|
1
|
Bengtsson A, Andersson R and Ansari D: The
actual 5-year survivors of pancreatic ductal adenocarcinoma based
on real-world data. Sci Rep. 10(16425)2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zhang L, Sanagapalli S and Stoita A:
Challenges in diagnosis of pancreatic cancer. World J
Gastroenterol. 24:2047–2060. 2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lee ES and Lee JM: Imaging diagnosis of
pancreatic cancer: A state-of-the-art review. World J
Gastroenterol. 20:7864–7877. 2014.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Poruk KE, Gay DZ, Brown K, Mulvihill JD,
Boucher KM, Scaife CL, Firpo MA and Mulvihill SJ: The clinical
utility of CA 19-9 in pancreatic adenocarcinoma: Diagnostic and
prognostic updates. Curr Mol Med. 13:340–351. 2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kim S, Park BK, Seo JH, Choi J, Choi JW,
Lee CK, Chung JB, Park Y and Kim DW: Carbohydrate antigen 19-9
elevation without evidence of malignant or pancreatobiliary
diseases. Sci Rep. 10(8820)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wang K, Wang X, Pan Q and Zhao B: Liquid
biopsy techniques and pancreatic cancer: Diagnosis, monitoring, and
evaluation. Mol Cancer. 22(167)2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yan H and Bu P: Non-coding RNA in cancer.
Essays Biochem. 65:625–639. 2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Li Y, Al Hallak MN, Philip PA, Azmi AS and
Mohammad RM: Non-coding RNAs in pancreatic cancer diagnostics and
therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel).
13(4161)2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu
H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi
complex in cancer. Mol Cancer. 18(123)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wu Z, Yu X, Zhang S, He Y and Guo W: Novel
roles of PIWI proteins and PIWI-interacting RNAs in human health
and diseases. Cell Commun Signal. 21(343)2023.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Limanówka P, Ochman B and Świętochowska E:
PiRNA obtained through liquid biopsy as a possible cancer
biomarker. Diagnostics (Basel). 13(1895)2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Müller S, Raulefs S, Bruns P, Afonso-Grunz
F, Plötner A, Thermann R, Jäger C, Schlitter AM, Kong B, Regel I,
et al: Next-generation sequencing reveals novel differentially
regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic
cancer. Mol Cancer. 14(94)2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Li W, Gonzalez-Gonzalez M, Sanz-Criado L,
Garcia-Carbonero N, Celdran A, Villarejo-Campos P, Minguez P,
Pazo-Cid R, Garcia-Jimenez C, Orta-Ruiz A, et al: A novel PiRNA
enhances CA19-9 sensitivity for pancreatic cancer identification by
liquid biopsy. J Clin Med. 11(7310)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kumar SR, Kimchi ET, Manjunath Y,
Gajagowni S, Stuckel AJ and Kaifi JT: RNA cargos in extracellular
vesicles derived from blood serum in pancreas associated
conditions. Sci Rep. 10(2800)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Xie J, Xing S, Shen BY, Chen HT, Sun B,
Wang ZT, Wang JW and Lu XX: PIWIL1 interacting RNA piR-017061
inhibits pancreatic cancer growth via regulating EFNA5. Hum Cell.
34:550–563. 2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Zhong Y, Tian Y, Wang Y, Bai J, Long Q,
Yan L, Gong Z, Gao W and Tang Q: Small extracellular vesicle
piR-hsa-30937 derived from pancreatic neuroendocrine neoplasms
upregulates CD276 in macrophages to promote immune evasion. Cancer
Immunol Res. 12:840–853. 2024.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Chhatriya B, Mukherjee M, Ray S, Sarkar P,
Chatterjee S, Nath D, Das K and Goswami S: Comparison of tumour and
serum specific microRNA changes dissecting their role in pancreatic
ductal adenocarcinoma: A meta-analysis. BMC Cancer.
