|
1
|
Fletcher DA and Mullins RD: Cell mechanics
and the cytoskeleton. Nature. 463:485–492. 2010.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Rottner K, Faix J, Bogdan S, Linder S and
Kerkhoff E: Actin assembly mechanisms at a glance. J Cell Sci.
130:3427–3435. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Jay D, García EJ, Lara JE, Medina MA and
de la Luz Ibarra M: Determination of a cAMP-dependent protein
kinase phosphorylation site in the C-terminal region of human
endothelial actin-binding protein. Arch Biochem Biophys. 377:80–84.
2000.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Liem RKH and Messing A: Dysfunctions of
neuronal and glial intermediate filaments in disease. J Clin
Invest. 119:1814–1824. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
5
|
Da Silva JS and Dotti CG: Breaking the
neuronal sphere: Regulation of the actin cytoskeleton in
neuritogenesis. Nat Rev Neurosci. 3:694–704. 2002.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Medana IM and Esiri MM: Axonal damage: A
key predictor of outcome in human CNS diseases. Brain. 126:515–530.
2003.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Goodson HV and Jonasson EM: Microtubules
and microtubule-associated proteins. Cold Spring Harb Perspect
Biol. 10(a022608)2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Jellinger KA: Cell death mechanisms in
neurodegeneration. J Cell Mol Med. 5:1–17. 2001.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Muñoz-Lasso DC, Romá-Mateo C, Pallardó FV
and Gonzalez-Cabo P: Much more than a scaffold: Cytoskeletal
proteins in neurological disorders. Cells. 9(E358)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Henriques AG, Müller T, Oliveira JM, Cova
M, da Cruz e Silva CB and da Cruz E Silva OA: Altered protein
phosphorylation as a resource for potential AD biomarkers. Sci Rep.
6(30319)2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Mietelska-Porowska A, Wasik U, Goras M,
Filipek A and Niewiadomska G: Tau protein modifications and
interactions: Their role in function and dysfunction. Int J Mol
Sci. 15:4671–4713. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
McMurray CT: Neurodegeneration: Diseases
of the cytoskeleton? Cell Death Differ. 7:861–865. 2000.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Guo T, Noble W and Hanger DP: Roles of tau
protein in health and disease. Acta Neuropathol. 133:665–704.
2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kosik KS, Joachim CL and Selkoe DJ:
Microtubule-associated protein tau (tau) is a major antigenic
component of paired helical filaments in Alzheimer disease. Acta
Neuropathol. 83:4044–4048. 1986.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Islas-Hernandez A, Aguilar-Talamantes HS,
Bertado-Cortes B, Mejia-delCastillo GJ, Carrera-Pineda R,
Cuevas-Garcia CF and Garcia-delaTorre P: BDNF and Tau as biomarkers
of severity in multiple sclerosis. Biomark Med. 12:717–726.
2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Siller N, Kuhle J, Muthuraman M, Barro C,
Uphaus T, Groppa S, Kappos L, Zipp F and Bittner S: Serum
neurofilament light chain is a biomarker of acute and chronic
neuronal damage in early multiple sclerosis. Mult Scler.
25:678–686. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zetterberg H: Plasma Neurofilament light
in progressive multiple sclerosis. Acta Neurol Scand. 141:14–15.
2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators. Global, Regional, and national incidence,
prevalence, and years lived with disability for 354 Diseases and
Injuries for 195 countries and territories, 1990-2017: A systematic
analysis for the Global Burden of Disease Study 2017. Lancet.
392:1789–1858. 2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Sanchez JS, Hanseeuw BJ, Lopera F,
Sperling RA, Baena A, Bocanegra Y, Aguillon D, Guzmán-Vélez E,
Pardilla-Delgado E, Ramirez-Gomez L, et al: Longitudinal amyloid
and tau accumulation in autosomal dominant Alzheimer's disease:
Findings from the Colombia-Boston (COLBOS) biomarker study.
Alzheimers Res Ther. 13(27)2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Busche MA and Hyman BT: Synergy between
amyloid-β and tau in Alzheimer's disease. Nat Neurosci.
23:1183–1193. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Drummond E, Pires G, MacMurray C, Askenazi
M, Nayak S, Bourdon M, Safar J, Ueberheide B and Wisniewski T:
Phosphorylated tau interactome in the human Alzheimer's disease
brain. Brain. 143:2803–2817. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Kandimalla R, Manczak M, Yin X, Wang R and
Reddy PH: Hippocampal phosphorylated tau induced cognitive decline,
dendritic spine loss and mitochondrial abnormalities in a mouse
model of Alzheimer's disease. Hum Mol Genet. 27:30–40.
