|
1
|
Rammensee HG: From basic immunology to new
therapies for cancer patients. In: Cancer Immunotherapy Meets.
Oncology. In Honor of Christoph Huber. Britten CM, Kreiter S, Diken
M and Rammensee HG (eds). Springer International Publishing, Cham,
pp3-11, 2014.
|
|
2
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L
and Kroemer G: Immunogenic cell death in cancer and infectious
disease. Nat Rev Immunol. 17:97–111. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Matzinger P: Tolerance, danger, and the
extended family. Annual Rev Immunol. 12:991–1045. 1994.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Krysko DV, Garg AD, Kaczmarek A, Krysko O,
Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in
cancer therapy. Nat Rev Cancer. 12:860–875. 2012.PubMed/NCBI View
Article : Google Scholar
|
|
5
|
Kroemer G, Galluzzi L, Kepp O and Zitvogel
L: Immunogenic cell death in cancer therapy. Annu Rev Immunol.
31:51–72. 2013.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Pol J, Vacchelli E, Aranda F, Castoldi F,
Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J,
Spisek R, et al: Trial Watch: Immunogenic cell death inducers for
anticancer chemotherapy. Oncoimmunology. 4(e1008866)2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kepp O, Senovilla L, Vitale I, Vacchelli
E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N,
et al: Consensus guidelines for the detection of immunogenic cell
death. Oncoimmunology. 3(e955691)2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Toomey PG, Vohra NA, Ghansah T, Sarnaik AA
and Pilon-Thomas SA: Immunotherapy for gastrointestinal
malignancies. Cancer Control. 20:32–42. 2013.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Rawla P and Barsouk A: Epidemiology of
gastric cancer: Global trends, risk factors and prevention.
Gastroenterol Rev. 14:26–38. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Grady WM and Carethers JM: Genomic and
epigenetic instability in colorectal cancer pathogenesis.
Gastroenterology. 135:1079–1099. 2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Morse MA, Hochster H and Benson A:
Perspectives on treatment of metastatic colorectal cancer with
immune checkpoint inhibitor therapy. Oncologist. 25:33–45.
2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Mittal S and El-Serag HB: Epidemiology of
hepatocellular carcinoma: Consider the population. J Clin
Gastroenterol. 47 (Suppl):S2–S6. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
McGlynn KA and London WT: The global
epidemiology of hepatocellular carcinoma: Present and future. Clin
Liver Dis. 15:223–243. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Kamsa-Ard S, Luvira V, Suwanrungruang K,
Kamsa-Ard S, Luvira V, Santong C, Srisuk T, Pugkhem A,
Bhudhisawasdi V and Pairojkul C: Cholangiocarcinoma trends,
incidence, and relative survival in Khon Kaen, Thailand from 1989
through 2013: A population-based cancer registry study. J
Epidemiol. 29:197–204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Bertuccio P, Malvezzi M, Carioli G, Hashim
D, Boffetta P, El-Serag HB, La Vecchia C and Negri E: Global trends
in mortality from intrahepatic and extrahepatic cholangiocarcinoma.
J Hepatol. 71:104–114. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Blechacz B: Cholangiocarcinoma: Current
knowledge and new developments. Gut Liver. 11:13–26.
2017.PubMed/NCBI View
Article : Google Scholar
|
|
18
|
Banales JM, Marin JJG, Lamarca A,
Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen
JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in
mechanisms and management. Nat Rev Gastroenterol Hepatol.
17:557–588. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Sripa B and Pairojkul C:
Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol.
24:349–356. 2008.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Pereira NP and Corrêa JR: Pancreatic
cancer: Treatment approaches and trends. J Cancer Metastasis Treat.
4(18)2018.
|
|
21
|
Matsuoka T and Yashiro M: Precision
medicine for gastrointestinal cancer: Recent progress and future
perspective. World J Gastrointest Oncol. 12:1–20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Abdul-Latif M, Townsend K, Dearman C, Shiu
KK and Khan K: Immunotherapy in gastrointestinal cancer: The
current scenario and future perspectives. Cancer Treat Rev.
