Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
November-2024 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Lespedeza homoloba enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose

  • Authors:
    • Kyoko Kobayashi
    • Airi Tanabe
    • Kenroh Sasaki
  • View Affiliations / Copyright

    Affiliations: Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
    Copyright: © Kobayashi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 164
    |
    Published online on: September 3, 2024
       https://doi.org/10.3892/br.2024.1852
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immune cells migrate to hypertrophied adipocytes and release proinflammatory cytokines, leading to adipocyte dysfunction and diabetes. Numerous species of Lespedeza, which are members of the plant family Fabaceae and distributed primarily in temperate Asia and North America, exhibit binding to peroxisome proliferator‑activated receptor (PPAR) γ, a target nuclear receptor for treating diabetes. Therefore, the present study aimed to determine which species of Lespedeza plants exert an anti‑inflammatory effect in adipose tissue and suppression of blood glucose increase through PPARγ ligand and radical scavenging activity. PPARγ binding and DPPH radical scavenging assays of L. homoloba (LH), L. thunbergii (LT), L. maximowiczii (LM) and L. thunbergii (LT) were performed. LH and LT showed significant ligand activity towards PPARγ and notable radical scavenging activity. LH exhibited a stronger DPPH radical scavenging activity than LT and thus was measured adiponectin secretion from 3T3‑L1‑derived adipocytes and IL‑10 secretion from murine splenocytes. LH increased the adiponectin and the IL‑10 secretions. In flow cytometric analysis, BALB/c male mice administered LH exhibited an increase in regulatory T cells (Tregs) and cytotoxic T lymphocyte‑associated protein (CTLA)‑4+ Tregs as well as a decrease in T helper (Th)17, Th17/Treg ratio and CD8+ and CD4+ T cells in subcutaneous adipose tissue. Conversely, in the spleen, LH decreased Tregs and increased Th17 cells, Th17/Treg ratio and CD4+ and CD8+ T cells. These findings indicated that LH activated immunoreaction in the spleen and Treg cells that migrate to subcutaneous adipose tissue may suppress inflammation. In fasting blood glucose and adiponectin assays, LH‑exposed mice exhibited suppression of fasting glucose levels. Therefore, LH may prevent type 2 diabetes by suppressing adipose tissue inflammation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Surmi BK and Hasty AH: Macrophage infiltration into adipose tissue: Initiation, propagation and remodeling. Future Lipidol. 3:545–556. 2008.PubMed/NCBI View Article : Google Scholar

2 

Olefsky JM and Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246. 2010.PubMed/NCBI View Article : Google Scholar

3 

Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, et al: Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 128:1538–1550. 2018.PubMed/NCBI View Article : Google Scholar

4 

Lumeng CN, Bodzin JL and Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007.PubMed/NCBI View Article : Google Scholar

5 

Jiang C, Ting AT and Seed B: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 391:82–86. 1998.PubMed/NCBI View Article : Google Scholar

6 

Fooks AN, Beppu LY, Frias AB and D'Cruz LM: Adipose tissue regulatory T cells: Differentiation and function. Int Rev Immunol. 42:323–333. 2023.PubMed/NCBI View Article : Google Scholar

7 

Shen N, Wang T, Gan Q, Liu S, Wang L and Jin B: Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383(132531)2022.PubMed/NCBI View Article : Google Scholar

8 

Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J and Lu S: Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 430(137115)2024.PubMed/NCBI View Article : Google Scholar

9 

Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T, Nemoto H and Terao J: Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr. 143:1558–1564. 2013.PubMed/NCBI View Article : Google Scholar

10 

American Veterinary Medical Association (AVMA): AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association, Schaumburg, IL, 2020.

