Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
April-2022 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)

  • Authors:
    • Johanna Andrea Gutiérrez‑Vargas
    • John Fredy Castro‑Álvarez
    • Jose Fernando Zapata‑Berruecos
    • Komal Abdul‑Rahim
    • Anibal Arteaga‑Noriega
  • View Affiliations / Copyright

    Affiliations: Neuroscience and Aging Group (GISAM), Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia, INDEC‑CES Research Group, Neurological Institute of Colombia, Medellín 050023, Colombia, Aga Khan University Hospital, Karachi, Sindh 74800, Pakistan, Family and Community Health Group, Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia
    Copyright: © Gutiérrez‑Vargas et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 27
    |
    Published online on: February 18, 2022
       https://doi.org/10.3892/br.2022.1510
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The cytoskeleton is the main intracellular structure that determines the morphology of neurons and maintains their integrity. Therefore, disruption of its structure and function may underlie several neurodegenerative diseases. This review summarizes the current literature on the tau protein, microtubule‑associated protein 2 (MAP2) and neurofilaments as common denominators in pathological conditions such as Alzheimer's disease (AD), cerebral ischemia, and multiple sclerosis (MS). Insights obtained from experimental models using biochemical and immunocytochemical techniques highlight that changes in these proteins may be potentially used as protein targets in clinical settings, which provides novel opportunities for the detection, monitoring and treatment of patients with these neurodegenerative diseases.
View Figures

Figure 1

View References

1 

Fletcher DA and Mullins RD: Cell mechanics and the cytoskeleton. Nature. 463:485–492. 2010.PubMed/NCBI View Article : Google Scholar

2 

Rottner K, Faix J, Bogdan S, Linder S and Kerkhoff E: Actin assembly mechanisms at a glance. J Cell Sci. 130:3427–3435. 2017.PubMed/NCBI View Article : Google Scholar

3 

Jay D, García EJ, Lara JE, Medina MA and de la Luz Ibarra M: Determination of a cAMP-dependent protein kinase phosphorylation site in the C-terminal region of human endothelial actin-binding protein. Arch Biochem Biophys. 377:80–84. 2000.PubMed/NCBI View Article : Google Scholar

4 

Liem RKH and Messing A: Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest. 119:1814–1824. 2009.PubMed/NCBI View Article : Google Scholar

5 

Da Silva JS and Dotti CG: Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci. 3:694–704. 2002.PubMed/NCBI View Article : Google Scholar

6 

Medana IM and Esiri MM: Axonal damage: A key predictor of outcome in human CNS diseases. Brain. 126:515–530. 2003.PubMed/NCBI View Article : Google Scholar

7 

Goodson HV and Jonasson EM: Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 10(a022608)2018.PubMed/NCBI View Article : Google Scholar

8 

Jellinger KA: Cell death mechanisms in neurodegeneration. J Cell Mol Med. 5:1–17. 2001.PubMed/NCBI View Article : Google Scholar

9 

Muñoz-Lasso DC, Romá-Mateo C, Pallardó FV and Gonzalez-Cabo P: Much more than a scaffold: Cytoskeletal proteins in neurological disorders. Cells. 9(E358)2020.PubMed/NCBI View Article : Google Scholar

10 

Henriques AG, Müller T, Oliveira JM, Cova M, da Cruz e Silva CB and da Cruz E Silva OA: Altered protein phosphorylation as a resource for potential AD biomarkers. Sci Rep. 6(30319)2016.PubMed/NCBI View Article : Google Scholar

11 

Mietelska-Porowska A, Wasik U, Goras M, Filipek A and Niewiadomska G: Tau protein modifications and interactions: Their role in function and dysfunction. Int J Mol Sci. 15:4671–4713. 2014.PubMed/NCBI View Article : Google Scholar

12 

McMurray CT: Neurodegeneration: Diseases of the cytoskeleton? Cell Death Differ. 7:861–865. 2000.PubMed/NCBI View Article : Google Scholar