88(102030)2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Tannapfel A and Reinacher-Schick A:
Immunotherapy in gastrointestinal cancer: Where Do We Stand? Visc
Med. 35:1–2. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Suntharalingam M, Winter K, Ilson DH,
Dicker A, Kachnic LA, Chakravarthy AAK, Gaffney DK, Thakrar HV,
Horiba MN, Deutsch M, et al: The initial report of RTOG 0436: A
phase III trial evaluating the addition of cetuximab to paclitaxel,
cisplatin, and radiation for patients with esophageal cancer
treated without surgery. J Clin Oncol. 32:LBA6. 2014.
|
|
25
|
O'Connell MJ, Colangelo LH, Beart RW,
Petrelli NJ, Allegra CJ, Sharif S, Pitot HC, Shields AF, Landry JC,
Ryan DP, et al: Capecitabine and oxaliplatin in the preoperative
multimodality treatment of rectal cancer: Surgical end points from
national surgical adjuvant breast and bowel project trial R-04. J
Clin Oncol. 32:1927–1934. 2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mortara L, Balza E, Bruno A, Poggi A,
Orecchia P and Carnemolla B: Anti-cancer therapies employing il-2
cytokine tumor targeting: Contribution of innate, adaptive and
immunosuppressive cells in the anti-tumor efficacy. Front Immunol.
9(2905)2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Hollingsworth RE and Jansen K: Turning the
corner on therapeutic cancer vaccines. NPJ Vaccines.
4(7)2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Cheever MA and Higano CS: PROVENGE
(Sipuleucel-T) in prostate cancer: The first FDA-approved
therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526.
2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kudrin A: Overview of cancer vaccines:
Considerations for development. Hum Vaccin Immunother. 8:1335–1353.
2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Reitsma DJ and Combest AJ: Challenges in
the development of an autologous heat shock protein based
anti-tumor vaccine. Hum Vaccin Immunother. 8:1152–1155.
2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ozao-Choy J, Lee DJ and Faries MB:
Melanoma vaccines: Mixed past, promising future. Surg Clin North
Am. 94:1017–1030. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Niccolai E, Taddei A, Prisco D and Amedei
A: Gastric cancer and the epoch of immunotherapy approaches. World
J Gastroenterol. 21:5778–5793. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Morse MA, Deng Y, Coleman D, Hull S,
Kitrell-Fisher E, Nair S, Schlom J, Ryback ME and Lyerly HK: A
Phase I study of active immunotherapy with carcinoembryonic antigen
peptide (CAP-1)-pulsed, autologous human cultured dendritic cells
in patients with metastatic malignancies expressing
carcinoembryonic antigen. Clin Cancer Res. 5:1331–1338.
1999.PubMed/NCBI
|
|
34
|
Li J, Valentin A, Beach RK, Alicea C,
Felber BK and Pavlakis GN: DNA is an efficient booster of dendritic
cell-based vaccine. Hum Vaccin Immunother. 11:1927–1935.
2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Maeda Y, Yoshimura K, Matsui H, Shindo Y,
Tamesa T, Tokumitsu Y, Hashimoto N, Tokuhisa Y, Sakamoto K, Sakai
K, et al: Dendritic cells transfected with heat-shock protein 70
messenger RNA for patients with hepatitis C virus-related
hepatocellular carcinoma: A phase 1 dose escalation clinical trial.
Cancer Immunol Immunother. 64:1047–1056. 2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Song W, Kong HL, Carpenter H, Torii H,
Granstein R, Rafii S, Moore MA and Crystal RG: Dendritic cells
genetically modified with an adenovirus vector encoding the cDNA
for a model antigen induce protective and therapeutic antitumor
immunity. J Exp Med. 186:1247–1256. 1997.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Jiraviriyakul A, Songjang W, Kaewthet P,
Tanawatkitichai P, Bayan P and Pongcharoen S: Honokiol-enhanced
cytotoxic T lymphocyte activity against cholangiocarcinoma cells
mediated by dendritic cells pulsed with damage-associated molecular
patterns. World J Gastroenterol. 25:3941–3955. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gottfried E, Krieg R, Eichelberg C,
Andreesen R, Mackensen A and Krause SW: Characterization of cells
prepared by dendritic cell-tumor cell fusion. Cancer Immun.
