|
1
|
Lin WJ, Gary JD, Yang MC, Clarke S and
Herschman HR: The mammalian immediate-early TIS21 protein and the
leukemia-associated BTG1 protein interact with a protein-arginine
N-methyltransferase. J Biol Chem. 271:15034–15044. 1996.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang J, Tan GJ, Han LN, Bai YY, He M and
Liu HB: Novel biomarkers for cardiovascular risk prediction. J
Geriatr Cardiol. 14:135–150. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhao D, Liu J, Wang M, Zhang X and Zhou M:
Epidemiology of cardiovascular disease in China: Current features
and implications. Nat Rev Cardiol. 16:203–212. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Jarrold J and Davies CC: PRMTs and
arginine methylation: Cancer's best-kept secret? Trends Mol Med.
25:993–1009. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yang Y and Bedford MT: Protein arginine
methyltransferases and cancer. Nat Rev Cancer. 13:37–50.
2013.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Zhang W, Song M, Qu J and Liu GH:
Epigenetic modifications in cardiovascular aging and diseases. Circ
Res. 123:773–786. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Al-Hamashi AA, Diaz K and Huang R:
Non-histone arginine methylation by protein arginine
methyltransferases. Curr Protein Pept Sci. 21:699–712.
2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Xu S, Pelisek J and Jin ZG:
Atherosclerosis is an epigenetic disease. Trends Endocrinol Metab.
29:739–742. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Yang Y and Luan Y, Yuan RX and Luan Y:
Histone methylation related therapeutic challenge in cardiovascular
diseases. Front Cardiovasc Med Sep. 8(710053)2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Rakow S, Pullamsetti SS, Bauer UM and
Bouchard C: Assaying epigenome functions of PRMTs and their
substrates. Methods. 175:53–65. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Couto E Silva A, Wu CY, Citadin CT,
Clemons GA, Possoit HE, Grames MS, Lien CF, Minagar A, Lee RH,
Frankel A and Lin HW: Protein arginine methyltransferases in
cardiovascular and neuronal function. Mol Neurobiol. 57:1716–1732.
2002.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Larsen SC, Sylvestersen KB, Mund A, Lyon
D, Mullari M, Madsen MV, Daniel JA, Jensen LJ and Nielsen ML:
Proteome-wide analysis of arginine monomethylation reveals
widespread occurrence in human cells. Sci Signal.
9(rs9)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Blanc RS and Richard S: Arginine
methylation: The coming of age. Mol Cell. 65:8–24. 2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Morales Y, Cáceres T, May K and Hevel JM:
Biochemistry and regulation of the protein arginine
methyltransferases (PRMTs). Arch Biochem Biophys. 590:138–152.
2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
vanLieshout TL and Ljubicic V: The
emergence of protein arginine methyltransferases in skeletal muscle
and metabolic disease. Am J Physiol Endocrinol Metab.
317:E1070–E1080. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hu G, Yan C, Xie P, Cao Y, Shao J and Ge
J: PRMT2 accelerates tumorigenesis of hepatocellular carcinoma by
activating Bcl2 via histone H3R8 methylation. Exp Cell Res.
394(112152)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Hamard PJ, Santiago GE, Liu F, Karl DL,
Martinez C, Man N, Mookhtiar AK, Duffort S, Greenblatt S, Verdun RE
and Nimer SD: PRMT5 regulates DNA repair by controlling the
alternative splicing of histone-modifying enzymes. Cell Rep.
24:2643–2657. 2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Nahon JE, Groeneveldt C, Geerling JJ, van
Eck M and Hoekstra M: Inhibition of protein arginine
methyltransferase 3 activity selectively impairs liver X
receptor-driven transcription of hepatic lipogenic genes in vivo.
Br J Pharmaco. 175:3175–3183. 2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Geng P, Zhang Y, Liu X, Zhang N, Liu Y,
Liu X, Lin C, Yan X, Li Z, Wang G, et al: Automethylation of
protein arginine methyltransferase 7 and its impact on breast
cancer progression. FASEB J. 31:2287–2300. 2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Vhuiyan MI, Pak ML, Park MA, Thomas D,
Lakowski TM, Chalfant CE and Frankel A: PRMT2 interacts with
splicing factors and regulates the alternative splicing of BCL-X. J
Biochem. 162:17–25. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hou W, Nemitz S, Schopper S, Nielsen ML,
Kessels MM and Qualmann B: Arginine methylation by PRMT2 controls
the functions of the actin nucleator cobl. Dev Cell. 45:262–275.e8.