19(1175)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Andrews S: FastQC: A quality control tool
for high throughput sequence data, 2010.
|
|
19
|
Ewels P, Magnusson M, Lundin S and Käller
M: MultiQC: Summarize analysis results for multiple tools and
samples in a single report. Bioinformatics. 32:3047–3048.
2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Krueger F: Trim Galore: A wrapper tool
around Cutadapt and FastQC to consistently apply quality and
adapter trimming to FastQ files, with some extra functionality for
MspI-digested RRBS-type (reduced representation bisufite-seq)
libraries, 2012.
|
|
21
|
Langmead B and Salzberg SL: Fast
gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359.
2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li H, Handsaker B, Wysoker A, Fennell T,
Ruan J, Homer N, Marth G, Abecasis G and Durbin R: 1000 Genome
Project Data Processing Subgroup. The sequence alignment/map format
and SAMtools. Bioinformatics. 25:2078–2079. 2009.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ
and Prins P: Sambamba: Fast processing of NGS alignment formats.
Bioinformatics. 31:2032–2034. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Garcia-Alcalde F, Okonechnikov K,
Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF and
Conesa A: Qualimap: Evaluating next-generation sequencing alignment
data. Bioinformatics. 28:2678–2679. 2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Leung YY, Kuksa PP, Amlie-Wolf A,
Valladares O, Ungar LH, Kannan S, Gregory BD and Wang LS: DASHR:
Database of small human noncoding RNAs. Nucleic Acids Res.
44:D216–D222. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liao Y, Smyth GK and Shi W: featureCounts:
An efficient general purpose program for assigning sequence reads
to genomic features. Bioinformatics. 30:923–930. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Piuco R and Galante PAF: piRNAdb: A
piwi-interacting RNA database. bioRxiv, 2021.
|
|
28
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15(550)2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Riffo-Campos AL, Riquelme I and
Brebi-Mieville P: Tools for sequence-based miRNA target prediction:
What to choose? Int J Mol Sci. 17(1987)2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Das B, Jain N and Mallick B: piR-39980
mediates doxorubicin resistance in fibrosarcoma by regulating drug
accumulation and DNA repair. Commun Biol. 4(1312)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z,
Meirelles GV, Clark NR and Ma'ayan A: Enrichr: Interactive and
collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics. 14(128)2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kuleshov MV, Jones MR, Rouillard AD,
Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM,
Lachmann A, et al: Enrichr: A comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97.
2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yamanaka S, Siomi MC and Siomi H: piRNA
clusters and open chromatin structure. Mob DNA.
5(22)2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Rosenkranz D and Zischler H: proTRAC-a
software for probabilistic piRNA cluster detection, visualization
and analysis. BMC Bioinformatics. 13(5)2012.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chen N: Using RepeatMasker to identify
repetitive elements in genomic sequences. Curr Protoc
Bioinformatics Chapter 4: Unit 4.10, 2004.
|
|
36
|
Quinlan AR and Hall IM: BEDTools: A
flexible suite of utilities for comparing genomic features.
Bioinformatics. 26:841–842. 2010.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zuo Y, Liang Y, Zhang J, Hao Y, Li M, Wen
Z and Zhao Y: Transcriptome analysis identifies piwi-interacting
RNAs as prognostic markers for recurrence of prostate cancer. Front
Genet. 10(1018)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Lander ES, Linton LM, Birren B, Nusbaum C,
Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al:
Initial sequencing and analysis of the human genome. Nature.
409:860–921. 2001.PubMed/NCBI View Article : Google Scholar
|
|
39
|
El-Sawy M, Kale SP, Dugan C, Nguyen TQ,
Belancio V, Bruch H, Roy-Engel AM and Deininger PL: Nickel
stimulates L1 retrotransposition by a post-transcriptional
mechanism. J Mol Biol. 354:246–257. 2005.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Giorgi G, Marcantonio P and Del Re B:
LINE-1 retrotransposition in human neuroblastoma cells is affected
by oxidative stress. Cell Tissue Res. 346:383–391. 2011.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Stribinskis V and Ramos KS: Activation of
human long interspersed nuclear element 1 retrotransposition by
benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res.