11 

Lee SJ, Hossaine MDA and Park SC: A potential anti-inflammation activity and depigmentation effect of Lespedeza bicolor extract and its fractions. Saudi J Biol Sci. 23:9–14. 2016.PubMed/NCBI View Article : Google Scholar

12 

Mariadoss AVA, Park S, Saravanakumar K, Sathiyaseelan A and Wang MH: Phytochemical profiling, in vitro antioxidants, and antidiabetic efficacy of ethyl acetate fraction of Lespedeza cuneata on streptozotocin-induced diabetic rats. Environ Sci Pollut Res Int. 30:60976–60993. 2023.PubMed/NCBI View Article : Google Scholar

13 

Kim NK, Park HM, Lee J, Ku KM and Lee CH: Seasonal Variations of metabolome and tyrosinase inhibitory activity of Lespedeza maximowiczii during growth periods. J Agric Food Chem. 63:8631–8639. 2015.PubMed/NCBI View Article : Google Scholar

14 

Bae J, Lee D, Lee TK, Song JH, Lee JS, Lee S, Yoo SW, Kang KS, Moon E, Lee S and Kim KH: (-)-9'-O-(α-l-Rhamnopyranosyl)lyoniresinol from Lespedeza cuneata suppresses ovarian cancer cell proliferation through induction of apoptosis. Bioorg Med Chem Lett. 28:122–128. 2018.PubMed/NCBI View Article : Google Scholar

15 

Lee JH, Parveen A, Do MH, Lim Y, Shim SH and Kim SY: Lespedeza cuneata protects the endothelial dysfunction via eNOS phosphorylation of PI3K/Akt signaling pathway in HUVECs. Phytomedicine. 48:1–9. 2018.PubMed/NCBI View Article : Google Scholar

16 

Konno T, Sasaki K, Kobayashi K and Murata T: Indirubin promotes adipocyte differentiation and reduces lipid accumulation in 3T3-L1 cells via peroxisome proliferator-activated receptor γ activation. Mol Med Rep. 21:1552–1560. 2020.PubMed/NCBI View Article : Google Scholar

17 

Blois MS: Antioxidant determinations by the use of a stable free radical. Nature. 181:1199–1200. 1958.

18 

Kobayashi K, Tang YT and Sasaki K: Paeoniflorin, a constituent of Kami-shoyo-san, suppresses blood glucose levels in postmenopausal diabetic mice by promoting the secretion of estradiol from adipocytes. Biochem Biophys Rep. 32(101335)2022.PubMed/NCBI View Article : Google Scholar

19 

Daynes RA and Jones DC: Emerging roles of PPARS in inflammation and immunity. Nat Rev Immunol. 2:748–759. 2002.PubMed/NCBI View Article : Google Scholar

20 

Hardwick JP, Osei-Hyiaman D, Wiland H, Abdelmegeed MA and Song BJ: PPAR/RXR regulation of fatty acid metabolism and fatty acid omega-hydroxylase (CYP4) isozymes: Implications for prevention of lipotoxicity in fatty liver disease. PPAR Res. 2009(952734)2009.PubMed/NCBI View Article : Google Scholar

21 

Andrade ML, Gilio GR, Perandini LA, Peixoto AS, Moreno MF, Castro É, Oliveira TE, Vieira TS, Ortiz-Silva M, Thomazelli CA, et al: PPARγ-induced upregulation of subcutaneous fat adiponectin secretion, glyceroneogenesis and BCAA oxidation requires mTORC1 activity. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(158967)2021.PubMed/NCBI View Article : Google Scholar

22 

Wu Z, Xie Y, Morrison RF, Bucher NL and Farmer SR: PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest. 101:22–32. 1998.PubMed/NCBI View Article : Google Scholar

23 

Way JM, Harrington WW, Kathleen KB, Gottschalk WK, Sundseth SS, Mansfield TA, Ramachandran RK, Willson TM and Kliewer SA: Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology. 142:1269–1277. 2001.PubMed/NCBI View Article : Google Scholar

24 

Gilleron J, Bouget G, Ivanov S, Meziat C, Ceppo F, Vergoni B, Djedaini M, Soprani A, Dumas K, Jacquel A, et al: Rab4b deficiency in T cells promotes adipose Treg/Th17 imbalance, adipose tissue dysfunction, and insulin resistance. Cell Rep. 25:3329–3341.e5. 2018.PubMed/NCBI View Article : Google Scholar