2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang
S, Xing D and Chen W: Recent advances in the regulation of ABCA1
and ABCG1 by lncRNAs. Clin Chim Acta. 516:100–110. 2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Li YY, Zhou SH, Chen SS, Zhong J and Wen
GB: PRMT2 inhibits the formation of foam cell induced by ox-LDL in
RAW 264.7 macrophage involving ABCA1 mediated cholesterol efflux.
Biochem Biophys Res Commun. 524:77–82. 2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Rohatgi A: Reverse cholesterol transport
and atherosclerosis. Arterioscler Thromb Vasc Biol. 39:2–4.
2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zaiou M and Bakillah A: Epigenetic
regulation of ATP-binding cassette protein A1 (ABCA1) gene
expression: A new Era to alleviate atherosclerotic cardiovascular
disease. Diseases. 6(34)2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang T, Zhao Y, You Z, Li X, Xiong M, Li H
and Yan N: Endoplasmic reticulum stress affects cholesterol
homeostasis by inhibiting LXR α expression in hepatocytes and
macrophages. Nutrients. 12(3088)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhang M, Zhao GJ, Yin K, Xia XD, Gong D,
Zhao ZW, Chen LY, Zheng XL, Tang XE and Tang CK: Apolipoprotein A-1
binding protein inhibits inflammatory signaling pathways by binding
to apolipoprotein A-1 in THP-1 macrophages. Circ J. 82:1396–1404.
2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hussein MA, Shrestha E, Ouimet M, Barrett
TJ, Leone S, Moore KJ, Hérault Y, Fisher EA and Garabedian MJ:
LXR-mediated ABCA1 expression and function are modulated by high
glucose and PRMT2. PLoS One. 10(e0135218)2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ramón-Vázquez A, de la Rosa JV, Tabraue C,
Lopez F, Díaz-Chico BN, Bosca L, Tontonoz P, Alemany S and
Castrillo A: Common and differential transcriptional actions of
nuclear receptors liver X receptors α and β in macrophages. Mol
Cell Biol. 39:e00376–18. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Hoekstra M, Nahon JE, de Jong LM, Kröner
MJ, de Leeuw LR and Van Eck M: Inhibition of PRMT3 activity reduces
hepatic steatosis without altering atherosclerosis susceptibility
in ApoE knockout mice. Biochim Biophys Acta Mol Basis Dis.
1865:1402–1409. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kim DI, Park MJ, Lim SK, Park JI, Yoon KC,
Han HJ, Gustafsson JA, Lim JH and Park SH: PRMT3 regulates hepatic
lipogenesis through direct interaction with LXRα. Diabetes.
64:60–71. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou
PQ, Wang Y, Shen QQ, Liao L and Zheng XL: Lipoprotein lipase:
Biosynthesis, regulatory factors, and its role in atherosclerosis
and other diseases. Clin Chim Acta. 480:126–137. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Wu YT, Li JB, Lin HQ, Zhang GX, Hong CM,
Li M, Guo ZJ and Yang YB: Inhibition of miR-200b-3p alleviates
lipid accumulation and promotes cholesterol efflux by targeting
ABCA1 in macrophage-derived foam cells. Exp Ther Med.
22(831)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Vinet M, Suresh S, Maire V, Monchecourt C,
Némati F, Lesage L, Pierre F, Ye M, Lescure A, Brisson A, et al:
Protein arginine methyltransferase 5: A novel therapeutic target
for triple-negative breast cancers. Cancer Med. 8:2414–2428.
2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Webb LM, Sengupta S, Edell C,
Piedra-Quintero ZL, Amici SA, Miranda JN, Bevins M, Kennemer A,
Laliotis G, Tsichlis PN and Guerau-de-Arellano M: Protein arginine
methyltransferase 5 promotes cholesterol biosynthesis-mediated Th17
responses and autoimmunity. J Clin Invest. 130:1683–1698.
2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Shimano H and Sato R: SREBP-regulated
lipid metabolism: Convergent physiology-divergent pathophysiology.
Nat Rev Endocrinol. 13:710–730. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Yang HX, Zhang M, Long SY, Tuo QH, Tian Y,
Chen JX, Zhang CP and Liao DF: Cholesterol in LDL receptor
recycling and degradation. Clin Chim Acta. 500:81–86.