13 

Guo T, Noble W and Hanger DP: Roles of tau protein in health and disease. Acta Neuropathol. 133:665–704. 2017.PubMed/NCBI View Article : Google Scholar

14 

Kosik KS, Joachim CL and Selkoe DJ: Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Acta Neuropathol. 83:4044–4048. 1986.PubMed/NCBI View Article : Google Scholar

15 

Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, Mejia-delCastillo GJ, Carrera-Pineda R, Cuevas-Garcia CF and Garcia-delaTorre P: BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomark Med. 12:717–726. 2018.PubMed/NCBI View Article : Google Scholar

16 

Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, Kappos L, Zipp F and Bittner S: Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 25:678–686. 2019.PubMed/NCBI View Article : Google Scholar

17 

Zetterberg H: Plasma Neurofilament light in progressive multiple sclerosis. Acta Neurol Scand. 141:14–15. 2020.PubMed/NCBI View Article : Google Scholar

18 

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, Regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392:1789–1858. 2018.PubMed/NCBI View Article : Google Scholar

19 

Sanchez JS, Hanseeuw BJ, Lopera F, Sperling RA, Baena A, Bocanegra Y, Aguillon D, Guzmán-Vélez E, Pardilla-Delgado E, Ramirez-Gomez L, et al: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer's disease: Findings from the Colombia-Boston (COLBOS) biomarker study. Alzheimers Res Ther. 13(27)2021.PubMed/NCBI View Article : Google Scholar

20 

Busche MA and Hyman BT: Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci. 23:1183–1193. 2020.PubMed/NCBI View Article : Google Scholar

21 

Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M, Safar J, Ueberheide B and Wisniewski T: Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain. 143:2803–2817. 2020.PubMed/NCBI View Article : Google Scholar

22 

Kandimalla R, Manczak M, Yin X, Wang R and Reddy PH: Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer's disease. Hum Mol Genet. 27:30–40. 2018.PubMed/NCBI View Article : Google Scholar

23 

Castro-Alvarez JF, Uribe-Arias A, Raigoza DM and Cardona-Gómez GP: Cyclin-dependent kinase 5, a node protein in diminished tauopathy: A systems biology approach. Front Aging Neurosci. 6(232)2014.PubMed/NCBI View Article : Google Scholar

24 

Rudrabhatla P, Jaffe H and Pant HC: Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): Phosphoproteomics of Alzheimer's NFTs. FASEB J. 25:3896–3905. 2011.PubMed/NCBI View Article : Google Scholar

25 

Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, et al: Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nat Neurosci. 23:1567–1579. 2020.PubMed/NCBI View Article : Google Scholar

26 

Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Kiosea NC, Nazari S, Chen PP, Nothias F, et al: Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J Neurosci. 34:7124–7136. 2014.PubMed/NCBI View Article : Google Scholar

27 

Lopez-Tobón A, Cepeda-Prado E and Cardona-Gómez GP: Decrease of tau hyperphosphorylation by 17β estradiol requires sphingosine kinase in a glutamate toxicity model. Neurochem Res. 34:2206–2214. 2009.PubMed/NCBI View Article : Google Scholar

28 

Posada-Duque RA, Ramirez O, Härtel S, Inestrosa NC, Bodaleo F, González-Billault C, Kirkwood A and Cardona-Gómez GP: CDK5 downregulation enhances synaptic plasticity. Cell Mol Life Sci. 74:153–172. 2017.PubMed/NCBI View Article : Google Scholar

29 

Uribe-Arias A, Posada-Duque RA, González-Billault C, Villegas A, Lopera F and Cardona-Gómez GP: p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer's disease. J Neurochem. 138:624–639. 2016.PubMed/NCBI View Article : Google Scholar

30 

Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C and Terro F: Tau protein kinases: Involvement in Alzheimer's disease. Ageing Res Rev. 12:289–309. 2013.PubMed/NCBI View Article : Google Scholar

31 

Reimer L, Betzer C, Kofoed RH, Volbracht C, Fog K, Kurhade C, Nilsson E, Överby AK and Jensen PH: PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation. Brain Pathol. 31:103–119. 2021.PubMed/NCBI View Article : Google Scholar

