Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
October-2021 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)

  • Authors:
    • Worawat Songjang
    • Chatchai Nensat
    • Sutatip Pongcharoen
    • Arunya Jiraviriyakul
  • View Affiliations / Copyright

    Affiliations: Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand, Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand, Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
    Copyright: © Songjang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 86
    |
    Published online on: August 17, 2021
       https://doi.org/10.3892/br.2021.1462
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Modern cancer immunotherapy techniques are aimed at enhancing the responses of the patients' immune systems to fight against the cancer. The main promising strategies include active vaccination of tumor antigens, passive vaccination with antibodies specific to cancer antigens, adoptive transfer of cancer‑specific T cells and manipulation of the patient's immune response by inhibiting immune checkpoints. The application of immunogenic cell death (ICD) inducers has been proven to enhance the immunity of patients undergoing various types of immunotherapy. The dying, stressed or injured cells release or present molecules on the cell surface, which function as either adjuvants or danger signals for detection by the innate immune system. These molecules are now termed ‘damage‑associated molecular patterns’. The term ‘ICD’ indicates a type of cell death that triggers an immune response against dead‑cell antigens, particularly those derived from cancer cells, and it was initially proposed with regards to the effects of anticancer chemotherapy with conventional cytotoxic drugs. The aim of the present study was to review and discuss the role and mechanisms of ICD as a promising combined immunotherapy for gastrointestinal tumors.
View Figures

Figure 1

View References

1 

Rammensee HG: From basic immunology to new therapies for cancer patients. In: Cancer Immunotherapy Meets. Oncology. In Honor of Christoph Huber. Britten CM, Kreiter S, Diken M and Rammensee HG (eds). Springer International Publishing, Cham, pp3-11, 2014.

2 

Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 17:97–111. 2017.PubMed/NCBI View Article : Google Scholar

3 

Matzinger P: Tolerance, danger, and the extended family. Annual Rev Immunol. 12:991–1045. 1994.PubMed/NCBI View Article : Google Scholar

4 

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 12:860–875. 2012.PubMed/NCBI View Article : Google Scholar

5 

Kroemer G, Galluzzi L, Kepp O and Zitvogel L: Immunogenic cell death in cancer therapy. Annu Rev Immunol. 31:51–72. 2013.PubMed/NCBI View Article : Google Scholar

6 

Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, et al: Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 4(e1008866)2015.PubMed/NCBI View Article : Google Scholar

7 

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al: Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 3(e955691)2014.PubMed/NCBI View Article : Google Scholar

8 

Toomey PG, Vohra NA, Ghansah T, Sarnaik AA and Pilon-Thomas SA: Immunotherapy for gastrointestinal malignancies. Cancer Control. 20:32–42. 2013.PubMed/NCBI View Article : Google Scholar

9 

Rawla P and Barsouk A: Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol Rev. 14:26–38. 2019.PubMed/NCBI View Article : Google Scholar

10 

Grady WM and Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 135:1079–1099. 2008.PubMed/NCBI View Article : Google Scholar

11 

Morse MA, Hochster H and Benson A: Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy. Oncologist. 25:33–45. 2020.PubMed/NCBI View Article : Google Scholar

12 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar

13 

Mittal S and El-Serag HB: Epidemiology of hepatocellular carcinoma: Consider the population. J Clin Gastroenterol. 47 (Suppl):S2–S6. 2013.PubMed/NCBI View Article : Google Scholar

14 

McGlynn KA and London WT: The global epidemiology of hepatocellular carcinoma: Present and future. Clin Liver Dis. 15:223–243. 2011.PubMed/NCBI View Article : Google Scholar

15 

Kamsa-Ard S, Luvira V, Suwanrungruang K, Kamsa-Ard S, Luvira V, Santong C, Srisuk T, Pugkhem A, Bhudhisawasdi V and Pairojkul C: Cholangiocarcinoma trends, incidence, and relative survival in Khon Kaen, Thailand from 1989 through 2013: A population-based cancer registry study. J Epidemiol. 29:197–204. 2019.PubMed/NCBI View Article : Google Scholar

