitale E and Giachino C:
Senescence in human mesenchymal stem cells: Functional changes and
implications in stem cell-based therapy. Int J Mol Sci.
17(1164)2016.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, Hu
J and Sun X: Changes in mesenchymal stem cells following long-term
culture in vitro. Mol Med Rep. 13:5207–5215. 2016.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Irioda AC, Cassilha R, Zocche L, Francisco
JC, Cunha RC, Ferreira PE, Guarita-Souza LC, Ferreira RJ, Mogharbel
BF, Garikipati VN, et al: Human adipose-derived mesenchymal stem
cells cryopreservation and thawing decrease α4-Integrin expression.
Stem Cells Int. 2016(2562718)2016.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Bastos R, Mathias M, Andrade R, Bastos R,
Balduino A, Schott V, Rodeo S and Espregueira-Mendes J:
Intra-articular injections of expanded mesenchymal stem cells with
and without addition of platelet-rich plasma are safe and effective
for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc.
11:3342–3350. 2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Bastos R, Mathias M, Andrade R, Amaral
RJFC, Schott V, Balduino A, Bastos R, Miguel Oliveira J, Reis RL,
Rodeo S and Espregueira-Mendes J: Intra-articular injection of
culture-expanded mesenchymal stem cells with or without addition of
platelet-rich plasma is effective in decreasing pain and symptoms
in knee osteoarthritis: A controlled, double-blind clinical trial.
Knee Surg Sports Traumatol Arthrosc. 28:1989–1999. 2020.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Emadedin M, Labibzadeh N, Liastani MG,
Karimi A, Jaroughi N, Bolurieh T, Hosseini SE, Baharvand H and
Aghdami N: Intra-articular implantation of autologous bone
marrow-derived mesenchymal stromal cells to treat knee
osteoarthritis: A randomized, triple-blind, placebo-controlled
phase 1/2 clinical trial. Cytotherapy. 20:1238–1246.
2018.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Hernigou P, Auregan JC, Dubory A,
Flouzat-Lachaniette CH, Chevallier N and Rouard H: Subchondral stem
cell therapy versus contralateral total knee arthroplasty for
osteoarthritis following secondary osteonecrosis of the knee. Int
Orthop. 42:2563–2571. 2018.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Gupta PK, Chullikana A, Rengasamy M,
Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D,
Viswanathan P, et al: Efficacy and safety of adult human bone
marrow-derived, cultured, pooled, allogeneic mesenchymal stromal
cells (Stempeucel®): Preclinical and clinical trial in
osteoarthritis of the knee joint. Arthritis Res Ther.
18(301)2016.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Song Y, Du H, Dai C, Zhang L, Li S, Hunter
DJ, Lu L and Bao C: Human adipose-derived mesenchymal stem cells
for osteoarthritis: A pilot study with long-term follow-up and
repeated injections. Regen Med. 13:295–307. 2018.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Lee WS, Kim HJ, Kim KI, Kim GB and Jin W:
Intra-Articular injection of autologous adipose tissue-derived
mesenchymal stem cells for the treatment of knee osteoarthritis: A
phase IIb, randomized, placebo-controlled clinical trial. Stem
Cells Transl Med. 8:504–511. 2019.PubMed/NCBI View Article : Google Scholar
|