32 

Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C and Cardona-Gómez GP: p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem. 134:354–370. 2015.PubMed/NCBI View Article : Google Scholar

33 

Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P and Pant HC: Cdk5 modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol Biol Cell. 18:404–413. 2007.PubMed/NCBI View Article : Google Scholar

34 

Cicero S and Herrup K: Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci. 25:9658–9668. 2005.PubMed/NCBI View Article : Google Scholar

35 

Piedrahita D, Castro-Alvarez JF, Boudreau RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC and Cardona-Gómez GP: β-Secretase 1's targeting reduces hyperphosphorilated tau, implying autophagy actors in 3xTg-AD mice. Front Cell Neurosci. 9(498)2016.PubMed/NCBI View Article : Google Scholar

36 

Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, et al: A three-dimensional human neural cell culture model of Alzheimer's disease. Nature. 515:274–278. 2014.PubMed/NCBI View Article : Google Scholar

37 

Choi AMK, Ryter SW and Levine B: Autophagy in human health and disease. N Engl J Med. 368:651–662. 2013.PubMed/NCBI View Article : Google Scholar

38 

Komatsu M, Qing JW, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K and Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA. 104:14489–14494. 2007.PubMed/NCBI View Article : Google Scholar

39 

Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E and Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441:880–884. 2006.PubMed/NCBI View Article : Google Scholar

40 

Kast DJ and Dominguez R: The cytoskeleton-autophagy connection. Curr Biol. 27:R318–R326. 2017.PubMed/NCBI View Article : Google Scholar

41 

Villamil Ortiz JG and Cardona Gomez GP: Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci. 7(84)2015.PubMed/NCBI View Article : Google Scholar

42 

Mohan R and John A: Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life. 67:395–403. 2015.PubMed/NCBI View Article : Google Scholar

43 

Xie C, Soeda Y, Shinzaki Y, In Y, Tomoo K, Ihara Y and Miyasaka T: Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau. J Neurochem. 135:19–26. 2015.PubMed/NCBI View Article : Google Scholar

44 

Xie C, Miyasaka T, Yoshimura S, Hatsuta H, Yoshina S, Kage-Nakadai E, Mitani S, Murayama S and Ihara Y: The homologous carboxyl-terminal domains of microtubule-associated protein 2 and Tau induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS One. 9(e89796)2014.PubMed/NCBI View Article : Google Scholar

45 

Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA and Gouras GK: Accumulation of Intraneuronal β-Amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One. 8(e51965)2013.PubMed/NCBI View Article : Google Scholar

46 

Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK, Julien JP and Nixon RA: Peripherin is a subunit of peripheral nerve neurofilaments: Implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci. 32:8501–8508. 2012.PubMed/NCBI View Article : Google Scholar

47 

Yuan A, Sershen H, Veeranna Basavarajappa BS, Kumar A, Hashim A, Berg M, Lee JH, Sato Y, Rao MV, et al: Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry. 20:986–994. 2015.PubMed/NCBI View Article : Google Scholar

48 

Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, et al: Neurofilaments: Neurobiological foundations for biomarker applications. Brain. 143:1975–1998. 2020.PubMed/NCBI View Article : Google Scholar

49 

Barry DM, Stevenson W, Bober BG, Wiese PJ, Dale JM, Barry GS, Byers NS, Strope JD, Chang R, Schulz DJ, et al: Expansion of Neurofilament Medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness. J Neurosci. 32:6209–6219. 2012.PubMed/NCBI View Article : Google Scholar

50 

Guzmán-Vélez E, Zetterberg H, Fox-Fuller JT, Vila-Castelar C, Sanchez JS, Baena A, Garcia-Ospina G, Aguillon D, Pardilla-Delgado E, Gatchel JR, et al: Associations between plasma neurofilament light, in vivo brain pathology, and cognition in non-demented individuals with autosomal-dominant Alzheimer's disease. Alzheimers Dement. 17:813–821. 2021.PubMed/NCBI View Article : Google Scholar