2(15)2002.PubMed/NCBI
|
|
39
|
Kavanagh B, Ko A, Venook A, Margolin K,
Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, et al:
Vaccination of metastatic colorectal cancer patients with matured
dendritic cells loaded with multiple major histocompatibility
complex class I peptides. J Immunother. 30:762–772. 2007.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Vonderheide RH, Domchek SM, Schultze JL,
George DJ, Hoar KM, Chen DY, Stephans KF, Masutomi K, Loda M, Xia
Z, et al: Vaccination of cancer patients against telomerase induces
functional antitumor CD8+ T lymphocytes. Clin Cancer Res.
10:828–839. 2004.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan
S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van
Veelen PA, et al: Dendritic cells process synthetic long peptides
better than whole protein, improving antigen presentation and
T-cell activation. Eur J Immunol. 43:2554–2565. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Medema JP, Schuurhuis DH, Rea D, van
Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M,
Schumacher TN, et al: Expression of the serpin serine protease
inhibitor 6 protects dendritic cells from cytotoxic T
lymphocyte-induced apoptosis: Differential modulation by T helper
type 1 and type 2 cells. J Exp Med. 194:657–667. 2001.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang QM, He SJ, Shen N, Luo B, Fan R, Fu
J, Luo GR, Zhou SF, Xiao SW and Xie XX: Overexpression of MAGE-D4
in colorectal cancer is a potentially prognostic biomarker and
immunotherapy target. Int J Clin Exp Pathol. 7:3918–3927.
2014.PubMed/NCBI
|
|
44
|
Kono K, Takahashi A, Sugai H, Fujii H,
Choudhury AR, Kiessling R and Matsumoto Y: Dendritic cells pulsed
with HER-2/neu-derived peptides can induce specific T-cell
responses in patients with gastric cancer. Clin Cancer Res.
8:3394–3400. 2002.PubMed/NCBI
|
|
45
|
Smith AM, Justin T, Michaeli D and Watson
SA: Phase I/II study of G17-DT, an Anti-gastrin immunogen, in
advanced colorectal cancer. Clin Cancer Res. 6:4719–4724.
2000.PubMed/NCBI
|
|
46
|
Higashihara Y, Kato J, Nagahara A, Izumi
K, Konishi M, Kodani T, Serizawa N, Osada T and Watanabe S: Phase I
clinical trial of peptide vaccination with URLC10 and VEGFR1
epitope peptides in patients with advanced gastric cancer Int J.
Oncol. 44:662–668. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Mazzaferro V, Coppa J, Carrabba MG,
Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchianò
A, Andreola S, et al: Vaccination with autologous tumor-derived
heat-shock protein gp96 after liver resection for metastatic
colorectal cancer. Clin Cancer Res. 9:3235–3245. 2003.PubMed/NCBI
|
|
48
|
Dolcetti R, De Re V and Canzonieri V:
Immunotherapy for gastric cancer: Time for a Personalized Approach?
Int J Mol Sci. 19(1602)2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Le DT, Lutz E, Uram JN, Sugar EA, Onners
B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM and Laheru
DA: Evaluation of ipilimumab in combination with allogeneic
pancreatic tumor cells transfected with a GM-CSF gene in previously
treated pancreatic cancer. J Immunother. 36:382–389.
2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ikeda M, Okusaka T, Ohno I, Mitsunaga S,
Kondo S, Ueno H, Morizane C, Gemmoto K, Suna H, Ushida Y and Furuse
J: Phase I studies of peptide vaccine cocktails derived from GPC3,
WDRPUH and NEIL3 for advanced hepatocellular carcinoma.