2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Kober DL, Xu S, Li S, Bajaj B, Liang G,
Rosenbaum DM and Radhakrishnan A: Identification of a degradation
signal at the carboxy terminus of SREBP2: A new role for this
domain in cholesterol homeostasis. Proc Natl Acad Sci USA.
117:28080–28091. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu
Z, Liu J and Huang G: Arginine methylation of SREBP1a via PRMT5
promotes de novo lipogenesis and tumor growth. Cancer Res.
76:1260–1272. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yuan HF, Zhao M, Zhao LN, Yun HL, Yang G,
Geng Y, Wang YF, Zheng W, Yuan Y, Song TQ, et al: PRMT5 confers
lipid metabolism reprogramming, tumour growth and metastasis
depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in
tumours. Acta Pharmacol Sin. 43:2373–2385. 2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Yoshimoto T, Boehm M, Olive M, Crook MF,
San H, Langenickel T and Nabel EG: The arginine methyltransferase
PRMT2 binds RB and regulates E2F function. Exp Cell Res.
312:2040–2053. 2006.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chen X, Niroomand F, Liu Z, Zankl A, Katus
HA, Jahn L and Tiefenbacher CP: Expression of nitric oxide related
enzymes in coronary heart disease. Basic Res Cardiol. 101:346–353.
2006.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Doğan I, Eser B, Özkurt S, Yayar O, Özgür
B, Kayadibi H, Doğan T, Muşmul A and Soydan M: Serum ADMA,
endothelial dysfunction, and atherosclerosis in hypervolemic
hemodialysis patients. Turk J Med Sci. 48:1041–1047.
2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Alpoim PN, Sousa LP, Mota AP, Rios DR and
Dusse LM: Asymmetric dimethylarginine (ADMA) in cardiovascular and
renal disease. Clin Chim Acta. 440:36–39. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Shafi T, Hostetter TH, Meyer TW, Hwang S,
Hai X, Melamed ML, Banerjee T, Coresh J and Powe NR: Serum
asymmetric and symmetric dimethylarginine and morbidity and
mortality in hemodialysis patients. Am J Kidney Dis. 70:48–58.
2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Dogan I, Dogan T, Yetim M, Kayadibi H,
Yilmaz MB, Eser B, Kalcik M and Karavelioglu Y: Relation of serum
ADMA, apelin-13 and LOX-1 levels with inflammatory and
echocardiographic parameters in hemodialysis patients. Ther Apher
Dial. 22:109–117. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ito A, Hong C, Oka K, Salazar JV, Diehl C,
Witztum JL, Diaz M, Castrillo A, Bensinger SJ, Chan L and Tontonoz
P: Cholesterol accumulation in CD11c+ immune cells is a causal and
targetable factor in autoimmune disease. Immunity. 45:1311–1326.
2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Butrous H and Hummel SL: Heart failure in
older adults. Can J Cardiol. 32:1140–1147. 2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Pyun JH, Kim HJ, Jeong MH, Ahn BY, Vuong
TA, Lee DI, Choi S, Koo SH, Cho H and Kang JS: Cardiac specific
PRMT1 ablation causes heart failure through CaMKII dysregulation.
Nat Commun. 9(5107)2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
An X, Lee J, Kim GH, Kim HJ, Pyo HJ, Kwon
I and Cho H: Modulation of IKs channel-PIP2
interaction by PRMT1 plays a critical role in the control of
cardiac repolarization. J Cell Physiol. 237:3069–3079.
2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wang Y, Ju C, Hu J, Huang K and Yang L:
PRMT4 overexpression aggravates cardiac remodeling following
myocardial infarction by promoting cardiomyocyte apoptosis. Biochem
Biophys Res Commun. 520:645–650. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li Z, Xu J, Song Y, Xin C, Liu L, Hou N,
Teng Y, Cheng X, Wang T, Yu Z, et al: PRMT5 prevents dilated
cardiomyopathy via suppression of protein O-GlcNAcylation. Circ
Res. 129:857–871. 2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kim D, Lim S, Park M, Choi J, Kim J, Han
H, Yoon K, Kim K, Lim J and Park S: Ubiquitination-dependent CARM1
degradation facilitates notch1-mediated podocyte apoptosis in
diabetic nephropathy. Cell Signal. 26:1774–1782. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Roundtree IA, Evans ME, Pan T and He C:
Dynamic RNA modifications in gene expression regulation. Cell.
