1
|
Ayalon L, Dolberg P, Mikulionienė S,
Perek-Białas J, Rapolienė G, Stypinska J, Willińska M and de la
Fuente-Núñez V: A systematic review of existing ageism scales.
Ageing Res Rev. 54(100919)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Feng Z: Global convergence: Aging and
long-term care policy challenges in the developing world. J Aging
Soc Policy. 31:291–297. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Mohd Tohit NF and Haque M: Gerontology in
public health: A scoping review of current perspectives and
interventions. Cureus. 16(e65896)2024.PubMed/NCBI View Article : Google Scholar
|
4
|
Wagner W: The link between epigenetic
clocks for aging and senescence. Front Genet.
10(303)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Alibhai FJ and Li RK: Rejuvenation of the
aging heart: Molecular determinants and applications. Can J
Cardiol. 40:1394–1411. 2024.PubMed/NCBI View Article : Google Scholar
|
6
|
Iordache F, Petcu ACI and Alexandru DM:
Genetic and epigenetic interactions involved in senescence of stem
cells. Int J Mol Sci. 25(9708)2024.PubMed/NCBI View Article : Google Scholar
|
7
|
Guarente L, Sinclair DA and Kroemer G:
Human trials exploring anti-aging medicines. Cell Metab.
36:354–376. 2024.PubMed/NCBI View Article : Google Scholar
|
8
|
Olova NN: Epigenetic rejuvenation: A
journey backwards towards an epigenomic ground state. Epigenomics.
17:1–3. 2025.PubMed/NCBI View Article : Google Scholar
|
9
|
Park K, Jeon MC, Lee D, Kim JI and Im SW:
Genetic and epigenetic alterations in aging and rejuvenation of
human. Mol Cells. 47(100137)2024.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen Y, Li M and Wu Y: The occurrence and
development of induced pluripotent stem cells. Front Genet.
15(1389558)2024.PubMed/NCBI View Article : Google Scholar
|
11
|
Yang HS, Zheng YX, Bai X, He XY and Wang
TH: Application prospects of urine-derived stem cells in
neurological and musculoskeletal diseases. World J Orthop.
15:918–931. 2024.PubMed/NCBI View Article : Google Scholar
|
12
|
Jiang B, Zhang W, Zhang X and Sun Y:
Targeting senescent cells to reshape the tumor microenvironment and
improve anticancer efficacy. Semin Cancer Biol. 101:58–73.
2024.PubMed/NCBI View Article : Google Scholar
|
13
|
Ruetz TJ, Pogson AN, Kashiwagi CM, Gagnon
SD, Morton B, Sun ED, Na J, Yeo RW, Leeman DS, Morgens DW, et al:
CRISPR-Cas9 screens reveal regulators of ageing in neural stem
cells. Nature. 634:1150–1159. 2024.PubMed/NCBI View Article : Google Scholar
|
14
|
Falah G, Sharvit L and Atzmon G:
CRISPR-Cas9 mediated d3GHR knockout in HEK293 cells: Revealing the
longevity associated isoform stress resilience. Exp Gerontol.
196(112586)2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Somers A, Jean JC, Sommer CA, Omari A,
Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, et al:
Generation of transgene-free lung disease-specific human induced
pluripotent stem cells using a single excisable lentiviral stem
cell cassette. Stem Cells. 28:1728–1740. 2010.PubMed/NCBI View
Article : Google Scholar
|
16
|
Carter JL, Halmai JANM and Fink KD: The
iNs and outs of direct reprogramming to induced neurons. Front
Genome Ed. 2(7)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Esteves F, Brito D, Rajado AT, Silva N,
Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P and
Bragança J: ALFA Score Consortium. Reprogramming iPSCs to study
age-related diseases: Models, therapeutics, and clinical trials.
Mech Ageing Dev. 214(111854)2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Towns CR: The science and ethics of
cell-based therapies for Parkinson's disease. Parkinsonism Relat
Disord. 34:1–6. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Qi SD, Smith PD and Choong PF: Nuclear
reprogramming and induced pluripotent stem cells: A review for
surgeons. ANZ J Surg. 84:E1–E11. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo
B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in
metabolic diseases: Mechanisms and advances in clinical study.