66:2616–2620. 2006.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Prinz C, Fehring L and Frese R: MicroRNAs
as indicators of malignancy in pancreatic ductal adenocarcinoma
(PDAC) and cystic pancreatic lesions. Cells.
11(2374)2022.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Mok ETY, Chitty JL and Cox TR: miRNAs in
pancreatic cancer progression and metastasis. Clin Exp Metastasis.
41:163–186. 2024.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ernst C, Odom DT and Kutter C: The
emergence of piRNAs against transposon invasion to preserve
mammalian genome integrity. Nat Commun. 8(1411)2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ho S, Theurkauf W and Rice N: piRNA-guided
transposon silencing and response to stress in drosophila germline.
Viruses. 16(714)2024.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Siomi MC, Sato K, Pezic D and Aravin AA:
PIWI-interacting small RNAs: The vanguard of genome defence. Nat
Rev Mol Cell Biol. 12:246–258. 2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y,
Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming
in cancer: Mechanisms and therapeutics. MedComm (2020).
4(e218)2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wei Z, Liu X, Cheng C, Yu W and Yi P:
Metabolism of amino acids in cancer. Front Cell Dev Biol.
8(603837)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sauer SW: Biochemistry and bioenergetics
of glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis.
30:673–680. 2007.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lao Y, Cui X, Xu Z, Yan H, Zhang Z, Zhang
Z, Geng L, Li B, Lu Y, Guan Q, et al: Glutaryl-CoA dehydrogenase
suppresses tumor progression and shapes an anti-tumor
microenvironment in hepatocellular carcinoma. J Hepatol:
S0168-8278(24)00369-6, 2024 (Epub ahead of print).
|
|
51
|
Jiang LQ, de Castro Barbosa T, Massart J,
Deshmukh AS, Löfgren L, Duque-Guimaraes DE, Ozilgen A, Osler ME,
Chibalin AV and Zierath JR: Diacylglycerol kinase-δ regulates AMPK
signaling, lipid metabolism, and skeletal muscle energetics. Am J
Physiol Endocrinol Metab. 310:E51–E60. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Ren Y, Liu SF, Nie L, Cai SY and Chen J:
Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways:
Insights into functional conservation of NOD2 in antibacterial
innate immunity. Zool Res. 40:77–88. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Lv J, Liu Y, Mo S, Zhou Y, Chen F, Cheng
F, Li C, Saimi D, Liu M, Zhang H, et al: Gasdermin E mediates
resistance of pancreatic adenocarcinoma to enzymatic digestion
through a YBX1-mucin pathway. Nat Cell Biol. 24:364–372.
2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ritter A and Kreis NN: Microtubule
dynamics and cancer. Cancers (Basel). 14(4368)2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Robinson CM, Talty A, Logue SE, Mnich K,
Gorman AM and Samali A: An emerging role for the unfolded protein
response in pancreatic cancer. Cancers (Basel).
13(261)2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Yang X, Khosravi-Far R, Chang HY and
Baltimore D: Daxx, a novel Fas-binding protein that activates JNK
and apoptosis. Cell. 89:1067–1076. 1997.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Kanchanawong P and Calderwood DA:
Organization, dynamics and mechanoregulation of integrin-mediated
cell-ECM adhesions. Nat Rev Mol Cell Biol. 24:142–161.
2023.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Israeli-Rosenberg S, Chen C, Li R, Deussen
DN, Niesman IR, Okada H, Patel HH, Roth DM and Ross RS: Caveolin
modulates integrin function and mechanical activation in the
cardiomyocyte. FASEB J. 29:374–384. 2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Velez DO, Ranamukhaarachchi SK, Kumar A,
Modi RN, Lim EW, Engler AJ, Metallo CM and Fraley SI: 3D collagen
architecture regulates cell adhesion through degradability, thereby
controlling metabolic and oxidative stress. Integr Biol (Camb).
