Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
October-2021 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review)

  • Authors:
    • Lijuan Gao
    • Yongshun Chen
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
  • Article Number: 84
    |
    Published online on: August 13, 2021
       https://doi.org/10.3892/br.2021.1460
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Programmed death‑ligand 1 (PD‑L1) is a transmembrane protein mainly located on cancer cells, including renal cell carcinoma, breast, colorectal, gastric and non‑small cell lung cancer. PD‑L1 binds to the PD‑1 receptor expressed on T lymphocytes to inhibit the activation of T lymphocytes, thus allowing tumour cells to escape immune surveillance, leading to tumour growth and the poor prognosis of patients with cancer. Inhibitors targeting the programmed death‑1/PD‑L1 axis have been widely used in the clinical treatment of a variety of solid tumours in recent years. However, the clinical efficacy of these inhibitors varies. Studies have demonstrated that the effect of the targeted drug is positively associated with the expression of PD‑L1 on the tumour membrane. Hence, exploring the mechanism of PD‑L1 expression is very important for the treatment of tumours. Autophagy is a physiological process that maintains the stability of the internal environment. Autophagy degrades aging organelles and long‑lived proteins and produces nutrients for cell recycling. To the best of our knowledge, the present review is the first to summarize the research that has been conducted on autophagy‑regulated PD‑L1 expression, which may provide new avenues for tumour immunotherapy.
View Figures

Figure 1

View References

1 

Ishida Y, Agata Y, Shibahara K and Honjo T: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11:3887–3895. 1992.PubMed/NCBI

2 

Dong H, Zhu G, Tamada K and Chen L: B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 5:1365–1369. 1999.PubMed/NCBI View Article : Google Scholar

3 

Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016.PubMed/NCBI View Article : Google Scholar

4 

Boussiotis VA, Chatterjee P and Li L: Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J. 20:265–271. 2014.PubMed/NCBI View Article : Google Scholar

5 

Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011.PubMed/NCBI View Article : Google Scholar

6 

Butte MJ, Keir ME, Phamduy TB, Sharpe AH and Freeman GJ: Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 27:111–122. 2007.PubMed/NCBI View Article : Google Scholar

7 

Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ and Sharpe AH: PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA. 101:10691–10696. 2004.PubMed/NCBI View Article : Google Scholar

8 

Brahmer JR, Rizvi NA, Lutzky J, Khleif S, Blake-Haskins A, Robbins XLB, Vasselli J, Ibrahim RA and Antonia SJ: Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol. 32 (15 Suppl)(S8021)2014.

9 

Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V, Marquez-Rodas I, et al: Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 377:1824–1835. 2017.PubMed/NCBI View Article : Google Scholar

10 

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 372:311–319. 2015.PubMed/NCBI View Article : Google Scholar

11 

Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 377:1919–1929. 2017.PubMed/NCBI View Article : Google Scholar

12 

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015.PubMed/NCBI View Article : Google Scholar

13 

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017.PubMed/NCBI View Article : Google Scholar

14 

Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, et al: Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 376:1015–1026. 2017.PubMed/NCBI View Article : Google Scholar

15 

Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D'Angelo SP, Shih KC, Lebbé C, Linette GP, Milella M, et al: Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 17:1374–1385. 2016.PubMed/NCBI View Article : Google Scholar

16 

El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017.PubMed/NCBI View Article : Google Scholar

17 

Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4(e180013)2018.PubMed/NCBI View Article : Google Scholar

18 

Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016.PubMed/NCBI View Article : Google Scholar

19 

Sunshine J and Taube JM: PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 23:32–38. 2015.PubMed/NCBI View Article : Google Scholar

20 

Diem S, Hasan Ali O, Ackermann CJ, Bomze D, Koelzer VH, Jochum W, Speiser DE, Mertz KD and Flatz L: Tumor infiltrating lymphocytes in lymph node metastases of stage III melanoma correspond to response and survival in nine patients treated with ipilimumab at the time of stage IV disease. Cancer Immunol Immunother. 67:39–45. 2018.PubMed/NCBI View Article : Google Scholar

21 

Kansy BA, Concha-Benavente F, Srivastava RM, Jie HB, Shayan G, Lei Y, Moskovitz J, Moy J, Li J, Brandau S, et al: PD-1 Status in CD8+ T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res. 77:6353–6364. 2017.PubMed/NCBI View Article : Google Scholar