Signal Transduct Target Ther. 8(98)2023.PubMed/NCBI View Article : Google Scholar
|
21
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu
S, Li T, Jiang Y, Wei S, Na Z, et al: Epigenetics-targeted drugs:
Current paradigms and future challenges. Signal Transduct Target
Ther. 9(332)2024.PubMed/NCBI View Article : Google Scholar
|
22
|
Generali M, Yoshihiko F, Debora K, Moe H,
Maximilian YE, Jun T, Simon PH and Hirohide S: Purification
technologies for induced pluripotent stem cell therapies. Nat Rev
Bioeng. 2:930–943. 2024.
|
23
|
Park J, Kim J, Shin B, Sch Ler HR, Kim J
and Kim KP: Inducing pluripotency in somatic cells: Historical
perspective and recent advances. Int J Stem Cells. 17:363–373.
2024.PubMed/NCBI View Article : Google Scholar
|
24
|
Bruno S, Schlaeger TM and Del Vecchio D:
Epigenetic OCT4 regulatory network: Stochastic analysis of cellular
reprogramming. NPJ Syst Biol Appl. 10(3)2024.PubMed/NCBI View Article : Google Scholar
|
25
|
Kaemena DF, Yoshihara M, Beniazza M,
Ashmore J, Zhao S, Bertenstam M, Olariu V, Katayama S, Okita K,
Tomlinson SR, et al: B1 SINE-binding ZFP266 impedes mouse iPSC
generation through suppression of chromatin opening mediated by
reprogramming factors. Nat Commun. 14(488)2023.PubMed/NCBI View Article : Google Scholar
|
26
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang
Y, Lin L, Liu H, Kuang J, Zhao C, et al: The NuRD complex
cooperates with SALL4 to orchestrate reprogramming. Nat Commun.
14(2846)2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Xie W, Miehe M, Laufer S and Johnsen SA:
The H2B ubiquitin-protein ligase RNF40 is required for somatic cell
reprogramming. Cell Death Dis. 11(287)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Müller I, Moroni AS, Shlyueva D, Sahadevan
S, Schoof EM, Radzisheuskaya A, Højfeldt JW, Tatar T, Koche RP,
Huang C and Helin K: MPP8 is essential for sustaining self-renewal
of ground-state pluripotent stem cells. Nat Commun.
12(3034)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Srinivasan SP, Nemade H, Cherianidou A,
Peng L, Cruz-Molina S, Rada-Iglesias A and Sachinidis A: Epigenetic
mechanisms of Strip2 in differentiation of pluripotent stem cells.
Cell Death Discov. 8(447)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Saliev T and Singh PB: From bench to
bedside: Translating cellular rejuvenation therapies into clinical
applications. Cells. 13(2052)2024.PubMed/NCBI View Article : Google Scholar
|
31
|
Jing Y, Jiang X, Ji Q, Wu Z, Wang W, Liu
Z, Guillen-Garcia P, Esteban CR, Reddy P, Horvath S, et al:
Genome-wide CRISPR activation screening in senescent cells reveals
SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem
Cell. 30:1452–1471.e10. 2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Khetpal S, Ghosh D and Roostaeian J:
Innovations in skin and soft tissue aging-A systematic literature
review and market analysis of therapeutics and associated outcomes.
Aesthetic Plast Surg. 47:1609–1622. 2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Maroufi F, Maali A, Abdollahpour-Alitappeh
M, Ahmadi MH and Azad M: CRISPR-mediated modification of DNA
methylation pattern in the new era of cancer therapy. Epigenomics.
12:1845–1859. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Fadul SM, Arshad A and Mehmood R:
CRISPR-based epigenome editing: Mechanisms and applications.
Epigenomics. 15:1137–1155. 2023.PubMed/NCBI View Article : Google Scholar
|
35
|
Oshimura M, Tabata T, Uno N, Takata S,
Hichiwa G, Kanazawa I, Endo T, Honma K, Wang Y, Kazuki K, et al:
Rejuvenation of human mesenchymal stem cells using a nonintegrative
and conditionally removable Sendai virus vector. Sci Rep.
14(23623)2024.PubMed/NCBI View Article : Google Scholar
|
36
|
Salehpour A, Karimi Z, Ghasemi Zadeh M,
Afshar M, Kameli A, Mooseli F, Zare M and Afshar A: Therapeutic
potential of mesenchymal stem cell-derived exosomes and miRNAs in
neuronal regeneration and rejuvenation in neurological disorders: A
mini review. Front Cell Neurosci. 18(1427525)2024.PubMed/NCBI View Article : Google Scholar
|
37
|
Saad FA: Gene therapy for skin aging. Curr
Gene Ther. 25:2–9. 2024.PubMed/NCBI View Article : Google Scholar
|
38
|
Wu S, Sun S, Fu W, Yang Z, Yao H and Zhang
Z: The role and prospects of mesenchymal stem cells in skin repair
and regeneration. Biomedicines. 12(743)2024.PubMed/NCBI View Article : Google Scholar
|
39
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR,
Hermann DM, Gresita A, Capitanescu B and Popa-Wagner A:
Pharmacological and stem cell therapy of stroke in animal models:
Do they accurately reflect the response of humans? Exp Neurol.