51 

Quiroz YT, Zetterberg H, Reiman EM, Chen Y, Su Y, Fox-Fuller JT, Garcia G, Villegas A, Sepulveda-Falla D, Villada M, et al: Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: A cross-sectional and longitudinal cohort study. Lancet Neurol. 19:513–521. 2020.PubMed/NCBI View Article : Google Scholar

52 

Rajan KB, Aggarwal NT, McAninch EA, Weuve J, Barnes LL, Wilson RS, DeCarli C and Evans DA: Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann Neurol. 88:1065–1076. 2020.PubMed/NCBI View Article : Google Scholar

53 

Walsh P, Sudre CH, Fiford CM, Ryan NS, Lashley T, Frost C and Barnes J: ADNI Investigators. The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease. Neurobiol Aging. 97:10–17. 2021.PubMed/NCBI View Article : Google Scholar

54 

Delaby C, Alcolea D, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Altuna M, Estellés T, Santos-Santos M, Turon-Sans J, et al: Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep. 10(9161)2020.PubMed/NCBI View Article : Google Scholar

55 

Idland AV, Sala-Llonch R, Borza T, Watne LO, Wyller TB, Brækhus A, Zetterberg H, Blennow K, Walhovd KB and Fjell AM: CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol Aging. 49:138–144. 2017.PubMed/NCBI View Article : Google Scholar

56 

Henson RL, Doran E, Christian BT, Handen BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, et al: Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort of adults with Down syndrome. Alzheimers Dement (Amst). 12(e12057)2020.PubMed/NCBI View Article : Google Scholar

57 

Sveinsson OA, Kjartansson O and Valdimarsson EM: Cerebral ischemia/infarction-epidemiology, causes and symptoms. Laeknabladid. 100:271–279. 2014.PubMed/NCBI View Article : Google Scholar : (In Icelandic).

58 

Cao L, Tan L, Wang HF, Jiang T, Zhu XC and Yu JT: Cerebral Microinfarcts and dementia: A systematic review and metaanalysis. Curr Alzheimer Res. 14:802–808. 2017.PubMed/NCBI View Article : Google Scholar

59 

Pluta R, Januszewski S and Czuczwar SJ: Brain ischemia as a prelude to Alzheimer's disease. Front Aging Neurosci. 13(636653)2021.PubMed/NCBI View Article : Google Scholar

60 

Yoshimi K, Takeda M, Nishimura T, Kudo T, Nakamura Y, Tada K and Iwata N: An immunohistochemical study of MAP2 and clathrin in gerbil hippocampus after cerebral ischemia. Brain Res. 560:149–158. 1991.PubMed/NCBI View Article : Google Scholar

61 

Vanicky I, Balchen T and Diemer NH: Alterations in MAP2 immunostainability after prolonged complete brain ischaemia in the rat. Neuroreport. 7:161–164. 1995.PubMed/NCBI

62 

Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M and Michalski D: The Cytoskeletal Elements MAP2 and NF-L show substantial alterations in different stroke models while elevated serum levels highlight especially MAP2 as a sensitive biomarker in stroke patients. Mol Neurobiol. 58:4051–4069. 2021.PubMed/NCBI View Article : Google Scholar

63 

Johanna GV, Fredy CA, David VC, Natalia MV, Angel CR and Patricia CG: Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int. 57:762–773. 2010.PubMed/NCBI View Article : Google Scholar

64 

Gutiérrez-Vargas JA, Moreno H and Cardona-Gómez GP: Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow Metab. 37:2208–2223. 2017.PubMed/NCBI View Article : Google Scholar

65 

Pérez-Corredor PA, Gutiérrez-Vargas JA, Ciro-Ramírez L, Balcazar N and Cardona-Gómez GP: High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutr Neurosci: Mar 2, 2020 (Epub ahead of print).