2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Castro-Alvarez JF, Uribe-Arias A, Raigoza
DM and Cardona-Gómez GP: Cyclin-dependent kinase 5, a node protein
in diminished tauopathy: A systems biology approach. Front Aging
Neurosci. 6(232)2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Rudrabhatla P, Jaffe H and Pant HC: Direct
evidence of phosphorylated neuronal intermediate filament proteins
in neurofibrillary tangles (NFTs): Phosphoproteomics of Alzheimer's
NFTs. FASEB J. 25:3896–3905. 2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Richetin K, Steullet P, Pachoud M, Perbet
R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey
M, et al: Tau accumulation in astrocytes of the dentate gyrus
induces neuronal dysfunction and memory deficits in Alzheimer's
disease. Nat Neurosci. 23:1567–1579. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ,
Alaverdyan M, Kiosea NC, Nazari S, Chen PP, Nothias F, et al: Loss
of MAP function leads to hippocampal synapse loss and deficits in
the Morris water maze with aging. J Neurosci. 34:7124–7136.
2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Lopez-Tobón A, Cepeda-Prado E and
Cardona-Gómez GP: Decrease of tau hyperphosphorylation by 17β
estradiol requires sphingosine kinase in a glutamate toxicity
model. Neurochem Res. 34:2206–2214. 2009.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Posada-Duque RA, Ramirez O, Härtel S,
Inestrosa NC, Bodaleo F, González-Billault C, Kirkwood A and
Cardona-Gómez GP: CDK5 downregulation enhances synaptic plasticity.
Cell Mol Life Sci. 74:153–172. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Uribe-Arias A, Posada-Duque RA,
González-Billault C, Villegas A, Lopera F and Cardona-Gómez GP:
p120-catenin is necessary for neuroprotection induced by CDK5
silencing in models of Alzheimer's disease. J Neurochem.
138:624–639. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Martin L, Latypova X, Wilson CM,
Magnaudeix A, Perrin ML, Yardin C and Terro F: Tau protein kinases:
Involvement in Alzheimer's disease. Ageing Res Rev. 12:289–309.
2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Reimer L, Betzer C, Kofoed RH, Volbracht
C, Fog K, Kurhade C, Nilsson E, Överby AK and Jensen PH: PKR kinase
directly regulates tau expression and Alzheimer's disease-related
tau phosphorylation. Brain Pathol. 31:103–119. 2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Posada-Duque RA, López-Tobón A, Piedrahita
D, González-Billault C and Cardona-Gómez GP: p35 and Rac1 underlie
the neuroprotection and cognitive improvement induced by CDK5
silencing. J Neurochem. 134:354–370. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zheng YL, Li BS, Kanungo J, Kesavapany S,
Amin N, Grant P and Pant HC: Cdk5 modulation of mitogen-activated
protein kinase signaling regulates neuronal survival. Mol Biol
Cell. 18:404–413. 2007.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Cicero S and Herrup K: Cyclin-dependent
kinase 5 is essential for neuronal cell cycle arrest and
differentiation. J Neurosci. 25:9658–9668. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Piedrahita D, Castro-Alvarez JF, Boudreau
RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC and Cardona-Gómez
GP: β-Secretase 1's targeting reduces hyperphosphorilated tau,
implying autophagy actors in 3xTg-AD mice. Front Cell Neurosci.
9(498)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Choi SH, Kim YH, Hebisch M, Sliwinski C,
Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, et al: A
three-dimensional human neural cell culture model of Alzheimer's
disease. Nature. 515:274–278. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Choi AMK, Ryter SW and Levine B: Autophagy
in human health and disease. N Engl J Med. 368:651–662.
2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Komatsu M, Qing JW, Holstein GR, Friedrich
VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K and Yue Z: Essential
role for autophagy protein Atg7 in the maintenance of axonal
homeostasis and the prevention of axonal degeneration. Proc Natl
Acad Sci USA. 104:14489–14494. 2007.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Komatsu M, Waguri S, Chiba T, Murata S,
Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E and
Tanaka K: Loss of autophagy in the central nervous system causes
neurodegeneration in mice. Nature. 441:880–884. 2006.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kast DJ and Dominguez R: The
cytoskeleton-autophagy connection. Curr Biol. 27:R318–R326.