25 

Oliveira-Marques V, Marinho HS, Cyrne L and Antunes F: Modulation of NF-kappaB-dependent gene expression by H2O2: A major role for a simple chemical process in a complex biological response. Antioxid Redox Signal. 11:2043–2053. 2009.PubMed/NCBI View Article : Google Scholar

26 

Sun C, Mao S, Chen S, Zhang W and Liu C: PPARs-orchestrated metabolic homeostasis in the adipose tissue. Int J Mol Sci. 22(8974)2021.PubMed/NCBI View Article : Google Scholar

27 

Shinohara S and Fujimori K: Promotion of lipogenesis by PPARγ-activated FXR expression in adipocytes. Biochem Biophys Res Commun. 527:49–55. 2020.PubMed/NCBI View Article : Google Scholar

28 

Bogacka I, Ukropcova B, McNeil M, Gimble JM and Smith SR: Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab. 90:6650–6656. 2005.PubMed/NCBI View Article : Google Scholar

29 

Antonelli A, Ferri C, Ferrari SM, Colaci M, Ruffilli I, Sebastiani M and Fallahi P: Peroxisome proliferator-activated receptor γ agonists reduce cell proliferation and viability and increase apoptosis in systemic sclerosis fibroblasts. Br J Dermatol. 168:129–135. 2013.PubMed/NCBI View Article : Google Scholar

30 

Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB: Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20:1126–1167. 2014.PubMed/NCBI View Article : Google Scholar

31 

Yu D, Liu JQ, Mo LH, Luo XQ, Liu ZQ, Wu GH, Yang LT, Liu DB, Wang S, Liu ZG and Yang PC: Specific antigen-guiding exosomes inhibit food allergies by inducing regulatory T cells. Immunol Cell Biol. 98:639–649. 2020.PubMed/NCBI View Article : Google Scholar

32 

Martin H: Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res. 690:57–63. 2010.PubMed/NCBI View Article : Google Scholar

33 

Katafuchi T, Holland WL, Kollipara RK, Kittler R, Mangelsdorf DJ and Kliewer SA: PPARγ-K107 SUMOylation regulates insulin sensitivity but not adiposity in mice. Proc Natl Acad Sci USA. 115:12102–12111. 2018.PubMed/NCBI View Article : Google Scholar

34 

Wiedemann SJ, Trimigliozzi K, Dror E, Meier DT, Molina-Tijeras JA, Rachid L, Foll CL, Magnan C, Schulze F, Stawiski M, et al: The cephalic phase of insulin release is modulated by IL-1β. Cell Metab. 34:991–1003,e6. 2022.PubMed/NCBI View Article : Google Scholar

35 

Cawthorn WP and Sethi JK: TNF-alpha and adipocyte biology. FEBS Lett. 582:117–131. 2008.PubMed/NCBI View Article : Google Scholar

36 

Smith U and Kahn BB: Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J Inter Med. 280:465–475. 2016.PubMed/NCBI View Article : Google Scholar

37 

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 112:1796–1808. 2003.PubMed/NCBI View Article : Google Scholar

38 

Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, et al: Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 55:2688–2697. 2006.PubMed/NCBI View Article : Google Scholar

39 

Uysal KT, Wiesbrock SM, Marino MW and Hotamisligil GS: Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 389:610–614. 1997.PubMed/NCBI View Article : Google Scholar

40 

Lumeng CN, Maillard I and Saltiel AR: T-ing up inflammation in fat. Nat Med. 15:846–847. 2009.PubMed/NCBI View Article : Google Scholar

41 

Chen LW, Chen PH, Tang CH and Yen JH: Adipose-derived stromal cells reverse insulin resistance through inhibition of M1 expression in a type 2 diabetes mellitus mouse model. Stem Cell Re Ther. 13(357)2022.PubMed/NCBI View Article : Google Scholar

42 

Fujii M, Inoguchi T, Batchuluun B, Sugiyama N, Kobayashi K, Sonoda N and Takayanagi R: CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues. Biochem Biophys Res Commun. 438:103–109. 2013.PubMed/NCBI View Article : Google Scholar