376(114753)2024.PubMed/NCBI View Article : Google Scholar
|
40
|
Li C, Qin H, Zeng L, Hu Z and Chen C:
Efficacy of stem cell therapy in animal models of intracerebral
hemorrhage: An updated meta-analysis. Stem Cell Res Ther.
13(452)2022.PubMed/NCBI View Article : Google Scholar
|
41
|
Ribitsch I, Baptista PM, Lange-Consiglio
A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC,
Connolly DJ, van Steenbeek FG, et al: Large animal models in
regenerative medicine and tissue engineering: To do or not to do.
Front Bioeng Biotechnol. 8(972)2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Zheng J, Yang B, Liu S, Xu Z, Ding Z and
Mo M: Applications of exosomal miRNAs from mesenchymal stem cells
as skin boosters. Biomolecules. 14(459)2024.PubMed/NCBI View Article : Google Scholar
|
43
|
Chehelgerdi M, Chehelgerdi M, Allela OQB,
Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M,
Viktor P, Lakshmaiya N, et al: Progressing nanotechnology to
improve targeted cancer treatment: Overcoming hurdles in its
clinical implementation. Mol Cancer. 22(169)2023.PubMed/NCBI View Article : Google Scholar
|
44
|
Yücel AD and Gladyshev VN: The long and
winding road of reprogramming-induced rejuvenation. Nat Commun.
15(1941)2024.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhang S, Lee Y, Liu Y, Yu Y and Han I:
Stem cell and regenerative therapies for the treatment of
osteoporotic vertebral compression fractures. Int J Mol Sci.
25(4979)2024.PubMed/NCBI View Article : Google Scholar
|
46
|
Jothi D and Kulka LAM: Strategies for
modeling aging and age-related diseases. NPJ Aging.
10(32)2024.PubMed/NCBI View Article : Google Scholar
|
47
|
Dhanjal DS, Singh R, Sharma V, Nepovimova
E, Adam V, Kuca K and Chopra C: Advances in genetic reprogramming:
Prospects from developmental biology to regenerative medicine. Curr
Med Chem. 31:1646–1690. 2024.PubMed/NCBI View Article : Google Scholar
|
48
|
Balducci L, Falandry C and Monfardini S:
Senotherapy, cancer, and aging. J Geriatr Oncol.
15(101671)2024.PubMed/NCBI View Article : Google Scholar
|
49
|
Abdellatif M, Schmid ST, Fuerlinger A and
Kroemer G: Anti-ageing interventions for the treatment of
cardiovascular disease. Cardiovasc Res: Aug 22, 2024 (Epub ahead of
print).
|
50
|
Meltzer WA, Gupta A, Lin PN, Brown RA,
Benyamien-Roufaeil DS, Khatri R, Mahurkar AA, Song Y, Taylor RJ and
Zalzman M: Reprogramming chromosome ends by functional histone
acetylation. Int J Mol Sci. 25(3898)2024.PubMed/NCBI View Article : Google Scholar
|
51
|
Kim J, Hwang Y, Kim S, Chang Y, Kim Y,
Kwon Y and Kim J: Transcriptional activation of endogenous Oct4 via
the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria
syndrome in mice. Aging Cell. 22(e13825)2023.PubMed/NCBI View Article : Google Scholar
|
52
|
Yang SG, Wang XW, Qian C and Zhou FQ:
Reprogramming neurons for regeneration: The fountain of youth. Prog
Neurobiol. 214(102284)2022.PubMed/NCBI View Article : Google Scholar
|
53
|
Tabibzadeh S: From genoprotection to
rejuvenation. Front Biosci (Landmark Ed). 26:97–162.
2021.PubMed/NCBI View
Article : Google Scholar
|
54
|
Alvarez-Kuglen M, Ninomiya K, Qin H,
Rodriguez D, Fiengo L, Farhy C, Hsu WM, Kirk B, Havas A, Feng GS,
et al: ImAge quantitates aging and rejuvenation. Nat Aging.
4:1308–1327. 2024.PubMed/NCBI View Article : Google Scholar
|
55
|
Pereira B, Correia FP, Alves IA, Costa M,
Gameiro M, Martins AP and Saraiva JA: Epigenetic reprogramming as a
key to reverse ageing and increase longevity. Ageing Res Rev.