2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Villamil Ortiz JG and Cardona Gomez GP:
Comparative analysis of autophagy and tauopathy related markers in
cerebral ischemia and Alzheimer's disease animal models. Front
Aging Neurosci. 7(84)2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Mohan R and John A: Microtubule-associated
proteins as direct crosslinkers of actin filaments and
microtubules. IUBMB Life. 67:395–403. 2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Xie C, Soeda Y, Shinzaki Y, In Y, Tomoo K,
Ihara Y and Miyasaka T: Identification of key amino acids
responsible for the distinct aggregation properties of
microtubule-associated protein 2 and tau. J Neurochem. 135:19–26.
2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Xie C, Miyasaka T, Yoshimura S, Hatsuta H,
Yoshina S, Kage-Nakadai E, Mitani S, Murayama S and Ihara Y: The
homologous carboxyl-terminal domains of microtubule-associated
protein 2 and Tau induce neuronal dysfunction and have differential
fates in the evolution of neurofibrillary tangles. PLoS One.
9(e89796)2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Takahashi RH, Capetillo-Zarate E, Lin MT,
Milner TA and Gouras GK: Accumulation of Intraneuronal β-Amyloid 42
peptides is associated with early changes in microtubule-associated
protein 2 in neurites and synapses. PLoS One.
8(e51965)2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Yuan A, Sasaki T, Kumar A, Peterhoff CM,
Rao MV, Liem RK, Julien JP and Nixon RA: Peripherin is a subunit of
peripheral nerve neurofilaments: Implications for differential
vulnerability of CNS and peripheral nervous system axons. J
Neurosci. 32:8501–8508. 2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Yuan A, Sershen H, Veeranna Basavarajappa
BS, Kumar A, Hashim A, Berg M, Lee JH, Sato Y, Rao MV, et al:
Neurofilament subunits are integral components of synapses and
modulate neurotransmission and behavior in vivo. Mol Psychiatry.
20:986–994. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Gafson AR, Barthélemy NR, Bomont P, Carare
RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO,
et al: Neurofilaments: Neurobiological foundations for biomarker
applications. Brain. 143:1975–1998. 2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Barry DM, Stevenson W, Bober BG, Wiese PJ,
Dale JM, Barry GS, Byers NS, Strope JD, Chang R, Schulz DJ, et al:
Expansion of Neurofilament Medium C terminus increases axonal
diameter independent of increases in conduction velocity or myelin
thickness. J Neurosci. 32:6209–6219. 2012.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Guzmán-Vélez E, Zetterberg H, Fox-Fuller
JT, Vila-Castelar C, Sanchez JS, Baena A, Garcia-Ospina G, Aguillon
D, Pardilla-Delgado E, Gatchel JR, et al: Associations between
plasma neurofilament light, in vivo brain pathology, and cognition
in non-demented individuals with autosomal-dominant Alzheimer's
disease. Alzheimers Dement. 17:813–821. 2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Quiroz YT, Zetterberg H, Reiman EM, Chen
Y, Su Y, Fox-Fuller JT, Garcia G, Villegas A, Sepulveda-Falla D,
Villada M, et al: Plasma neurofilament light chain in the
presenilin 1 E280A autosomal dominant Alzheimer's disease kindred:
A cross-sectional and longitudinal cohort study. Lancet Neurol.
19:513–521. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rajan KB, Aggarwal NT, McAninch EA, Weuve
J, Barnes LL, Wilson RS, DeCarli C and Evans DA: Remote blood
biomarkers of longitudinal cognitive outcomes in a population
study. Ann Neurol. 88:1065–1076. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Walsh P, Sudre CH, Fiford CM, Ryan NS,
Lashley T, Frost C and Barnes J: ADNI Investigators. The
age-dependent associations of white matter hyperintensities and
neurofilament light in early- and late-stage Alzheimer's disease.
Neurobiol Aging. 97:10–17. 2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Delaby C, Alcolea D, Carmona-Iragui M,
Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Altuna M, Estellés
T, Santos-Santos M, Turon-Sans J, et al: Differential levels of
Neurofilament Light protein in cerebrospinal fluid in patients with
a wide range of neurodegenerative disorders. Sci Rep.
10(9161)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Idland AV, Sala-Llonch R, Borza T, Watne
LO, Wyller TB, Brækhus A, Zetterberg H, Blennow K, Walhovd KB and
Fjell AM: CSF neurofilament light levels predict hippocampal
atrophy in cognitively healthy older adults. Neurobiol Aging.