43 

Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, et al: CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15:914–920. 2009.PubMed/NCBI View Article : Google Scholar

44 

Shin JH, Shin DW and Noh M: Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol. 77:1835–1844. 2009.PubMed/NCBI View Article : Google Scholar

45 

Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C and Mathis D: PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 486:549–553. 2012.PubMed/NCBI View Article : Google Scholar

46 

Lei J, Hasegawa H, Matsumoto T and Yasukawa M: Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+CD25-T cells into functional Foxp3+ regulatory T cells. J Immunol. 185:7186–7198. 2010.PubMed/NCBI View Article : Google Scholar

47 

Sun L, Fu J and Zhou Y: Metabolism controls the balance of Th17/T-regulatory cells. Front Immunol. 8(1632)2017.PubMed/NCBI View Article : Google Scholar

48 

Maciolek JA, Pasternak JA and Wilson HL: Metabolism of activated T lymphocytes. Curr Opin Immunol. 27:60–74. 2014.PubMed/NCBI View Article : Google Scholar

49 

Miao Y, Zhang C, Yang L, Zeng X, Hu Y, Xue X, Dai Y and Wei Z: The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun Signal. 20(48)2022.PubMed/NCBI View Article : Google Scholar

50 

Li C, Muñoz-Rojas AR, Wang G, Mann AO, Benoist C and Mathis D: PPARγ marks splenic precursors of multiple nonlymphoid-tissue Treg compartments. Proc Natl Acad Sci USA. 118(e2025197118)2021.PubMed/NCBI View Article : Google Scholar

51 

Jeong W, Jung JY, Kim SC and Im WT: Ginsenoside F2 for prophylaxis and treatment of liver disease. European patent EP2992933A1. Filed September 4, 2015; issued March 9, 2016.

52 

Lin Z, Wang Z, Hegarty JP, Lin TR, Wang Y, Deiling S, Wu R, Thomas NJ and Floros J: Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease. World J Gastroenterol. 23:4897–4909. 2017.PubMed/NCBI View Article : Google Scholar

53 

Fay NC, Muthusamy BP, Nyugen LP, Desai RC, Taverner A, MacKay J, Seung M, Hunter T, Liu K, Chandalia A, et al: A novel fusion of IL-10 engineered to traffic across intestinal epithelium to treat colitis. J Immunol. 205:3191–3204. 2020.PubMed/NCBI View Article : Google Scholar

54 

Saraiva M, Vieira P and O'Garra A: Biology and therapeutic potential of interleukin-10. J Exp Med. 217(e20190418)2020.PubMed/NCBI View Article : Google Scholar

55 

Vidal PM, Lemmens E, Dooley D and Hendrix S: The role of ‘anti-inflammatory’ cytokines in axon regeneration. Cytokine Growth Factor Rev. 24:1–12. 2013.PubMed/NCBI View Article : Google Scholar

56 

Rajbhandari P, Thomas BJ, Feng AC, Hong C, Wang J, Vergnes L, Sallam T, Wang B, Sandhu J, Seldin MM, et al: IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell. 172:218–233.e17. 2018.PubMed/NCBI View Article : Google Scholar

57 

Acosta JR, Tavira B, Douagi I, Kulyté A, Arner P, Rydén M and Laurencikiene J: Human-specific function of IL-10 in adipose tissue linked to insulin resistance. J Clin Endocrinol Metab. 104:4552–4562. 2019.PubMed/NCBI View Article : Google Scholar

58 

Ramos-Ramírez P, Malmhäll C, Johansson K, Lötvall J and Bossios A: Weight gain alters adiponectin receptor 1 expression on adipose tissue-resident helios+ regulatory T cells. Scand J Immunol. 83:244–254. 2016.PubMed/NCBI View Article : Google Scholar

59 

Ramos-Ramirez P, Malmhäl C, Tliba O, Rådinger M and Bossios A: Adiponectin/AdipoR1 axis promotes IL-10 release by human regulatory T cells. Front Immunol. 12(677550)2021.PubMed/NCBI View Article : Google Scholar