Immunotherapy. 13:371–385. 2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Butterfield LH, Ribas A, Meng WS, Dissette
VB, Amarnani S, Vu HT, Seja E, Todd K, Glaspy JA, McBride WH and
Economou JS: T-cell responses to HLA-A*0201 immunodominant peptides
derived from alpha-fetoprotein in patients with hepatocellular
cancer. Clin Cancer Res. 9:5902–5908. 2003.PubMed/NCBI
|
|
52
|
Tsuchiya N, Yoshikawa T, Fujinami N, Saito
K, Mizuno S, Sawada Y, Endo I and Nakatsura T: Immunological
efficacy of glypican-3 peptide vaccine in patients with advanced
hepatocellular carcinoma. Oncoimmunology.
6(e1346764)2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhang Q, Chen G, Peng L, Wang X, Yang Y,
Liu C, Shi W, Su C, Wu H, Liu X, et al: Increased safety with
preserved antitumoral efficacy on hepatocellular carcinoma with
dual-regulated oncolytic adenovirus. Clin Cancer Res. 12:6523–6531.
2006.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lepisto AJ, Moser AJ, Zeh H, Lee K,
Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP,
Whiteside T, et al: A phase I/II study of a MUC1 peptide pulsed
autologous dendritic cell vaccine as adjuvant therapy in patients
with resected pancreatic and biliary tumors. Cancer Ther.
6:955–964. 2008.PubMed/NCBI
|
|
55
|
Kawamura J, Sugiura F, Sukegawa Y,
Yoshioka Y, Hida JI, Hazama S and Okuno K: Multicenter, phase II
clinical trial of peptide vaccination with oral chemotherapy
following curative resection for stage III colorectal cancer.
Oncology Lett. 15:4241–4247. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Rahma OE, Hamilton JM, Wojtowicz M,
Dakheel O, Bernstein S, Liewehr DJ, Steinberg SM and Khleif SN: The
immunological and clinical effects of mutated ras peptide vaccine
in combination with IL-2, GM-CSF, or both in patients with solid
tumors. J Transl Med. 12(55)2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Quandt J, Schlude C, Bartoschek M, Will R,
Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M,
Wiemann S, et al: Long-peptide vaccination with driver gene
mutations in p53 and Kras induces cancer mutation-specific effector
as well as regulatory T cell responses. Oncoimmunology.
7(e1500671)2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hessmann E, Patzak MS, Klein L, Chen N,
Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et
al: Fibroblast drug scavenging increases intratumoural gemcitabine
accumulation in murine pancreas cancer. Gut. 67:497–507.
2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Scarpa M, Ruffolo C, Canal F, Scarpa M,
Basato S, Erroi F, Fiorot A, Dall'Agnese L, Pozza A, Porzionato A,
et al: Mismatch repair gene defects in sporadic colorectal cancer
enhance immune surveillance. Oncotarget. 6:43472–43482.
2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Marabelle A, Le DT, Ascierto PA, Di
Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M,
Penel N, Hansen AR, et al: Efficacy of Pembrolizumab in patients
with noncolorectal high microsatellite Instability/Mismatch
Repair-deficient cancer: Results from the phase II KEYNOTE-158
Study. J Clin Oncol. 38:1–10. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Fucikova J, Kepp O, Kasikova L, Petroni G,
Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L:
Detection of immunogenic cell death and its relevance for cancer
therapy. Cell Death Dis. 11(1013)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Suzuki Y, Mimura K, Yoshimoto Y, Watanabe
M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T and Kono K:
Immunogenic tumor cell death induced by chemoradiotherapy in
patients with esophageal squamous cell carcinoma. Cancer Res.
72:3967–3976. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ratschker T, Egenberger L, Alev M,
Zschiesche L, Band J, Schreiber E, Frey B, Derer A, Alexiou C and
Janko C: Mitoxantrone-loaded nanoparticles for magnetically
controlled tumor therapy-induction of tumor cell death, release of
danger signals and activation of immune cells. Pharmaceutics.