49:138–144. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Henson RL, Doran E, Christian BT, Handen
BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, et al:
Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort
of adults with Down syndrome. Alzheimers Dement (Amst).
12(e12057)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sveinsson OA, Kjartansson O and
Valdimarsson EM: Cerebral ischemia/infarction-epidemiology, causes
and symptoms. Laeknabladid. 100:271–279. 2014.PubMed/NCBI View Article : Google Scholar : (In
Icelandic).
|
|
58
|
Cao L, Tan L, Wang HF, Jiang T, Zhu XC and
Yu JT: Cerebral Microinfarcts and dementia: A systematic review and
metaanalysis. Curr Alzheimer Res. 14:802–808. 2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Pluta R, Januszewski S and Czuczwar SJ:
Brain ischemia as a prelude to Alzheimer's disease. Front Aging
Neurosci. 13(636653)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yoshimi K, Takeda M, Nishimura T, Kudo T,
Nakamura Y, Tada K and Iwata N: An immunohistochemical study of
MAP2 and clathrin in gerbil hippocampus after cerebral ischemia.
Brain Res. 560:149–158. 1991.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Vanicky I, Balchen T and Diemer NH:
Alterations in MAP2 immunostainability after prolonged complete
brain ischaemia in the rat. Neuroreport. 7:161–164. 1995.PubMed/NCBI
|
|
62
|
Mages B, Fuhs T, Aleithe S, Blietz A,
Hobusch C, Härtig W, Schob S, Krueger M and Michalski D: The
Cytoskeletal Elements MAP2 and NF-L show substantial alterations in
different stroke models while elevated serum levels highlight
especially MAP2 as a sensitive biomarker in stroke patients. Mol
Neurobiol. 58:4051–4069. 2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Johanna GV, Fredy CA, David VC, Natalia
MV, Angel CR and Patricia CG: Rac1 activity changes are associated
with neuronal pathology and spatial memory long-term recovery after
global cerebral ischemia. Neurochem Int. 57:762–773.
2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Gutiérrez-Vargas JA, Moreno H and
Cardona-Gómez GP: Targeting CDK5 post-stroke provides long-term
neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow
Metab. 37:2208–2223. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Pérez-Corredor PA, Gutiérrez-Vargas JA,
Ciro-Ramírez L, Balcazar N and Cardona-Gómez GP: High fructose
diet-induced obesity worsens post-ischemic brain injury in the
hippocampus of female rats. Nutr Neurosci: Mar 2, 2020 (Epub ahead
of print).
|
|
66
|
Dawson DA and Hallenbeck JM: Acute focal
ischemia-induced alterations in MAP2 immunostaining: Description of
temporal changes and utilization as a marker for volumetric
assessment of acute brain injury. J Cereb Blood Flow Metab.
16:170–174. 1996.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Akulinin VA and Dahlstrom A: Quantitative
analysis of MAP2 immunoreactivity in human neocortex of three
patients surviving after brain ischemia. Neurochem Res. 28:373–378.
2003.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Pluta R, Ułamek-Kozioł M, Januszewski S
and Czuczwar SJ: Tau protein dysfunction after brain ischemia. J
Alzheimers Dis. 66:429–437. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Gutiérrez-Vargas JA, Múnera A and
Cardona-Gómez GP: CDK5 knockdown prevents hippocampal degeneration
and cognitive dysfunction produced by cerebral ischemia. J Cereb
Blood Flow Metab. 35:1937–1949. 2015.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M,
Bogucki J, Januszewski S, Kocki J and Czuczwar SJ: Ischemic tau
protein gene induction as an additional key factor driving
development of Alzheimer's phenotype changes in CA1 area of
hippocampus in an ischemic model of Alzheimer's disease. Pharmacol
Rep. 70:881–884. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Mailliot C, Podevin-Dimster V, Rosenthal
RE, Sergeant N, Delacourte A, Fiskum G and Buée L: Rapid tau
protein dephosphorylation and differential rephosphorylation during
cardiac arrest-induced cerebral ischemia and reperfusion. J Cereb
Blood Flow Metab. 20:543–549. 2000.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wen Y, Yang S, Liu R and Simpkins JW:
Transient cerebral ischemia induces site-specific
hyperphosphorylation of tau protein. Brain Res. 1022:30–38.
2004.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Uchihara T, Nakamura A, Arai T, Ikeda K
and Tsuchiya K: Microglial tau undergoes
phosphorylation-independent modification after ischemia. Glia.