66 

Dawson DA and Hallenbeck JM: Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J Cereb Blood Flow Metab. 16:170–174. 1996.PubMed/NCBI View Article : Google Scholar

67 

Akulinin VA and Dahlstrom A: Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem Res. 28:373–378. 2003.PubMed/NCBI View Article : Google Scholar

68 

Pluta R, Ułamek-Kozioł M, Januszewski S and Czuczwar SJ: Tau protein dysfunction after brain ischemia. J Alzheimers Dis. 66:429–437. 2018.PubMed/NCBI View Article : Google Scholar

69 

Gutiérrez-Vargas JA, Múnera A and Cardona-Gómez GP: CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab. 35:1937–1949. 2015.PubMed/NCBI View Article : Google Scholar

70 

Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Bogucki J, Januszewski S, Kocki J and Czuczwar SJ: Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer's phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer's disease. Pharmacol Rep. 70:881–884. 2018.PubMed/NCBI View Article : Google Scholar

71 

Mailliot C, Podevin-Dimster V, Rosenthal RE, Sergeant N, Delacourte A, Fiskum G and Buée L: Rapid tau protein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 20:543–549. 2000.PubMed/NCBI View Article : Google Scholar

72 

Wen Y, Yang S, Liu R and Simpkins JW: Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res. 1022:30–38. 2004.PubMed/NCBI View Article : Google Scholar

73 

Uchihara T, Nakamura A, Arai T, Ikeda K and Tsuchiya K: Microglial tau undergoes phosphorylation-independent modification after ischemia. Glia. 45:180–187. 2004.PubMed/NCBI View Article : Google Scholar

74 

Fujii H, Takahashi T, Mukai T, Tanaka S, Hosomi N, Maruyama H, Sakai N and Matsumoto M: Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer's disease-Hyperphosphorylation and cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab. 37:2441–2457. 2017.PubMed/NCBI View Article : Google Scholar

75 

Shiiya N, Kunihara T, Miyatake T, Matsuzaki K and Yasuda K: Tau protein in the cerebrospinal fluid is a marker of brain injury after aortic surgery. Ann Thorac Surg. 77:2034–2038. 2004.PubMed/NCBI View Article : Google Scholar

76 

Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E and Blennow K: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 297:187–190. 2001.PubMed/NCBI View Article : Google Scholar

77 

Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg H, et al: Tau, S100B and NSE as blood biomarkers in acute cerebrovascular events. In Vivo. 34:2577–2586. 2020.PubMed/NCBI View Article : Google Scholar

78 

Bitsch A, Horn C, Kemmling Y, Seipelt M, Hellenbrand U, Stiefel M, Ciesielczyk B, Cepek L, Bahn E, Ratzka P, et al: Serum tau protein level as a marker of axonal damage in acute ischemic stroke. Eur Neurol. 47:45–51. 2002.PubMed/NCBI View Article : Google Scholar

79 

Kurzepa J, Bielewicz J, Grabarska A, Stelmasiak Z, Stryjecka-Zimmer M and Bartosik-Psujek H: Matrix metalloproteinase-9 contributes to the increase of tau protein in serum during acute ischemic stroke. J Clin Neurosci. 17:997–999. 2010.PubMed/NCBI View Article : Google Scholar

80 

Lasek-Bal A, Jedrzejowska-Szypulka H, Rozycka J, Bal W, Kowalczyk A, Holecki M, Dulawa J and Lewin-Kowalik J: The presence of Tau protein in blood as a potential prognostic factor in stroke patients. J Physiol Pharmacol. 67:691–696. 2016.PubMed/NCBI

81 

Bielewicz J, Kurzepa J, Czekajska-Chehab E, Stelmasiak Z and Bartosik-Psujek H: Does serum Tau protein predict the outcome of patients with ischemic stroke? J Mol Neurosci. 43:241–245. 2011.PubMed/NCBI View Article : Google Scholar

82 

Wunderlich MT, Lins H, Skalej M, Wallesch CW and Goertler M: Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 108:558–563. 2006.PubMed/NCBI View Article : Google Scholar

83 

De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K, Engelborghs S and Vanmechelen E: Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol. 17(170)2017.PubMed/NCBI View Article : Google Scholar