11:221–234. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Le Cosquer G, Maulat C, Bournet B,
Cordelier P, Buscail E and Buscail L: Pancreatic cancer in chronic
pancreatitis: Pathogenesis and diagnostic approach. Cancers
(Basel). 15(761)2023.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ahmad S, Ahmed MM, Hasan PMZ, Sharma A,
Bilgrami AL, Manda K, Ishrat R and Syed MA: Identification and
validation of potential miRNAs, as biomarkers for sepsis and
associated lung injury: A network-based approach. Genes (Basel).
11(1327)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Alrashoudi RH, Crane IJ, Wilson HM,
Al-Alwan M and Alajez NM: Gene expression data analysis identifies
multiple deregulated pathways in patients with asthma. Biosci Rep.
38(BSR20180548)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chen H, Chew G, Devapragash N, Loh JZ,
Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, et al: The E3
ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte
infiltration and activity in heart fibrosis. Nat Commun.
13(7375)2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Clark CR, Maile M, Blaney P, Hellweg SR,
Strauss A, Durose W, Priya S, Habicht J, Burns MB, Blekhman R, et
al: Transposon mutagenesis screen in mice identifies TM9SF2 as a
novel colorectal cancer oncogene. Sci Rep. 8(15327)2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Coenen DM, Heinzmann ACA, Oggero S, Albers
HJ, Nagy M, Hagué P, Kuijpers MJE, Vanderwinden JM, van der Meer
AD, Perretti M, et al: Inhibition of phosphodiesterase 3A by
cilostazol dampens proinflammatory platelet functions. Cells.
10(1998)2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Di Stefano A, Gnemmi I, Rosani U,
Maniscalco M, D'Anna SE, Brun P, Carriero V, Bertolini F, Balbi B
and Ricciardolo FLM: Upregulation of notch signaling and
cell-differentiation inhibitory transcription factors in stable
chronic obstructive pulmonary disease patients. Int J Mol Sci.
25(3287)2024.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ghanem MH, Shih AJ, Vashistha H, Coke LN,
Li W, Kim SJ, Simpfendorfer KR and Gregersen PK: Investigations
into SCAMP5, a candidate lupus risk gene expressed in plasmacytoid
dendritic cells. Lupus Sci Med. 8(e000567)2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kim YS, Park HJ, Park JH, Hong EJ, Jang
GY, Jung ID, Han HD, Lee SH, Vo MC, Lee JJ, et al: A novel function
of API5 (apoptosis inhibitor 5), TLR4-dependent activation of
antigen presenting cells. Oncoimmunology.
7(e1472187)2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kraja AT, Chasman DI, North KE, Reiner AP,
Yanek LR, Kilpeläinen TO, Smith JA, Dehghan A, Dupuis J, Johnson
AD, et al: Pleiotropic genes for metabolic syndrome and
inflammation. Mol Genet Metab. 112:317–338. 2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Li T, Qiu J, Jia T, Liang Y, Zhang K, Yan
W, Hou Z, Yang S, Liu L, Xiong W, et al: G3BP2 regulates
oscillatory shear stress-induced endothelial dysfunction. Genes
Dis. 9:1701–1715. 2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lin YC, Chang PC, Hueng DY, Huang SM and
Li YF: Decoding the prognostic significance of integrator complex
subunit 9 (INTS9) in glioma: links to TP53 mutations, E2F
signaling, and inflammatory microenvironments. Cancer Cell Int.
23(154)2023.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Mc Fie M, Koneva L, Collins I, Coveney CR,
Clube AM, Chanalaris A, Vincent TL, Bezbradica JS, Sansom SN and
Wann AKT: Ciliary proteins specify the cell inflammatory response
by tuning NFκB signalling, independently of primary cilia. J Cell
Sci. 133(jcs239871)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Patankar M, Li M, Khalatbari A, Castle JD,
Hu L, Zhang C and Shaker A: Inflammatory and proliferative pathway
activation in human esophageal myofibroblasts treated with acidic
bile salts. Int J Mol Sci. 23(10371)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ramachandran R, Hyun E, Zhao L, Lapointe
TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL,
et al: TRPM8 activation attenuates inflammatory responses in mouse
models of colitis. Proc Natl Acad Sci USA. 110:7476–7481.