16 

Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB, La Vecchia C and Negri E: Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 71:104–114. 2019.PubMed/NCBI View Article : Google Scholar

17 

Blechacz B: Cholangiocarcinoma: Current knowledge and new developments. Gut Liver. 11:13–26. 2017.PubMed/NCBI View Article : Google Scholar

18 

Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 17:557–588. 2020.PubMed/NCBI View Article : Google Scholar

19 

Sripa B and Pairojkul C: Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol. 24:349–356. 2008.PubMed/NCBI View Article : Google Scholar

20 

Pereira NP and Corrêa JR: Pancreatic cancer: Treatment approaches and trends. J Cancer Metastasis Treat. 4(18)2018.

21 

Matsuoka T and Yashiro M: Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol. 12:1–20. 2020.PubMed/NCBI View Article : Google Scholar

22 

Abdul-Latif M, Townsend K, Dearman C, Shiu KK and Khan K: Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev. 88(102030)2020.PubMed/NCBI View Article : Google Scholar

23 

Tannapfel A and Reinacher-Schick A: Immunotherapy in gastrointestinal cancer: Where Do We Stand? Visc Med. 35:1–2. 2019.PubMed/NCBI View Article : Google Scholar

24 

Suntharalingam M, Winter K, Ilson DH, Dicker A, Kachnic LA, Chakravarthy AAK, Gaffney DK, Thakrar HV, Horiba MN, Deutsch M, et al: The initial report of RTOG 0436: A phase III trial evaluating the addition of cetuximab to paclitaxel, cisplatin, and radiation for patients with esophageal cancer treated without surgery. J Clin Oncol. 32:LBA6. 2014.

25 

O'Connell MJ, Colangelo LH, Beart RW, Petrelli NJ, Allegra CJ, Sharif S, Pitot HC, Shields AF, Landry JC, Ryan DP, et al: Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: Surgical end points from national surgical adjuvant breast and bowel project trial R-04. J Clin Oncol. 32:1927–1934. 2014.PubMed/NCBI View Article : Google Scholar

26 

Mortara L, Balza E, Bruno A, Poggi A, Orecchia P and Carnemolla B: Anti-cancer therapies employing il-2 cytokine tumor targeting: Contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 9(2905)2018.PubMed/NCBI View Article : Google Scholar

27 

Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4(7)2019.PubMed/NCBI View Article : Google Scholar

28 

Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011.PubMed/NCBI View Article : Google Scholar

29 

Kudrin A: Overview of cancer vaccines: Considerations for development. Hum Vaccin Immunother. 8:1335–1353. 2012.PubMed/NCBI View Article : Google Scholar

30 

Reitsma DJ and Combest AJ: Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Hum Vaccin Immunother. 8:1152–1155. 2012.PubMed/NCBI View Article : Google Scholar

31 

Ozao-Choy J, Lee DJ and Faries MB: Melanoma vaccines: Mixed past, promising future. Surg Clin North Am. 94:1017–1030. 2014.PubMed/NCBI View Article : Google Scholar

32 

Niccolai E, Taddei A, Prisco D and Amedei A: Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol. 21:5778–5793. 2015.PubMed/NCBI View Article : Google Scholar

33 

Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME and Lyerly HK: A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 5:1331–1338. 1999.PubMed/NCBI

34 

Li J, Valentin A, Beach RK, Alicea C, Felber BK and Pavlakis GN: DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother. 11:1927–1935. 2015.PubMed/NCBI View Article : Google Scholar

35 

Maeda Y, Yoshimura K, Matsui H, Shindo Y, Tamesa T, Tokumitsu Y, Hashimoto N, Tokuhisa Y, Sakamoto K, Sakai K, et al: Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: A phase 1 dose escalation clinical trial. Cancer Immunol Immunother. 64:1047–1056. 2015.PubMed/NCBI View Article : Google Scholar

36 

Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S, Moore MA and Crystal RG: Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med. 186:1247–1256. 1997.PubMed/NCBI View Article : Google Scholar

37 

Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P and Pongcharoen S: Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol. 25:3941–3955. 2019.PubMed/NCBI View Article : Google Scholar