12(923)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang
X, Zhang Y, Cheng K, Liu S, Hao J, et al: Inducing enhanced
immunogenic cell death with nanocarrier-based drug delivery systems
for pancreatic cancer therapy. Biomaterials. 102:187–197.
2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Turrini E, Catanzaro E, Muraro MG, Governa
V, Trella E, Mele V, Calcabrini C, Morroni F, Sita G, Hrelia P, et
al: Hemidesmus indicus induces immunogenic death in human
colorectal cancer cells. Oncotarget. 9:24443–24456. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao
WS, Huang YJ, Chang CC, Ka SM and Tao MH: Combination of radiation
and interleukin 12 eradicates large orthotopic hepatocellular
carcinoma through immunomodulation of tumor microenvironment.
Oncoimmunology. 7(e1477459)2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
He H, Liu L, Liang R, Zhou H, Pan H, Zhang
S and Cai L: Tumor-targeted nanoplatform for in situ
oxygenation-boosted immunogenic phototherapy of colorectal cancer.
Acta Biomaterialia. 104:188–197. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Van Loenhout J, Flieswasser T, Freire
Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A,
Lion E, Dewitte H, et al: Cold atmospheric plasma-treated PBS
eliminates immunosuppressive pancreatic stellate cells and induces
immunogenic cell death of pancreatic cancer cells. Cancers.
11(1597)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Tivol EA, Borriello F, Schweitzer AN,
Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to
massive lymphoproliferation and fatal multiorgan tissue
destruction, revealing a critical negative regulatory role of
CTLA-4. Immunity. 3:541–547. 1995.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Borch TH, Donia M, Andersen MH and Svane
IM: Reorienting the immune system in the treatment of cancer by
using anti-PD-1 and anti-PD-L1 antibodies. Drug Discov Today.
20:1127–1134. 2015.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Schildberg FA, Klein SR, Freeman GJ and
Sharpe AH: Coinhibitory pathways in the B7-CD28 ligand-receptor
family. Immunity. 44:955–972. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Lee B, Hutchinson R, Wong HL, Tie J,
Putoczki T, Tran B, Gibbs P and Christie M: Emerging biomarkers for
immunomodulatory cancer treatment of upper gastrointestinal,
pancreatic and hepatic cancers. Semin Cancer Biol. 52:241–252.
2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhou G, Noordam L, Sprengers D, Doukas M,
Boor PPC, van Beek AA, Erkens R, Mancham S, Grünhagen D, Menon AG,
et al: Blockade of LAG3 enhances responses of tumor-infiltrating T
cells in mismatch repair-proficient liver metastases of colorectal
cancer. Oncoimmunology. 7(e1448332)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Huyghe N, Baldin P and Van den Eynde M:
Immunotherapy with immune checkpoint inhibitors in colorectal
cancer: What is the future beyond deficient mismatch-repair
tumours? Gastroenterol Rep (Oxf). 8:11–24. 2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Chung KY, Gore I, Fong L, Venook A, Beck
SB, Dorazio P, Criscitiello PJ, Healey DI, Huang B, Gomez-Navarro J
and Saltz LB: Phase II study of the anti-cytotoxic
T-Lymphocyte-associated antigen 4 monoclonal antibody,
tremelimumab, in patients with refractory metastatic colorectal
cancer. J Clin Oncol. 28:3485–3490. 2010.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Torphy RJ, Zhu Y and Schulick RD:
Immunotherapy for pancreatic cancer: Barriers and breakthroughs.
Ann Gastroenterol Surg. 2:274–281. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kudo M, Matilla A, Santoro A, Melero I,
Gracian AC, Acosta-Rivera M, Choo SP, El-Khoueiry AB, Kuromatsu R,
El-Rayes BF, et al: Checkmate-040: Nivolumab (NIVO) in patients
(pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh
B (CPB) status. J Clin Oncol. 37(327)2019.
|
|
79
|
Ledford H, Else H and Warren M: Cancer
immunologists scoop medicine Nobel prize. Nature. 562:20–21.