22 

Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, et al: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 33:853–861.e4. 2018.PubMed/NCBI View Article : Google Scholar

23 

Meng X, Huang Z, Teng F, Xing L and Yu J: Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 41:868–876. 2015.PubMed/NCBI View Article : Google Scholar

24 

Gandini S, Massi D and Mandalà M: PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 100:88–98. 2016.PubMed/NCBI View Article : Google Scholar

25 

Wallis CJD, Lawson K, Butaney M, Satkunasivam R, Parikh J, Freedland SJ, Patel SP, Hamid O, Pal SK and Klaassen Z: Association between PD-L1 status and immune checkpoint inhibitor response in advanced malignancies: A systematic review and meta-analysis of overall survival data. Jpn J Clin Oncol. 50:800–809. 2020.PubMed/NCBI View Article : Google Scholar

26 

Davis AA and Patel VG: The role of PD-L1 expression as a predictive biomarker: An analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer. 7(278)2019.PubMed/NCBI View Article : Google Scholar

27 

Wu P, Wu D, Li L, Chai Y and Huang J: PD-L1 and survival in solid tumors: A meta-analysis. PLoS One. 10(e0131403)2015.PubMed/NCBI View Article : Google Scholar

28 

Pyo JS, Kang G and Kim JY: Prognostic role of PD-L1 in malignant solid tumors: A meta-analysis. Int J Biol Markers. 32:e68–e74. 2017.PubMed/NCBI View Article : Google Scholar

29 

Chen L and Han X: Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest. 125:3384–3391. 2015.PubMed/NCBI View Article : Google Scholar

30 

Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015.PubMed/NCBI View Article : Google Scholar

31 

Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010.PubMed/NCBI View Article : Google Scholar

32 

Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, et al: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 366:707–714. 2012.PubMed/NCBI View Article : Google Scholar

33 

Kaushik S and Cuervo AM: The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381. 2018.PubMed/NCBI View Article : Google Scholar

34 

Dash S, Aydin Y and Moroz K: Chaperone-mediated autophagy in the liver: Good or bad? Cells. 8(1308)2019.PubMed/NCBI View Article : Google Scholar

35 

Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014.PubMed/NCBI View Article : Google Scholar

36 

Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010.PubMed/NCBI View Article : Google Scholar

37 

Shibutani ST and Yoshimori T: A current perspective of autophagosome biogenesis. Cell Res. 24:58–68. 2014.PubMed/NCBI View Article : Google Scholar

38 

Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK and Lippincott-Schwartz J: Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 141:656–667. 2010.PubMed/NCBI View Article : Google Scholar

39 

Huang J, Sun R, Qi X, Liu L, Yang Y and Sun B: Effect of autophagy on expression of neutrophil programmed death ligand-1 in mice with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 31:1091–1096. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).

40 

Booth L, Roberts JL, Poklepovic A and Dent P: (Pemetrexed + sildenafil), via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther. 18:705–714. 2017.PubMed/NCBI View Article : Google Scholar

41 

Dent P, Booth L, Roberts JL, Poklepovic A and Hancock JF: (Curcumin + sildenafil) enhances the efficacy of 5FU and anti-PD1 therapies in vivo. J Cell Physiol. 235:6862–6874. 2020.PubMed/NCBI View Article : Google Scholar

42 

Chen MC, Lin YC, Liao YH, Liou JP and Chen CH: MPT0G612, a Novel HDAC6 inhibitor, induces apoptosis and suppresses IFN-γ-induced programmed death-ligand 1 in human colorectal carcinoma cells. Cancers (Basel). 11(1617)2019.PubMed/NCBI View Article : Google Scholar

43 

Booth L, Roberts JL, West C, Von Hoff D and Dent P: GZ17-6.02 initiates DNA damage causing autophagosome-dependent HDAC degradation resulting in enhanced anti-PD1 checkpoint inhibitory antibody efficacy. J Cell Physiol. 235:8098–8113. 2020.PubMed/NCBI View Article : Google Scholar

44 

Booth L, Roberts JL, Poklepovic A, Avogadri-Connors F, Cutler RE, Lalani AS and Dent P: HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo. Oncotarget. 8:90262–90277. 2017.PubMed/NCBI View Article : Google Scholar