38 

Gottfried E, Krieg R, Eichelberg C, Andreesen R, Mackensen A and Krause SW: Characterization of cells prepared by dendritic cell-tumor cell fusion. Cancer Immun. 2(15)2002.PubMed/NCBI

39 

Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, et al: Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother. 30:762–772. 2007.PubMed/NCBI View Article : Google Scholar

40 

Vonderheide RH, Domchek SM, Schultze JL, George DJ, Hoar KM, Chen DY, Stephans KF, Masutomi K, Loda M, Xia Z, et al: Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin Cancer Res. 10:828–839. 2004.PubMed/NCBI View Article : Google Scholar

41 

Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, et al: Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol. 43:2554–2565. 2013.PubMed/NCBI View Article : Google Scholar

42 

Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M, Schumacher TN, et al: Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: Differential modulation by T helper type 1 and type 2 cells. J Exp Med. 194:657–667. 2001.PubMed/NCBI View Article : Google Scholar

43 

Zhang QM, He SJ, Shen N, Luo B, Fan R, Fu J, Luo GR, Zhou SF, Xiao SW and Xie XX: Overexpression of MAGE-D4 in colorectal cancer is a potentially prognostic biomarker and immunotherapy target. Int J Clin Exp Pathol. 7:3918–3927. 2014.PubMed/NCBI

44 

Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R and Matsumoto Y: Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res. 8:3394–3400. 2002.PubMed/NCBI

45 

Smith AM, Justin T, Michaeli D and Watson SA: Phase I/II study of G17-DT, an Anti-gastrin immunogen, in advanced colorectal cancer. Clin Cancer Res. 6:4719–4724. 2000.PubMed/NCBI

46 

Higashihara Y, Kato J, Nagahara A, Izumi K, Konishi M, Kodani T, Serizawa N, Osada T and Watanabe S: Phase I clinical trial of peptide vaccination with URLC10 and VEGFR1 epitope peptides in patients with advanced gastric cancer Int J. Oncol. 44:662–668. 2014.PubMed/NCBI View Article : Google Scholar

47 

Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchianò A, Andreola S, et al: Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res. 9:3235–3245. 2003.PubMed/NCBI

48 

Dolcetti R, De Re V and Canzonieri V: Immunotherapy for gastric cancer: Time for a Personalized Approach? Int J Mol Sci. 19(1602)2018.PubMed/NCBI View Article : Google Scholar

49 

Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM and Laheru DA: Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 36:382–389. 2013.PubMed/NCBI View Article : Google Scholar

50 

Ikeda M, Okusaka T, Ohno I, Mitsunaga S, Kondo S, Ueno H, Morizane C, Gemmoto K, Suna H, Ushida Y and Furuse J: Phase I studies of peptide vaccine cocktails derived from GPC3, WDRPUH and NEIL3 for advanced hepatocellular carcinoma. Immunotherapy. 13:371–385. 2021.PubMed/NCBI View Article : Google Scholar

51 

Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT, Seja E, Todd K, Glaspy JA, McBride WH and Economou JS: T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res. 9:5902–5908. 2003.PubMed/NCBI

52 

Tsuchiya N, Yoshikawa T, Fujinami N, Saito K, Mizuno S, Sawada Y, Endo I and Nakatsura T: Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. Oncoimmunology. 6(e1346764)2017.PubMed/NCBI View Article : Google Scholar

53 

Zhang Q, Chen G, Peng L, Wang X, Yang Y, Liu C, Shi W, Su C, Wu H, Liu X, et al: Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin Cancer Res. 12:6523–6531. 2006.PubMed/NCBI View Article : Google Scholar

54 

Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, et al: A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 6:955–964. 2008.PubMed/NCBI

55 

Kawamura J, Sugiura F, Sukegawa Y, Yoshioka Y, Hida JI, Hazama S and Okuno K: Multicenter, phase II clinical trial of peptide vaccination with oral chemotherapy following curative resection for stage III colorectal cancer. Oncology Lett. 15:4241–4247. 2018.PubMed/NCBI View Article : Google Scholar