2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Sakakibara K, Sato T, Kufe DW, VonHoff DD
and Kawabe T: CBP501 induces immunogenic tumor cell death and CD8 T
cell infiltration into tumors in combination with platinum, and
increases the efficacy of immune checkpoint inhibitors against
tumors in mice. Oncotarget. 8:78277–78288. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Landry MR, DuRoss AN, Neufeld MJ, Hahn L,
Sahay G, Luxenhofer R and Sun C: Low dose novel PARP-PI3K
inhibition via nanoformulation improves colorectal cancer
immunoradiotherapy. Materials today Bio. 8(100082)2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia
C: Oxaliplatin induces immunogenic cell death in hepatocellular
carcinoma cells and synergizes with immune checkpoint blockade
therapy. Cell Oncol (Dordr). 43:1203–1214. 2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Maruoka Y, Furusawa A, Okada R, Inagaki F,
Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL and Kobayashi
H: Near-infrared photoimmunotherapy combined with CTLA4 checkpoint
blockade in syngeneic mouse cancer models. Vaccines (Basel).
8(528)2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Antoniotti C, Borelli B, Rossini D,
Pietrantonio F, Morano F, Salvatore L, Lonardi S, Marmorino F,
Tamberi S, Corallo S, et al: AtezoTRIBE: A randomised phase II
study of FOLFOXIRI plus bevacizumab alone or in combination with
atezolizumab as initial therapy for patients with unresectable
metastatic colorectal cancer. BMC Cancer. 20(683)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Fumet JD, Isambert N, Hervieu A, Zanetta
S, Guion JF, Hennequin A, Rederstorff E, Bertaut A and Ghiringhelli
F: Phase Ib/II trial evaluating the safety, tolerability and
immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus
tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with
metastatic colorectal cancer. ESMO Open. 3(e000375)2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Bang YJ, Muro K, Fuchs CS, Golan T, Geva
R, Hara H, Jalal SI, Borg C, Doi T, Wainberg ZA, et al: KEYNOTE-059
cohort 2: Safety and efficacy of pembrolizumab (pembro) plus
5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment
of advanced gastric cancer. J Clin Oncol. 35(4012)2017.
|
|
87
|
Bailly C, Thuru X and Quesnel B: Combined
cytotoxic chemotherapy and immunotherapy of cancer: Modern times.
NAR Cancer. 2(zcaa002)2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Dosset M, Vargas TR, Lagrange A, Boidot R,
Végran F, Roussey A, Chalmin F, Dondaine L, Paul C, Lauret
Marie-Joseph E, et al: PD-1/PD-L1 pathway: An adaptive immune
resistance mechanism to immunogenic chemotherapy in colorectal
cancer. Oncoimmunology. 7(e1433981)2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Chu TH, Chan HH, Hu TH, Wang EM, Ma YL,
Huang SC, Wu JC, Chang YC, Weng WT, Wen ZH, et al: Celecoxib
enhances the therapeutic efficacy of epirubicin for Novikoff
hepatoma in rats. Cancer Med. 7:2567–2580. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wang F, Lau JKC and Yu J: The role of
natural killer cell in gastrointestinal cancer: Killer or helper.
Oncogene. 40:717–730. 2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Amedei A, Niccolai E and D'Elios MM: T
cells and adoptive immunotherapy: Recent developments and future
prospects in gastrointestinal oncology. Clin Dev Immunol.