45 

Wang X, Wu WKK, Gao J, Li Z, Dong B, Lin X, Li Y, Li Y, Gong J, Qi C, et al: Autophagy inhibition enhances PD-L1 expression in gastric cancer. J Exp Clin Cancer Res. 38(140)2019.PubMed/NCBI View Article : Google Scholar

46 

Buchser WJ, Laskow TC, Pavlik PJ, Lin HM and Lotze MT: Cell-mediated autophagy promotes cancer cell survival. Cancer Res. 72:2970–2979. 2012.PubMed/NCBI View Article : Google Scholar

47 

Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L, Gao W and Sun Y: The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med. 22:3847–3856. 2018.PubMed/NCBI View Article : Google Scholar

48 

Zhu J, Li Y, Luo Y, Xu J, Liufu H, Tian Z and Huang C, Li J and Huang C: A feedback loop formed by ATG7/autophagy, FOXO3a/miR-145 and PD-L1 regulates stem-like properties and invasion in human bladder cancer. Cancers (Basel). 11(349)2019.PubMed/NCBI View Article : Google Scholar

49 

Maher CM, Thomas JD, Haas DA, Longen CG, Oyer HM, Tong JY and Kim FJ: Small-molecule sigma1 modulator induces autophagic degradation of PD-L1. Mol Cancer Res. 16:243–255. 2018.PubMed/NCBI View Article : Google Scholar

50 

Liang J, Wang L, Wang C, Shen J, Su B, Marisetty AL, Fang D, Kassab C, Jeong KJ, Zhao W, et al: Verteporfin Inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res. 8:952–965. 2020.PubMed/NCBI View Article : Google Scholar

51 

Zhang N and Bevan MJ: CD8(+) T cells: Foot soldiers of the immune system. Immunity. 35:161–168. 2011.PubMed/NCBI View Article : Google Scholar

52 

Patel SP, Osada T, Osada K, Hurwitz H, Lyerly HK and Morse MA: Modulation of immune system inhibitory checkpoints in colorectal cancer. Curr Colorectal Cancer Rep. 9:391–397. 2013.

53 

Dunn GP, Old LJ and Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol. 22:329–360. 2004.PubMed/NCBI View Article : Google Scholar

54 

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014.PubMed/NCBI View Article : Google Scholar

55 

Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, et al: Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 116:3268–3277. 2010.PubMed/NCBI View Article : Google Scholar

56 

Ikeda S, Okamoto T, Okano S, Umemoto Y, Tagawa T, Morodomi Y, Kohno M, Shimamatsu S, Kitahara H, Suzuki Y, et al: PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non-small cell lung cancer. J Thorac Oncol. 11:62–71. 2016.PubMed/NCBI View Article : Google Scholar

57 

Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, Connelly CF, Sun HH, Daadi SE, Freeman GJ, et al: PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 34:2690–2697. 2016.PubMed/NCBI View Article : Google Scholar

58 

Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL, Slack GW, Gunawardana J, Lim RS, McPherson AW, et al: Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 123:2062–2065. 2014.PubMed/NCBI View Article : Google Scholar

59 

Prestipino A, Emhardt AJ, Aumann K, O'Sullivan D, Gorantla SP, Duquesne S, Melchinger W, Braun L, Vuckovic S, Boerries M, et al: Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 10(eaam7729)2018.PubMed/NCBI View Article : Google Scholar

60 

Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, et al: DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 8(1751)2017.PubMed/NCBI View Article : Google Scholar

61 

Sun LL, Yang RY, Li CW, Chen MK, Shao B, Hsu JM, Chan LC, Yang Y, Hsu JL, Lai YJ and Hung MC: Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. Am J Cancer Res. 8:1307–1316. 2018.PubMed/NCBI

62 

Wang Q, Lin W, Tang X, Li S, Guo L, Lin Y and Kwok HF: The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int J Mol Sci. 18(2540)2017.PubMed/NCBI View Article : Google Scholar

63 

Xie G, Li W, Li R, Wu K, Zhao E, Zhang Y, Zhang P, Shi L, Wang D, Yin Y, et al: Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells. PLoS One. 12(e0168822)2017.PubMed/NCBI View Article : Google Scholar