2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tian CJ, Zhang JH, Liu J, Ma Z and Zhen Z:
Ryanodine receptor and immune-related molecules in diabetic
cardiomyopathy. ESC Heart Fail. 8:2637–2646. 2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Weng HR, Taing K, Chen L and Penney A:
EZH2 methyltransferase regulates neuroinflammation and neuropathic
pain. Cells. 12(1058)2023.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Asadi MR, Rahmanpour D, Moslehian MS,
Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M and Rezazadeh M:
Stress granules involved in formation, progression and metastasis
of cancer: A scoping review. Front Cell Dev Biol.
9(745394)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Federico A, Rienzo M, Abbondanza C, Costa
V, Ciccodicola A and Casamassimi A: Pan-cancer mutational and
transcriptional analysis of the integrator complex. Int J Mol Sci.
18(936)2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Jiang H, Wang G, Gu J, Xiao Y, Wang P,
Huang X, Sha H, Wang Z and Ma Q: Resveratrol inhibits the
expression of RYR2 and is a potential treatment for pancreatic
cancer. Naunyn Schmiedebergs Arch Pharmacol. 395:315–324.
2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Jo EH, Kim MY, Lee HJ and Park HS:
Ubiquitin E3 ligases in cancer: somatic mutation and amplification.
BMB Rep. 56:265–274. 2023.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Khan NA, Garg AD, Agostinis P and Swinnen
JV: Drug-induced ciliogenesis in pancreatic cancer cells is
facilitated by the secreted ATP-purinergic receptor signaling
pathway. Oncotarget. 9:3507–3518. 2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Koci L, Chlebova K, Hyzdalova M, Hofmanova
J, Jira M, Kysela P, Kozubik A, Kala Z and Krejci P: Apoptosis
inhibitor 5 (API-5; AAC-11; FIF) is upregulated in human carcinomas
in vivo. Oncol Lett. 3:913–916. 2012.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Kumazoe M, Takai M, Hiroi S, Takeuchi C,
Yamanouchi M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, et al:
PDE3 inhibitor and EGCG combination treatment suppress cancer stem
cell properties in pancreatic ductal adenocarcinoma. Sci Rep.
7(1917)2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Li Q, Lei C, Lu C, Wang J, Gao M and Gao
W: LINC01232 exerts oncogenic activities in pancreatic
adenocarcinoma via regulation of TM9SF2. Cell Death Dis.
10(698)2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Mao F, Duan H, Allamyradov A, Xin Z, Du Y,
Wang X, Xu P, Li Z, Qian J and Yao J: Expression and prognostic
analyses of SCAMPs in pancreatic adenocarcinoma. Aging (Albany NY).
13:4096–4114. 2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Miao Z, Ali A, Hu L, Zhao F, Yin C, Chen
C, Yang T and Qian A: Microtubule actin cross-linking factor 1, a
novel potential target in cancer. Cancer Sci. 108:1953–1958.
2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Paradise BD, Barham W and Fernandez-Zapico
ME: Targeting epigenetic aberrations in pancreatic cancer, a new
path to improve patient outcomes? Cancers (Basel).
10(128)2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Witkiewicz AK, Balaji U, Eslinger C,
McMillan E, Conway W, Posner B, Mills GB, O'Reilly EM and Knudsen
ES: Integrated patient-derived models delineate individualized
therapeutic vulnerabilities of pancreatic cancer. Cell Rep.
16:2017–2031. 2016.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yee NS, Brown RD, Lee MS, Zhou W, Jensen
C, Gerke H and Yee RK: TRPM8 ion channel is aberrantly expressed
and required for preventing replicative senescence in pancreatic
adenocarcinoma: Potential role of TRPM8 as a biomarker and target.
Cancer Biol Ther. 13:592–599. 2012.PubMed/NCBI View Article : Google Scholar
|