45:180–187. 2004.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Fujii H, Takahashi T, Mukai T, Tanaka S,
Hosomi N, Maruyama H, Sakai N and Matsumoto M: Modifications of tau
protein after cerebral ischemia and reperfusion in rats are similar
to those occurring in Alzheimer's disease-Hyperphosphorylation and
cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab.
37:2441–2457. 2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Shiiya N, Kunihara T, Miyatake T,
Matsuzaki K and Yasuda K: Tau protein in the cerebrospinal fluid is
a marker of brain injury after aortic surgery. Ann Thorac Surg.
77:2034–2038. 2004.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Hesse C, Rosengren L, Andreasen N,
Davidsson P, Vanderstichele H, Vanmechelen E and Blennow K:
Transient increase in total tau but not phospho-tau in human
cerebrospinal fluid after acute stroke. Neurosci Lett. 297:187–190.
2001.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen
P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg
H, et al: Tau, S100B and NSE as blood biomarkers in acute
cerebrovascular events. In Vivo. 34:2577–2586. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bitsch A, Horn C, Kemmling Y, Seipelt M,
Hellenbrand U, Stiefel M, Ciesielczyk B, Cepek L, Bahn E, Ratzka P,
et al: Serum tau protein level as a marker of axonal damage in
acute ischemic stroke. Eur Neurol. 47:45–51. 2002.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Kurzepa J, Bielewicz J, Grabarska A,
Stelmasiak Z, Stryjecka-Zimmer M and Bartosik-Psujek H: Matrix
metalloproteinase-9 contributes to the increase of tau protein in
serum during acute ischemic stroke. J Clin Neurosci. 17:997–999.
2010.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Lasek-Bal A, Jedrzejowska-Szypulka H,
Rozycka J, Bal W, Kowalczyk A, Holecki M, Dulawa J and
Lewin-Kowalik J: The presence of Tau protein in blood as a
potential prognostic factor in stroke patients. J Physiol
Pharmacol. 67:691–696. 2016.PubMed/NCBI
|
|
81
|
Bielewicz J, Kurzepa J, Czekajska-Chehab
E, Stelmasiak Z and Bartosik-Psujek H: Does serum Tau protein
predict the outcome of patients with ischemic stroke? J Mol
Neurosci. 43:241–245. 2011.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Wunderlich MT, Lins H, Skalej M, Wallesch
CW and Goertler M: Neuron-specific enolase and tau protein as
neurobiochemical markers of neuronal damage are related to early
clinical course and long-term outcome in acute ischemic stroke.
Clin Neurol Neurosurg. 108:558–563. 2006.PubMed/NCBI View Article : Google Scholar
|
|
83
|
De Vos A, Bjerke M, Brouns R, De Roeck N,
Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K,
Engelborghs S and Vanmechelen E: Neurogranin and tau in
cerebrospinal fluid and plasma of patients with acute ischemic
stroke. BMC Neurol. 17(170)2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Irving EA, Nicoll J, Graham DI and Dewar
D: Increased tau immunoreactivity in oligodendrocytes following
human stroke and head injury. Neurosci Lett. 213:189–192.
1996.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Uphaus T, Bittner S, Gröschel S, Steffen
F, Muthuraman M, Wasser K, Weber-Krüger M, Zipp F, Wachter R and
Gröschel K: NfL (Neurofilament Light Chain) levels as a predictive
marker for long-term outcome after ischemic stroke. Stroke.
50:3077–3084. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Khalil M, Teunissen CE, Otto M, Piehl F,
Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas
F, et al: Neurofilaments as biomarkers in neurological disorders.
Nat Rev Neurol. 14:577–589. 2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Peters N, van Leijsen E, Tuladhar AM,
Barro C, Konieczny MJ, Ewers M, Lyrer P, Engelter ST, Kuhle J,
Duering M and de Leeuw FE: Serum Neurofilament light Chain is
associated with incident Lacunes in progressive cerebral small
vessel disease. J Stroke. 22:369–376. 2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Duering M, Konieczny MJ, Tiedt S, Baykara
E, Tuladhar AM, Leijsen EV, Lyrer P, Engelter ST, Gesierich B,
Achmüller M, et al: Serum Neurofilament Light Chain levels are
related to small vessel disease burden. J Stroke. 20:228–238.