64 

Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, Song W, Chen Y, OuYang J, Chen J, et al: MiR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun. 7(11406)2016.PubMed/NCBI View Article : Google Scholar

65 

Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, Maeda T, Nagata Y, Kitanaka A, Mizuno S, et al: Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature. 534:402–406. 2016.PubMed/NCBI View Article : Google Scholar

66 

Deng S, Hu Q, Zhang H, Yang F, Peng C and Huang C: HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther. 18:900–908. 2019.PubMed/NCBI View Article : Google Scholar

67 

Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM and Weber J: HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res. 3:1375–1385. 2015.PubMed/NCBI View Article : Google Scholar

68 

Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, Oberlies NH, Pearce C and Liu K: The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst. 109(djw283)2017.PubMed/NCBI View Article : Google Scholar

69 

Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher DW: MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 352:227–231. 2016.PubMed/NCBI View Article : Google Scholar

70 

Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, Wang HY, Wysocka M, Cheng M, Ruggeri BA and Wasik MA: Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 105:20852–20857. 2008.PubMed/NCBI View Article : Google Scholar

71 

Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3:1355–1363. 2013.PubMed/NCBI View Article : Google Scholar

72 

Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D, Cerniglia M, Titz B, Chodon T, Graeber TG, et al: Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 20:3446–3457. 2014.PubMed/NCBI View Article : Google Scholar

73 

Barsoum IB, Smallwood CA, Siemens DR and Graham CH: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74:665–674. 2014.PubMed/NCBI View Article : Google Scholar

74 

Jiang X, Zhou J, Giobbie-Hurder A, Wargo J and Hodi FS: The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 19:598–609. 2013.PubMed/NCBI View Article : Google Scholar

75 

Peng J, Hamanishi J, Matsumura N, Abiko K, Murat K, Baba T, Yamaguchi K, Horikawa N, Hosoe Y, Murphy SK, et al: Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75:5034–5045. 2015.PubMed/NCBI View Article : Google Scholar

76 

Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z, Herter-Sprie GS, Akbay EA, Tchaicha JH, Altabef A, et al: Loss of Lkb1 and pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell. 25:590–604. 2014.PubMed/NCBI View Article : Google Scholar

77 

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002.PubMed/NCBI View Article : Google Scholar

78 

Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 Expression. Cell Rep. 19:1189–1201. 2017.PubMed/NCBI View Article : Google Scholar

79 

Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S, Petretto A, Fabbi M and Ferrini S: IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget. 6:43267–43280. 2015.PubMed/NCBI View Article : Google Scholar

80 

Lienlaf M, Perez-Villarroel P, Knox T, Pabon M, Sahakian E, Powers J, Woan K V, Lee C, Cheng F, Deng S, et al: Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 10:735–750. 2016.PubMed/NCBI View Article : Google Scholar

81 

Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN and Gao FG: TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep. 28:615–621. 2012.PubMed/NCBI View Article : Google Scholar

82 

Pulko V, Liu X, Krco CJ, Harris KJ, Frigola X, Kwon ED and Dong H: TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude of CD8 T cell responses to tumor vaccination. J Immunol. 183:3634–3641. 2009.PubMed/NCBI View Article : Google Scholar

83 

Quandt D, Jasinski-Bergner S, Müller U, Schulze B and Seliger B: Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med. 12(151)2014.PubMed/NCBI View Article : Google Scholar

84 

Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L and You Z: Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett. 184:7–14. 2017.PubMed/NCBI View Article : Google Scholar

85 

Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z and Huang JA: The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 49:1360–1368. 2016.PubMed/NCBI View Article : Google Scholar

86 

Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 7(12632)2016.PubMed/NCBI View Article : Google Scholar

87 

Chan LC, Li CW, Xia W, Hsu JM, Lee HH, Cha JH, Wang HL, Yang WH, Yen EY, Chang WC, et al: IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest. 129:3324–3338. 2019.PubMed/NCBI View Article : Google Scholar

88 

Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, Logtenberg MEW, Slagter M, Rozeman EA, Hofland I, et al: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 549:106–110. 2017.PubMed/NCBI View Article : Google Scholar

89 

Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL, Wei Y, Xia W, Hou J, Qiu Y and Hung MC: Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 29:83–86. 2019.PubMed/NCBI View Article : Google Scholar