60 

Wu X, Tian J and Wang S: Insight into non-pathogenic Th17 cells in autoimmune diseases. Front Immunol. 9(1112)2018.PubMed/NCBI View Article : Google Scholar

61 

Fang W, Deng Z, Benadjaoud F, Yang D, Yang C and Shi GP: Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J. 34:9755–9770. 2020.PubMed/NCBI View Article : Google Scholar

62 

Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Novak N, Beyer M, Mayer G, et al: The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 206:2079–2089. 2009.PubMed/NCBI View Article : Google Scholar

63 

Chang YC, Hee SW and Chuang LM: T helper 17 cells: A new actor on the stage of type 2 diabetes and aging? J Diabetes Investig. 12:909–913. 2021.PubMed/NCBI View Article : Google Scholar

64 

Miyase T, Sano M, Nakai H, Muraoka M, Nakazawa M, Suzuki M, Yoshino K, Nishihara Y and Tanai J: Antioxidants from Lespedeza homoloba. (I). Phytochemistry. 52:303–310. 1999.PubMed/NCBI View Article : Google Scholar

65 

Miyase T, Sano M, Yoshio K and Nonaka K: Antioxidants from Lespedeza homoloba (II). Phytochemistry. 52:311–319. 1999.PubMed/NCBI View Article : Google Scholar

66 

Terao J and Mukai R: Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch Biochem Biophys. 559:12–16. 2014.PubMed/NCBI View Article : Google Scholar

67 

Longo N, Frigeni M and Pasquali M: Carnitine transport and fatty acid oxidation. Biochem Biophys Acta. 1863:2422–2435. 2016.PubMed/NCBI View Article : Google Scholar

68 

Sultan AA, Rattray Z and Rattray NJW: Toxicometabolomics-based cardiotoxicity evaluation of Thiazolidinedione exposure in human-derived cardiomyocytes. Metabolomics. 20(24)2024.PubMed/NCBI View Article : Google Scholar

69 

Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M and McMurray JJ: RECORD Study Team. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet. 373:2125–2135. 2009.PubMed/NCBI View Article : Google Scholar

70 

Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, et al: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): A randomised controlled trial. Lancet. 366:1279–1289. 2005.PubMed/NCBI View Article : Google Scholar

71 

Yong EL, Cheong WF, Huang Z, Thu WPP, Cazenave-Gassiot A, Seng KY and Logan S: Randomized, double-blind, placebo-controlled trial to examine the safety, pharmacokinetics and effects of epimedium prenylflavonoids, on bone specific alkaline phosphatase and the osteoclast adaptor protein TRAF6 in post-menopausal women. Phytomedicine. 91(153680)2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kobayashi K, Tanabe A and Sasaki K: <em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose. Biomed Rep 21: 164, 2024.
APA
Kobayashi, K., Tanabe, A., & Sasaki, K. (2024). <em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose. Biomedical Reports, 21, 164. https://doi.org/10.3892/br.2024.1852
MLA
Kobayashi, K., Tanabe, A., Sasaki, K."<em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose". Biomedical Reports 21.5 (2024): 164.
Chicago
Kobayashi, K., Tanabe, A., Sasaki, K."<em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose". Biomedical Reports 21, no. 5 (2024): 164. https://doi.org/10.3892/br.2024.1852
Copy and paste a formatted citation
x
Spandidos Publications style
Kobayashi K, Tanabe A and Sasaki K: <em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose. Biomed Rep 21: 164, 2024.
APA
Kobayashi, K., Tanabe, A., & Sasaki, K. (2024). <em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose. Biomedical Reports, 21, 164. https://doi.org/10.3892/br.2024.1852
MLA
Kobayashi, K., Tanabe, A., Sasaki, K."<em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose". Biomedical Reports 21.5 (2024): 164.
Chicago
Kobayashi, K., Tanabe, A., Sasaki, K."<em>Lespedeza homoloba</em> enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose". Biomedical Reports 21, no. 5 (2024): 164. https://doi.org/10.3892/br.2024.1852
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team