2011(320571)2011.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Guo Y and Han W: Cytokine-induced killer
(CIK) cells: From basic research to clinical translation. Chin J
Cancer. 34:99–107. 2015.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Sakamoto N, Ishikawa T, Kokura S, Okayama
T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, et al: Phase
I clinical trial of autologous NK cell therapy using novel
expansion method in patients with advanced digestive cancer. J
Transl Med. 13(277)2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Shiozawa M, Chang CH, Huang YC, Chen YC,
Chi MS, Hao HC, Chang YC, Takeda S, Chi KH and Wang YS:
Pharmacologically upregulated carcinoembryonic antigen-expression
enhances the cytolytic activity of genetically-modified chimeric
antigen receptor NK-92MI against colorectal cancer cells. BMC
Immunol. 19(27)2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Liu B, Liu ZZ, Zhou ML, Lin JW, Chen XM,
Li Z, Gao WB, Yu ZD and Liu T: Development of c-MET-specific
chimeric antigen receptor-engineered natural killer cells with
cytotoxic effects on human liver cancer HepG2 cells. Mol Med Rep.
20:2823–2831. 2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Krause SW, Gastpar R, Andreesen R, Gross
C, Ullrich H, Thonigs G, Pfister K and Multhoff G: Treatment of
colon and lung cancer patients with ex vivo heat shock protein
70-peptide-activated, autologous natural killer cells: A clinical
phase i trial. Clin Cancer Res. 10:3699–3707. 2004.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Andreesen R, Scheibenbogen C, Brugger W,
Krause S, Meerpohl HG, Leser HG, Engler H and Löhr GW: Adoptive
transfer of tumor cytotoxic macrophages generated in vitro from
circulating blood monocytes: A new approach to cancer
immunotherapy. Cancer Res. 50:7450–7456. 1990.PubMed/NCBI
|
|
98
|
Klichinsky M, Ruella M, Shestova O, Lu XM,
Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty
NE, et al: Human chimeric antigen receptor macrophages for cancer
immunotherapy. Nat Biotechnol. 38:947–953. 2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Liu Y and Wang R: Immunotherapy targeting
tumor-associated macrophages. Front Med (Lausanne).
7(583708)2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Fesnak AD, June CH and Levine BL:
Engineered T cells: The promise and challenges of cancer
immunotherapy. Nat Rev Cancer. 16:566–581. 2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Mirzaei HR, Rodriguez A, Shepphird J,
Brown CE and Badie B: Chimeric antigen receptors T cell therapy in
solid tumor: Challenges and clinical applications. Front Immunol.
8(1850)2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in
refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544.
2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Hou B, Tang Y, Li W, Zeng Q and Chang D:
Efficiency of CAR-T therapy for treatment of solid tumor in
clinical trials: A meta-analysis. Disease Markers.
2019(3425291)2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Bebnowska D, Grywalska E,
Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J,
Pasiarski M, Góźdź S, Roliński J and Polkowski W: CAR-T cell
therapy-an overview of targets in gastric cancer. J Clin Med.
9(1894)2020.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Alrifai D, Sarker D and Maher J: Prospects
for adoptive immunotherapy of pancreatic cancer using chimeric
antigen receptor-engineered T-cells. Immunopharm Immunot. 38:50–60.
2016.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Cheng X, Zhao G and Zhao Y: Combination
immunotherapy approaches for pancreatic cancer treatment. Can J
Gastroenterol Hepatol. 2018(6240467)2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo
Y, Zhao X, Wang Y, Wang Z, Han W and Chen L: Effective and
persistent antitumor activity of HER2-directed CAR-T cells against
gastric cancer cells in vitro and xenotransplanted tumors in vivo.
Protein Cell. 9:867–878. 2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Tao K, He M, Tao F, Xu G, Ye M, Zheng Y
and Li Y: Development of NKG2D-based chimeric antigen receptor-T
cells for gastric cancer treatment. Cancer Chemother Pharmacol.
82:815–827. 2018.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Han H, Wang S, Hu Y, Li Z, Yang W, Lv Y,
Wang L, Zhang L and Ji J: Monoclonal antibody 3H11 chimeric antigen
receptors enhance T cell effector function and exhibit efficacy
against gastric cancer. Oncol Lett. 15:6887–6894. 2018.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Kim M, Pyo S, Kang CH, Lee CO, Lee HK,
Choi SU and Park CH: Folate receptor 1 (FOLR1) targeted chimeric
antigen receptor (CAR) T cells for the treatment of gastric cancer.