56 

Rahma OE, Hamilton JM, Wojtowicz M, Dakheel O, Bernstein S, Liewehr DJ, Steinberg SM and Khleif SN: The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors. J Transl Med. 12(55)2014.PubMed/NCBI View Article : Google Scholar

57 

Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M, Wiemann S, et al: Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 7(e1500671)2018.PubMed/NCBI View Article : Google Scholar

58 

Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et al: Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 67:497–507. 2018.PubMed/NCBI View Article : Google Scholar

59 

Scarpa M, Ruffolo C, Canal F, Scarpa M, Basato S, Erroi F, Fiorot A, Dall'Agnese L, Pozza A, Porzionato A, et al: Mismatch repair gene defects in sporadic colorectal cancer enhance immune surveillance. Oncotarget. 6:43472–43482. 2015.PubMed/NCBI View Article : Google Scholar

60 

Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al: Efficacy of Pembrolizumab in patients with noncolorectal high microsatellite Instability/Mismatch Repair-deficient cancer: Results from the phase II KEYNOTE-158 Study. J Clin Oncol. 38:1–10. 2019.PubMed/NCBI View Article : Google Scholar

61 

Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L: Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11(1013)2020.PubMed/NCBI View Article : Google Scholar

62 

Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T and Kono K: Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 72:3967–3976. 2012.PubMed/NCBI View Article : Google Scholar

63 

Ratschker T, Egenberger L, Alev M, Zschiesche L, Band J, Schreiber E, Frey B, Derer A, Alexiou C and Janko C: Mitoxantrone-loaded nanoparticles for magnetically controlled tumor therapy-induction of tumor cell death, release of danger signals and activation of immune cells. Pharmaceutics. 12(923)2020.PubMed/NCBI View Article : Google Scholar

64 

Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, et al: Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 102:187–197. 2016.PubMed/NCBI View Article : Google Scholar

65 

Turrini E, Catanzaro E, Muraro MG, Governa V, Trella E, Mele V, Calcabrini C, Morroni F, Sita G, Hrelia P, et al: Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget. 9:24443–24456. 2018.PubMed/NCBI View Article : Google Scholar

66 

Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao WS, Huang YJ, Chang CC, Ka SM and Tao MH: Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology. 7(e1477459)2018.PubMed/NCBI View Article : Google Scholar

67 

He H, Liu L, Liang R, Zhou H, Pan H, Zhang S and Cai L: Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. Acta Biomaterialia. 104:188–197. 2020.PubMed/NCBI View Article : Google Scholar

68 

Van Loenhout J, Flieswasser T, Freire Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A, Lion E, Dewitte H, et al: Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers. 11(1597)2019.PubMed/NCBI View Article : Google Scholar

69 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012.PubMed/NCBI View Article : Google Scholar

70 

Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3:541–547. 1995.PubMed/NCBI View Article : Google Scholar

71 

Borch TH, Donia M, Andersen MH and Svane IM: Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discov Today. 20:1127–1134. 2015.PubMed/NCBI View Article : Google Scholar

72 

Schildberg FA, Klein SR, Freeman GJ and Sharpe AH: Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 44:955–972. 2016.PubMed/NCBI View Article : Google Scholar

73 

Lee B, Hutchinson R, Wong HL, Tie J, Putoczki T, Tran B, Gibbs P and Christie M: Emerging biomarkers for immunomodulatory cancer treatment of upper gastrointestinal, pancreatic and hepatic cancers. Semin Cancer Biol. 52:241–252. 2018.PubMed/NCBI View Article : Google Scholar

74 

Zhou G, Noordam L, Sprengers D, Doukas M, Boor PPC, van Beek AA, Erkens R, Mancham S, Grünhagen D, Menon AG, et al: Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Oncoimmunology. 7(e1448332)2018.PubMed/NCBI View Article : Google Scholar

75 

Huyghe N, Baldin P and Van den Eynde M: Immunotherapy with immune checkpoint inhibitors in colorectal cancer: What is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf). 8:11–24. 2020.PubMed/NCBI View Article : Google Scholar

76 

Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P, Criscitiello PJ, Healey DI, Huang B, Gomez-Navarro J and Saltz LB: Phase II study of the anti-cytotoxic T-Lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol. 28:3485–3490. 2010.PubMed/NCBI View Article : Google Scholar

77 

Torphy RJ, Zhu Y and Schulick RD: Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann Gastroenterol Surg. 2:274–281. 2018.PubMed/NCBI View Article : Google Scholar

78 

Kudo M, Matilla A, Santoro A, Melero I, Gracian AC, Acosta-Rivera M, Choo SP, El-Khoueiry AB, Kuromatsu R, El-Rayes BF, et al: Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol. 37(327)2019.