169:1187–1200. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Gao S, Sun H, Chen K, Gu X, Chen H, Jiang
L, Chen L, Zhang S, Liu Y, Shi D, et al: Depletion of
m6A reader protein YTHDC1 induces dilated cardiomyopathy
by abnormal splicing of Titin. J Cell Mol Med. 25:10879–10891.
2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Roberts AM, Ware JS, Herman DS, Schafer S,
Baksi J, Bick AG, Buchan RJ, Walsh R, John S, Wilkinson S, et al:
Integrated allelic, transcriptional, and phenomic dissection of the
cardiac effects of titin truncations in health and disease. Sci
Transl Med. 7(270ra6)2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Gong Y, Zhang L, Zhang A, Chen X, Gao P
and Zeng Q: GATA4 inhibits cell differentiation and proliferation
in pancreatic cancer. PLoS One. 13(e0202449)2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chang YM, Chang HH, Lin HJ, Tsai CC, Tsai
CT, Chang HN, Lin SL, PadmaViswanadha V, Chen RJ and Huang CY:
Inhibition of cardiac hypertrophy effects in d-galactose-induced
senescent hearts by alpinate oxyphyllae fructus treatment. Evid
Based Complement Alternat Med. 2017(2624384)2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Glenn DJ, Rahmutula D, Nishimoto M, Liang
F and Gardner DG: Atrial natriuretic peptide suppresses endothelin
gene expression and proliferation in cardiac fibroblasts through a
GATA4-dependent mechanism. Cardiovasc Res. 84:209–217.
2009.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhang G, Wang X, Bi X, Li C, Deng Y,
Al-Hashimi AA, Luo X, Gillette TG, Austin RC, Wang Y and Wang ZV:
GRP78 (glucose-regulated protein of 78 kDa) promotes cardiomyocyte
growth through activation of GATA4 (GATA-binding protein 4).
Hypertension. 73:390–398. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Chen M, Yi B and Sun J: Inhibition of
cardiomyocyte hypertrophy by protein arginine methyltransferase 5.
J Biol Chem. 289:24325–24335. 2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Cai S, Liu R, Wang P, Li J, Xie T, Wang M,
Cao Y, Li Z and Liu P: PRMT5 prevents cardiomyocyte hypertrophy via
symmetric demethylating HoxA9 and repressing HoxA9 expression.
Front Pharmacol. 11(600627)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Bouchard C, Sahu P, Meixner M, Nötzold RR,
Rust MB, Kremmer E, Feederle R, Hart-Smith G, Finkernagel F,
Bartkuhn M, et al: Genomic location of PRMT6-dependent H3R2
methylation is linked to the transcriptional outcome of associated
genes. Cell Rep. 24:3339–3352. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Raveendran VV, Al-Haffar K, Kunhi M,
Belhaj K, Al-Habeeb W, Al-Buraiki J, Eyjolsson A and Poizat C:
Protein arginine methyltransferase 6 mediates cardiac hypertrophy
by differential regulation of histone H3 arginine methylation.
Heliyon. 6(e03864)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Cheng D, Gao G, Di Lorenzo A, Jayne S,
Hottiger MO, Richard S and Bedford MT: Genetic evidence for partial
redundancy between the arginine methyltransferases CARM1 and PRMT6.
J Biol Chem. 295:17060–17070. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Liu F, Wan L, Zou H, Pan Z, Zhou W and Lu
X: PRMT7 promotes the growth of renal cell carcinoma through
modulating the β-catenin/C-MYC axis. Int J Biochem Cell Biol.
120(105686)2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ahn BY, Jeong MH, Pyun JH, Jeong HJ, Vuong
TA, Bae JH, An S, Kim SK, Kim YK, Ryu D, et al: PRMT7 ablation in
cardiomyocytes causes cardiac hypertrophy and fibrosis through
β-catenin dysregulation. Cell Mol Life Sci. 79(99)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Bergmann ME: WNT signaling in adult
cardiac hypertrophy and remodeling: Lessons learned from cardiac
development. Circ Res. 107:1198–1208. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Angers S and Moon RT: Proximal events in
Wnt signal transduction. Nat Rev Mol Cell Biol. 10:468–477.
2009.PubMed/NCBI View Article : Google Scholar
|
|
70
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009.PubMed/NCBI View Article : Google Scholar
|