PLoS One. 13(e0198347)2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
DeLeon TT, Zhou YM, Nagalo BM, Yokoda RT,
Ahn DH, Ramanathan RK, Salomao MA, Aqel BA, Mahipal A, Bekaii-Saab
TS and Borad MJ: Novel immunotherapy strategies for hepatobiliary
cancers. Immunotherapy. 10:1077–1091. 2018.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Xu JY, Ye ZL, Jiang DQ, He JC, Ding YM, Li
LF, Lv SQ, Wang Y, Jin HJ and Qian QJ: Mesothelin-targeting
chimeric antigen receptor-modified T cells by piggyBac transposon
system suppress the growth of bile duct carcinoma. Tumor Biol.
39(1010428317695949)2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q,
Wang Y, Jia H and Han W: Phase I study of chimeric antigen
receptor-modified T cells in patients with EGFR-positive advanced
biliary tract cancers. Clin Cancer Res. 24:1277–1286.
2018.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Yan M, Schwaederle M, Arguello D, Millis
SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse
cancers: Review of results from 37,992 patients. Cancer Metastasis
Rev. 34:157–164. 2015.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Cui J, Li L, Wang C, Jin H, Yao C, Wang Y,
Li D, Tian H, Niu C, Wang G, et al: Combined cellular immunotherapy
and chemotherapy improves clinical outcome in patients with gastric
carcinoma. Cytotherapy. 17:979–988. 2015.PubMed/NCBI View Article : Google Scholar
|
|
116
|
El-Sayes N, Vito A and Mossman K: Tumor
heterogeneity: A great barrier in the age of cancer immunotherapy.
Cancers. 13(806)2021.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Walter S, Weinschenk T, Stenzl A, Zdrojowy
R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY,
Mendrzyk R, et al: Multipeptide immune response to cancer vaccine
IMA901 after single-dose cyclophosphamide associates with longer
patient survival. Nat Med. 18:1254–1261. 2012.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Minute L, Teijeira A, Sanchez-Paulete AR,
Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta
A, Garasa S, et al: Cellular cytotoxicity is a form of immunogenic
cell death. J Immunother Cancer. 8(e000325)2020.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Jiang Q, Zhang C, Wang H, Peng T, Zhang L,
Wang Y, Han W and Shi C: Mitochondria-targeting immunogenic cell
death inducer improves the adoptive T-cell therapy against solid
tumor. Front Oncol. 9(1196)2019.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Schwacha MG, Rani M, Nicholson SE, Lewis
AM, Holloway TL, Sordo S and Cap AP: Dermal γδ T-cells can be
activated by mitochondrial damage-associated molecular patterns.
PLoS One. 11(e0158993)2016.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Schwacha MG, Rani M, Zhang Q, Nunez-Cantu
O and Cap AP: Mitochondrial damage-associated molecular patterns
activate γδ T-cells. Innate immunity. 20:261–268. 2014.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Gebremeskel S and Johnston B: Concepts and
mechanisms underlying chemotherapy induced immunogenic cell death:
Impact on clinical studies and considerations for combined
therapies. Oncotarget. 6:41600–41619. 2015.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Xie W, Forveille S, Iribarren K, Sauvat A,
Senovilla L, Wang Y, Humeau J, Perez-Lanzon M, Zhou H,
Martínez-Leal JF, et al: Lurbinectedin synergizes with immune
checkpoint blockade to generate anticancer immunity.
Oncoimmunology. 8(e1656502)2019.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Limagne E, Thibaudin M, Nuttin L, Spill A,
Derangère V, Fumet JD, Amellal N, Peranzoni E, Cattan V and
Ghiringhelli F: Trifluridine/Tipiracil plus Oxaliplatin improves
PD-1 blockade in colorectal cancer by inducing immunogenic cell
death and depleting macrophages. Cancer Immunol Res. 7:1958–1969.
2019.PubMed/NCBI View Article : Google Scholar
|