79 

Ledford H, Else H and Warren M: Cancer immunologists scoop medicine Nobel prize. Nature. 562:20–21. 2018.PubMed/NCBI View Article : Google Scholar

80 

Sakakibara K, Sato T, Kufe DW, VonHoff DD and Kawabe T: CBP501 induces immunogenic tumor cell death and CD8 T cell infiltration into tumors in combination with platinum, and increases the efficacy of immune checkpoint inhibitors against tumors in mice. Oncotarget. 8:78277–78288. 2017.PubMed/NCBI View Article : Google Scholar

81 

Landry MR, DuRoss AN, Neufeld MJ, Hahn L, Sahay G, Luxenhofer R and Sun C: Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Materials today Bio. 8(100082)2020.PubMed/NCBI View Article : Google Scholar

82 

Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia C: Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy. Cell Oncol (Dordr). 43:1203–1214. 2020.PubMed/NCBI View Article : Google Scholar

83 

Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL and Kobayashi H: Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models. Vaccines (Basel). 8(528)2020.PubMed/NCBI View Article : Google Scholar

84 

Antoniotti C, Borelli B, Rossini D, Pietrantonio F, Morano F, Salvatore L, Lonardi S, Marmorino F, Tamberi S, Corallo S, et al: AtezoTRIBE: A randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer. 20(683)2020.PubMed/NCBI View Article : Google Scholar

85 

Fumet JD, Isambert N, Hervieu A, Zanetta S, Guion JF, Hennequin A, Rederstorff E, Bertaut A and Ghiringhelli F: Phase Ib/II trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer. ESMO Open. 3(e000375)2018.PubMed/NCBI View Article : Google Scholar

86 

Bang YJ, Muro K, Fuchs CS, Golan T, Geva R, Hara H, Jalal SI, Borg C, Doi T, Wainberg ZA, et al: KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol. 35(4012)2017.

87 

Bailly C, Thuru X and Quesnel B: Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer. 2(zcaa002)2020.PubMed/NCBI View Article : Google Scholar

88 

Dosset M, Vargas TR, Lagrange A, Boidot R, Végran F, Roussey A, Chalmin F, Dondaine L, Paul C, Lauret Marie-Joseph E, et al: PD-1/PD-L1 pathway: An adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 7(e1433981)2018.PubMed/NCBI View Article : Google Scholar

89 

Chu TH, Chan HH, Hu TH, Wang EM, Ma YL, Huang SC, Wu JC, Chang YC, Weng WT, Wen ZH, et al: Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med. 7:2567–2580. 2018.PubMed/NCBI View Article : Google Scholar

90 

Wang F, Lau JKC and Yu J: The role of natural killer cell in gastrointestinal cancer: Killer or helper. Oncogene. 40:717–730. 2021.PubMed/NCBI View Article : Google Scholar

91 

Amedei A, Niccolai E and D'Elios MM: T cells and adoptive immunotherapy: Recent developments and future prospects in gastrointestinal oncology. Clin Dev Immunol. 2011(320571)2011.PubMed/NCBI View Article : Google Scholar

92 

Guo Y and Han W: Cytokine-induced killer (CIK) cells: From basic research to clinical translation. Chin J Cancer. 34:99–107. 2015.PubMed/NCBI View Article : Google Scholar

93 

Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, et al: Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 13(277)2015.PubMed/NCBI View Article : Google Scholar

94 

Shiozawa M, Chang CH, Huang YC, Chen YC, Chi MS, Hao HC, Chang YC, Takeda S, Chi KH and Wang YS: Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 19(27)2018.PubMed/NCBI View Article : Google Scholar