90 

Schmelzle T and Hall MN: TOR, a central controller of cell growth. Cell. 103:253–262. 2000.PubMed/NCBI View Article : Google Scholar

91 

Lastwika KJ, Wilson W III, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, et al: Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76:227–238. 2016.PubMed/NCBI View Article : Google Scholar

92 

Hay N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 8:179–183. 2005.PubMed/NCBI View Article : Google Scholar

93 

Aoki M and Fujishita T: Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 407:153–189. 2017.PubMed/NCBI View Article : Google Scholar

94 

Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, Wang X, Timmons CL, Hu J, Liu B, et al: PTEN Loss Increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One. 8(e65821)2013.PubMed/NCBI View Article : Google Scholar

95 

Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W, Zeng H, Zhang N, Du W, Chen C and Huang JA: PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 22:1026–1033. 2017.PubMed/NCBI View Article : Google Scholar

96 

Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, et al: Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 13:84–88. 2007.PubMed/NCBI View Article : Google Scholar

97 

Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2:361–370. 2014.PubMed/NCBI View Article : Google Scholar

98 

Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M and McCubrey JA: RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets. 23:915–929. 2019.PubMed/NCBI View Article : Google Scholar

99 

Wang Z, Ma L, Su M, Zhou Y, Mao K, Li C, Peng G, Zhou C, Shen B and Dou J: Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis. 9(217)2018.PubMed/NCBI View Article : Google Scholar

100 

Wang A, Zhang H, Liang Z, Xu K, Qiu W, Tian Y, Guo H, Jia J, Xing E, Chen R, et al: U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol. 788:280–285. 2016.PubMed/NCBI View Article : Google Scholar

101 

Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D and Denmark T: A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem. 284:21412–21424. 2009.PubMed/NCBI View Article : Google Scholar

102 

Corcelle E, Nebout M, Bekri S, Gauthier N, Hofman P, Poujeol P, Fénichel P and Mograbi B: Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res. 66:6861–6870. 2006.PubMed/NCBI View Article : Google Scholar

103 

Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A and Quesnel B: Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 110:296–304. 2007.PubMed/NCBI View Article : Google Scholar

104 

Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, et al: RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 22:1499–1509. 2016.PubMed/NCBI View Article : Google Scholar

105 

Karakhanova S, Meisel S, Ring S, Mahnke K and Enk AH: ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol. 40:254–266. 2010.PubMed/NCBI View Article : Google Scholar

106 

Qian Y, Deng J, Geng L, Xie H, Jiang G, Zhou L, Wang Y, Yin S, Feng X, Liu J, et al: TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest. 26:816–821. 2008.PubMed/NCBI View Article : Google Scholar

107 

Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A, Ohmori K and Uchiyama T: B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci. 100:2093–2100. 2009.PubMed/NCBI View Article : Google Scholar

108 

Coelho MA, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K, et al: Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 47:1083–1099.e6. 2017.PubMed/NCBI View Article : Google Scholar

109 

Gao H, Zhang J and Ren X: PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep. 39(BSR20191041)2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao L and Chen Y: Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review). Biomed Rep 15: 84, 2021.
APA
Gao, L., & Chen, Y. (2021). Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review). Biomedical Reports, 15, 84. https://doi.org/10.3892/br.2021.1460
MLA
Gao, L., Chen, Y."Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review)". Biomedical Reports 15.4 (2021): 84.
Chicago
Gao, L., Chen, Y."Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review)". Biomedical Reports 15, no. 4 (2021): 84. https://doi.org/10.3892/br.2021.1460
Copy and paste a formatted citation
x
Spandidos Publications style
Gao L and Chen Y: Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review). Biomed Rep 15: 84, 2021.
APA
Gao, L., & Chen, Y. (2021). Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review). Biomedical Reports, 15, 84. https://doi.org/10.3892/br.2021.1460
MLA
Gao, L., Chen, Y."Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review)". Biomedical Reports 15.4 (2021): 84.
Chicago
Gao, L., Chen, Y."Autophagy controls programmed death‑ligand 1 expression on cancer cells (Review)". Biomedical Reports 15, no. 4 (2021): 84. https://doi.org/10.3892/br.2021.1460
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team