84 

Irving EA, Nicoll J, Graham DI and Dewar D: Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neurosci Lett. 213:189–192. 1996.PubMed/NCBI View Article : Google Scholar

85 

Uphaus T, Bittner S, Gröschel S, Steffen F, Muthuraman M, Wasser K, Weber-Krüger M, Zipp F, Wachter R and Gröschel K: NfL (Neurofilament Light Chain) levels as a predictive marker for long-term outcome after ischemic stroke. Stroke. 50:3077–3084. 2019.PubMed/NCBI View Article : Google Scholar

86 

Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, et al: Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 14:577–589. 2018.PubMed/NCBI View Article : Google Scholar

87 

Peters N, van Leijsen E, Tuladhar AM, Barro C, Konieczny MJ, Ewers M, Lyrer P, Engelter ST, Kuhle J, Duering M and de Leeuw FE: Serum Neurofilament light Chain is associated with incident Lacunes in progressive cerebral small vessel disease. J Stroke. 22:369–376. 2020.PubMed/NCBI View Article : Google Scholar

88 

Duering M, Konieczny MJ, Tiedt S, Baykara E, Tuladhar AM, Leijsen EV, Lyrer P, Engelter ST, Gesierich B, Achmüller M, et al: Serum Neurofilament Light Chain levels are related to small vessel disease burden. J Stroke. 20:228–238. 2018.PubMed/NCBI View Article : Google Scholar

89 

Paolini Paoletti F, Simoni S, Parnetti L and Gaetani L: The contribution of small vessel disease to neurodegeneration: Focus on Alzheimer's disease, Parkinson's disease and multiple sclerosis. Int J Mol Sci. 22(4958)2021.PubMed/NCBI View Article : Google Scholar

90 

Knopman DS: Cerebrovascular disease and dementia. Br J Radiol. 80 (Suppl 2):S121–S127. 2007.PubMed/NCBI View Article : Google Scholar

91 

Dendrou CA, Fugger L and Friese MA: Immunopathology of multiple sclerosis. Nat Rev Immunol. 15:545–558. 2015.PubMed/NCBI View Article : Google Scholar

92 

Virgilio E, Vecchio D, Crespi I, Serino R, Cantello R, Dianzani U and Comi C: Cerebrospinal Tau levels as a predictor of early disability in multiple sclerosis. Mult Scler Relat Disord. 56(103231)2021.PubMed/NCBI View Article : Google Scholar

93 

Mirzaii-Dizgah MH, Mirzaii-Dizgah MR and Mirzaii-Dizgah I: Serum and saliva total tau protein as a marker for relapsing-remitting multiple sclerosis. Med Hypotheses. 135(109476)2020.PubMed/NCBI View Article : Google Scholar

94 

Shafit-Zagardo B, Kress Y, Zhao ML and Lee SC: A novel microtubule-associated protein-2 expressed in oligodendrocytes in multiple sclerosis lesions. J Neurochem. 73:2531–2537. 1999.PubMed/NCBI View Article : Google Scholar

95 

Wang P, Jiang LL, Wang C, Zhu Z and Lai C: Neurofilament protein as a potential biomarker of axonal degeneration in experimental autoimmune encephalomyelitis. Neurol India. 68:364–367. 2020.PubMed/NCBI View Article : Google Scholar

96 

Rosengren LE, Karlsson JE, Karlsson JO, Persson LI and Wikkelsø C: Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 67:2013–2018. 1996.PubMed/NCBI View Article : Google Scholar

97 

Lycke JN, Karlsson JE, Andersen O and Rosengren LE: Neurofilament protein in cerebrospinal fluid: A potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 64:402–404. 1998.PubMed/NCBI View Article : Google Scholar

98 

Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, Liman V, Norgren N, Blennow K and Zetterberg H: Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 54:1655–1661. 2016.PubMed/NCBI View Article : Google Scholar

99 

Varhaug KN, Torkildsen Ø, Myhr KM and Vedeler CA: Neurofilament light Chain as a biomarker in multiple sclerosis. Front Neurol. 10(338)2019.PubMed/NCBI View Article : Google Scholar