95 

Liu B, Liu ZZ, Zhou ML, Lin JW, Chen XM, Li Z, Gao WB, Yu ZD and Liu T: Development of c-MET-specific chimeric antigen receptor-engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Mol Med Rep. 20:2823–2831. 2019.PubMed/NCBI View Article : Google Scholar

96 

Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K and Multhoff G: Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase i trial. Clin Cancer Res. 10:3699–3707. 2004.PubMed/NCBI View Article : Google Scholar

97 

Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H and Löhr GW: Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: A new approach to cancer immunotherapy. Cancer Res. 50:7450–7456. 1990.PubMed/NCBI

98 

Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020.PubMed/NCBI View Article : Google Scholar

99 

Liu Y and Wang R: Immunotherapy targeting tumor-associated macrophages. Front Med (Lausanne). 7(583708)2020.PubMed/NCBI View Article : Google Scholar

100 

Fesnak AD, June CH and Levine BL: Engineered T cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 16:566–581. 2016.PubMed/NCBI View Article : Google Scholar

101 

Mirzaei HR, Rodriguez A, Shepphird J, Brown CE and Badie B: Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Front Immunol. 8(1850)2017.PubMed/NCBI View Article : Google Scholar

102 

Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544. 2017.PubMed/NCBI View Article : Google Scholar

103 

Hou B, Tang Y, Li W, Zeng Q and Chang D: Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: A meta-analysis. Disease Markers. 2019(3425291)2019.PubMed/NCBI View Article : Google Scholar

104 

Bebnowska D, Grywalska E, Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Góźdź S, Roliński J and Polkowski W: CAR-T cell therapy-an overview of targets in gastric cancer. J Clin Med. 9(1894)2020.PubMed/NCBI View Article : Google Scholar

105 

Alrifai D, Sarker D and Maher J: Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells. Immunopharm Immunot. 38:50–60. 2016.PubMed/NCBI View Article : Google Scholar

106 

Cheng X, Zhao G and Zhao Y: Combination immunotherapy approaches for pancreatic cancer treatment. Can J Gastroenterol Hepatol. 2018(6240467)2018.PubMed/NCBI View Article : Google Scholar

107 

Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, Zhao X, Wang Y, Wang Z, Han W and Chen L: Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 9:867–878. 2018.PubMed/NCBI View Article : Google Scholar

108 

Tao K, He M, Tao F, Xu G, Ye M, Zheng Y and Li Y: Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol. 82:815–827. 2018.PubMed/NCBI View Article : Google Scholar

109 

Han H, Wang S, Hu Y, Li Z, Yang W, Lv Y, Wang L, Zhang L and Ji J: Monoclonal antibody 3H11 chimeric antigen receptors enhance T cell effector function and exhibit efficacy against gastric cancer. Oncol Lett. 15:6887–6894. 2018.PubMed/NCBI View Article : Google Scholar

110 

Kim M, Pyo S, Kang CH, Lee CO, Lee HK, Choi SU and Park CH: Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS One. 13(e0198347)2018.PubMed/NCBI View Article : Google Scholar

111 

DeLeon TT, Zhou YM, Nagalo BM, Yokoda RT, Ahn DH, Ramanathan RK, Salomao MA, Aqel BA, Mahipal A, Bekaii-Saab TS and Borad MJ: Novel immunotherapy strategies for hepatobiliary cancers. Immunotherapy. 10:1077–1091. 2018.PubMed/NCBI View Article : Google Scholar

112 

Xu JY, Ye ZL, Jiang DQ, He JC, Ding YM, Li LF, Lv SQ, Wang Y, Jin HJ and Qian QJ: Mesothelin-targeting chimeric antigen receptor-modified T cells by piggyBac transposon system suppress the growth of bile duct carcinoma. Tumor Biol. 39(1010428317695949)2017.PubMed/NCBI View Article : Google Scholar

113 

Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H and Han W: Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018.PubMed/NCBI View Article : Google Scholar

114 

Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 34:157–164. 2015.PubMed/NCBI View Article : Google Scholar