2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Paolini Paoletti F, Simoni S, Parnetti L
and Gaetani L: The contribution of small vessel disease to
neurodegeneration: Focus on Alzheimer's disease, Parkinson's
disease and multiple sclerosis. Int J Mol Sci.
22(4958)2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Knopman DS: Cerebrovascular disease and
dementia. Br J Radiol. 80 (Suppl 2):S121–S127. 2007.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Dendrou CA, Fugger L and Friese MA:
Immunopathology of multiple sclerosis. Nat Rev Immunol. 15:545–558.
2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Virgilio E, Vecchio D, Crespi I, Serino R,
Cantello R, Dianzani U and Comi C: Cerebrospinal Tau levels as a
predictor of early disability in multiple sclerosis. Mult Scler
Relat Disord. 56(103231)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Mirzaii-Dizgah MH, Mirzaii-Dizgah MR and
Mirzaii-Dizgah I: Serum and saliva total tau protein as a marker
for relapsing-remitting multiple sclerosis. Med Hypotheses.
135(109476)2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Shafit-Zagardo B, Kress Y, Zhao ML and Lee
SC: A novel microtubule-associated protein-2 expressed in
oligodendrocytes in multiple sclerosis lesions. J Neurochem.
73:2531–2537. 1999.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wang P, Jiang LL, Wang C, Zhu Z and Lai C:
Neurofilament protein as a potential biomarker of axonal
degeneration in experimental autoimmune encephalomyelitis. Neurol
India. 68:364–367. 2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Rosengren LE, Karlsson JE, Karlsson JO,
Persson LI and Wikkelsø C: Patients with amyotrophic lateral
sclerosis and other neurodegenerative diseases have increased
levels of neurofilament protein in CSF. J Neurochem. 67:2013–2018.
1996.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Lycke JN, Karlsson JE, Andersen O and
Rosengren LE: Neurofilament protein in cerebrospinal fluid: A
potential marker of activity in multiple sclerosis. J Neurol
Neurosurg Psychiatry. 64:402–404. 1998.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Kuhle J, Barro C, Andreasson U, Derfuss T,
Lindberg R, Sandelius Å, Liman V, Norgren N, Blennow K and
Zetterberg H: Comparison of three analytical platforms for
quantification of the neurofilament light chain in blood samples:
ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem
Lab Med. 54:1655–1661. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Varhaug KN, Torkildsen Ø, Myhr KM and
Vedeler CA: Neurofilament light Chain as a biomarker in multiple
sclerosis. Front Neurol. 10(338)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Norgren N, Rosengren L and Stigbrand T:
Elevated neurofilament levels in neurological diseases. Brain Res.
987:25–31. 2003.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Cai L and Huang J: Neurofilament light
chain as a biological marker for multiple sclerosis: A
meta-analysis study. Neuropsychiatr Dis Treat. 14:2241–2254.
2018.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Disanto G, Barro C, Benkert P, Naegelin Y,
Schädelin S, Giardiello A, Zecca C, Blennow K, Zetterberg H,
Leppert D, et al: Serum Neurofilament light: A biomarker of
neuronal damage in multiple sclerosis. Ann Neurol. 81:857–870.
2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Barro C, Benkert P, Disanto G, Tsagkas C,
Amann M, Naegelin Y, Leppert D, Gobbi C, Granziera C, Yaldizli Ö,
et al: Serum neurofilament as a predictor of disease worsening and
brain and spinal cord atrophy in multiple sclerosis. Brain.
141:2382–2391. 2018.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Arrambide G, Espejo C, Eixarch H, Villar
LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L,
Sastre-Garriga J, et al: Neurofilament light chain level is a weak
risk factor for the development of MS. Neurology. 87:1076–1084.
2016.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Comabella M and Montalban X: Body fluid
biomarkers in multiple sclerosis. Lancet Neurol. 13:113–126.
2014.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Matute-Blanch C, Villar LM,
Álvarez-Cermeño JC, Rejdak K, Evdoshenko E, Makshakov G, Nazarov V,
Lapin S, Midaglia L, Vidal-Jordana A, et al: Neurofilament light
chain and oligoclonal bands are prognostic biomarkers in
radiologically isolated syndrome. Brain. 141:1085–1093.
2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Khalil M: Are neurofilaments valuable
biomarkers for long-term disease prognostication in MS? Mult Scler.
24:1270–1271. 2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Giovannoni G: Peripheral blood
neurofilament light chain levels: The neurologist's C-reactive
protein? Brain. 141:2235–2237. 2018.PubMed/NCBI View Article : Google Scholar
|