100 

Norgren N, Rosengren L and Stigbrand T: Elevated neurofilament levels in neurological diseases. Brain Res. 987:25–31. 2003.PubMed/NCBI View Article : Google Scholar

101 

Cai L and Huang J: Neurofilament light chain as a biological marker for multiple sclerosis: A meta-analysis study. Neuropsychiatr Dis Treat. 14:2241–2254. 2018.PubMed/NCBI View Article : Google Scholar

102 

Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, Zecca C, Blennow K, Zetterberg H, Leppert D, et al: Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 81:857–870. 2017.PubMed/NCBI View Article : Google Scholar

103 

Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, Leppert D, Gobbi C, Granziera C, Yaldizli Ö, et al: Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 141:2382–2391. 2018.PubMed/NCBI View Article : Google Scholar

104 

Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, et al: Neurofilament light chain level is a weak risk factor for the development of MS. Neurology. 87:1076–1084. 2016.PubMed/NCBI View Article : Google Scholar

105 

Comabella M and Montalban X: Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 13:113–126. 2014.PubMed/NCBI View Article : Google Scholar

106 

Matute-Blanch C, Villar LM, Álvarez-Cermeño JC, Rejdak K, Evdoshenko E, Makshakov G, Nazarov V, Lapin S, Midaglia L, Vidal-Jordana A, et al: Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain. 141:1085–1093. 2018.PubMed/NCBI View Article : Google Scholar

107 

Khalil M: Are neurofilaments valuable biomarkers for long-term disease prognostication in MS? Mult Scler. 24:1270–1271. 2018.PubMed/NCBI View Article : Google Scholar

108 

Giovannoni G: Peripheral blood neurofilament light chain levels: The neurologist's C-reactive protein? Brain. 141:2235–2237. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gutiérrez‑Vargas JA, Castro‑Álvarez JF, Zapata‑Berruecos JF, Abdul‑Rahim K and Arteaga‑Noriega A: Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomed Rep 16: 27, 2022.
APA
Gutiérrez‑Vargas, J.A., Castro‑Álvarez, J.F., Zapata‑Berruecos, J.F., Abdul‑Rahim, K., & Arteaga‑Noriega, A. (2022). Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomedical Reports, 16, 27. https://doi.org/10.3892/br.2022.1510
MLA
Gutiérrez‑Vargas, J. A., Castro‑Álvarez, J. F., Zapata‑Berruecos, J. F., Abdul‑Rahim, K., Arteaga‑Noriega, A."Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)". Biomedical Reports 16.4 (2022): 27.
Chicago
Gutiérrez‑Vargas, J. A., Castro‑Álvarez, J. F., Zapata‑Berruecos, J. F., Abdul‑Rahim, K., Arteaga‑Noriega, A."Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)". Biomedical Reports 16, no. 4 (2022): 27. https://doi.org/10.3892/br.2022.1510
Copy and paste a formatted citation
x
Spandidos Publications style
Gutiérrez‑Vargas JA, Castro‑Álvarez JF, Zapata‑Berruecos JF, Abdul‑Rahim K and Arteaga‑Noriega A: Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomed Rep 16: 27, 2022.
APA
Gutiérrez‑Vargas, J.A., Castro‑Álvarez, J.F., Zapata‑Berruecos, J.F., Abdul‑Rahim, K., & Arteaga‑Noriega, A. (2022). Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomedical Reports, 16, 27. https://doi.org/10.3892/br.2022.1510
MLA
Gutiérrez‑Vargas, J. A., Castro‑Álvarez, J. F., Zapata‑Berruecos, J. F., Abdul‑Rahim, K., Arteaga‑Noriega, A."Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)". Biomedical Reports 16.4 (2022): 27.
Chicago
Gutiérrez‑Vargas, J. A., Castro‑Álvarez, J. F., Zapata‑Berruecos, J. F., Abdul‑Rahim, K., Arteaga‑Noriega, A."Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)". Biomedical Reports 16, no. 4 (2022): 27. https://doi.org/10.3892/br.2022.1510
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team