115 

Cui J, Li L, Wang C, Jin H, Yao C, Wang Y, Li D, Tian H, Niu C, Wang G, et al: Combined cellular immunotherapy and chemotherapy improves clinical outcome in patients with gastric carcinoma. Cytotherapy. 17:979–988. 2015.PubMed/NCBI View Article : Google Scholar

116 

El-Sayes N, Vito A and Mossman K: Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers. 13(806)2021.PubMed/NCBI View Article : Google Scholar

117 

Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al: Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 18:1254–1261. 2012.PubMed/NCBI View Article : Google Scholar

118 

Minute L, Teijeira A, Sanchez-Paulete AR, Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta A, Garasa S, et al: Cellular cytotoxicity is a form of immunogenic cell death. J Immunother Cancer. 8(e000325)2020.PubMed/NCBI View Article : Google Scholar

119 

Jiang Q, Zhang C, Wang H, Peng T, Zhang L, Wang Y, Han W and Shi C: Mitochondria-targeting immunogenic cell death inducer improves the adoptive T-cell therapy against solid tumor. Front Oncol. 9(1196)2019.PubMed/NCBI View Article : Google Scholar

120 

Schwacha MG, Rani M, Nicholson SE, Lewis AM, Holloway TL, Sordo S and Cap AP: Dermal γδ T-cells can be activated by mitochondrial damage-associated molecular patterns. PLoS One. 11(e0158993)2016.PubMed/NCBI View Article : Google Scholar

121 

Schwacha MG, Rani M, Zhang Q, Nunez-Cantu O and Cap AP: Mitochondrial damage-associated molecular patterns activate γδ T-cells. Innate immunity. 20:261–268. 2014.PubMed/NCBI View Article : Google Scholar

122 

Gebremeskel S and Johnston B: Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: Impact on clinical studies and considerations for combined therapies. Oncotarget. 6:41600–41619. 2015.PubMed/NCBI View Article : Google Scholar

123 

Xie W, Forveille S, Iribarren K, Sauvat A, Senovilla L, Wang Y, Humeau J, Perez-Lanzon M, Zhou H, Martínez-Leal JF, et al: Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. Oncoimmunology. 8(e1656502)2019.PubMed/NCBI View Article : Google Scholar

124 

Limagne E, Thibaudin M, Nuttin L, Spill A, Derangère V, Fumet JD, Amellal N, Peranzoni E, Cattan V and Ghiringhelli F: Trifluridine/Tipiracil plus Oxaliplatin improves PD-1 blockade in colorectal cancer by inducing immunogenic cell death and depleting macrophages. Cancer Immunol Res. 7:1958–1969. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Songjang W, Nensat C, Pongcharoen S and Jiraviriyakul A: The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomed Rep 15: 86, 2021.
APA
Songjang, W., Nensat, C., Pongcharoen, S., & Jiraviriyakul, A. (2021). The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomedical Reports, 15, 86. https://doi.org/10.3892/br.2021.1462
MLA
Songjang, W., Nensat, C., Pongcharoen, S., Jiraviriyakul, A."The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)". Biomedical Reports 15.4 (2021): 86.
Chicago
Songjang, W., Nensat, C., Pongcharoen, S., Jiraviriyakul, A."The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)". Biomedical Reports 15, no. 4 (2021): 86. https://doi.org/10.3892/br.2021.1462
Copy and paste a formatted citation
x
Spandidos Publications style
Songjang W, Nensat C, Pongcharoen S and Jiraviriyakul A: The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomed Rep 15: 86, 2021.
APA
Songjang, W., Nensat, C., Pongcharoen, S., & Jiraviriyakul, A. (2021). The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomedical Reports, 15, 86. https://doi.org/10.3892/br.2021.1462
MLA
Songjang, W., Nensat, C., Pongcharoen, S., Jiraviriyakul, A."The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)". Biomedical Reports 15.4 (2021): 86.
Chicago
Songjang, W., Nensat, C., Pongcharoen, S., Jiraviriyakul, A."The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)". Biomedical Reports 15, no. 4 (2021): 86. https://doi.org/10.3892/br.2021.1462
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team