95(102204)2024.PubMed/NCBI View Article : Google Scholar
|
56
|
Suslo A, Mizia S, Horoch-Łyszczarek E and
Pochybełko E: The future of care and healthcare provision to
communitydwelling disa-bled elderly people in an ageing society.
Fam Med Prim Care Rev. 25:102–106. 2023.
|
57
|
Iijima K, Arai H, Akishita M, Endo T,
Ogasawara K, Kashihara N, Hayashi YK, Yumura W, Yokode M and Ouchi
Y: Toward the development of a vibrant, super-aged society: The
future of medicine and society in Japan. Geriatr Gerontol Int.
21:601–613. 2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Ok SC: Insights into the anti-aging
prevention and diagnostic medicine and healthcare. Diagnostics
(Basel). 12(819)2022.PubMed/NCBI View Article : Google Scholar
|
59
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay
G and Saparov A: Recent advances in gene therapy for cardiac tissue
regeneration. Int J Mol Sci. 22(9206)2021.PubMed/NCBI View Article : Google Scholar
|
60
|
Goya RG, Lehmann M, Chiavellini P,
Canatelli-Mallat M, Hereñú CB and Brown OA: Rejuvenation by cell
reprogramming: A new horizon in gerontology. Stem Cell Res Ther.
9(349)2018.PubMed/NCBI View Article : Google Scholar
|
61
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ,
Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A
and Navarro-Partida J: Beyond vision: An overview of regenerative
medicine and its current applications in ophthalmological care.
Cells. 13(179)2024.PubMed/NCBI View Article : Google Scholar
|
62
|
Gacic JM, Rascanin SR, Jovanovic MR,
Nikolovski SS, Jovanovic N, Petkovic J, Zdravkovic N, Djokic O and
Rancic NK: Comparison of knowledge about induced pluripotent stem
cells in relation to gender among healthcare professionals and in
the general population. Cureus. 16(e66821)2024.PubMed/NCBI View Article : Google Scholar
|
63
|
Smajdor A: An alternative to sexual
reproduction: Artificial gametes and their implications for
society. Br Med Bull. 129:5–11. 2019.PubMed/NCBI View Article : Google Scholar
|
64
|
Mkrtchyan GV, Abdelmohsen K, Andreux P,
Bagdonaite I, Barzilai N, Brunak S, Cabreiro F, de Cabo R, Campisi
J, Cuervo AM, et al: ARDD 2020: From aging mechanisms to
interventions. Aging (Albany NY). 12:24484–24503. 2020.PubMed/NCBI View Article : Google Scholar
|
65
|
Kabata F and Thaldar D: The human genome
as the common heritage of humanity. Front Genet.
14(1282515)2023.PubMed/NCBI View Article : Google Scholar
|
66
|
Hoffmann WA and Nortjé N: Ethics review
framework and guidelines for social science research. Soc Sci Res
Ethics Afr. 7:229–248. 2019.
|
67
|
Madathil LP, Palatty PL, Sacheendran D,
Jayachander M, George T, Gur A, Krishna A, D'souza RF and Baliga
MS: Bioethical and human right considerations during COVID-19
pandemic period: Reflections of integrated oncology clinical
services from India. Ind J Med Paediatr Oncol. 45:481–487.
2024.
|
68
|
Pimenta FJB and Gómez AG: Contemplating
the principles of the UNESCO declaration on bioethics and human
rights: A bioaesthetic experience. Int J Ethics Educ. 8:249–274.
2023.
|
69
|
Nikitchina N, Ulashchik E, Shmanai V,
Heckel AM, Tarassov I, Mazunin I and Entelis N: Targeting of
CRISPR-Cas12a crRNAs into human mitochondria. Biochimie. 217:74–85.
2024.PubMed/NCBI View Article : Google Scholar
|
70
|
Lim K: Mitochondrial genome editing:
Strategies, challenges, and applications. BMB Rep. 57:19–29.
2024.PubMed/NCBI View Article : Google Scholar
|
71
|
Gao Y, Guo L, Wang F, Wang Y, Li P and
Zhang D: Development of mitochondrial gene-editing strategies and
their potential applications in mitochondrial hereditary diseases:
A review. Cytotherapy. 26:11–24. 2024.PubMed/NCBI View Article : Google Scholar
|
72
|
Tao R, Yue C, Guo Z, Guo W, Yao Y, Yang X,
Shao Z, Gao C, Ding J, Shen L, et al: Subtype-specific neurons from
patient iPSCs display distinct neuropathological features of
Alzheimer's disease. Cell Regen. 13(21)2024.PubMed/NCBI View Article : Google Scholar
|
73
|
Summers RA, Fagiani F, Rowitch DH, Absinta
M and Reich DS: Novel human iPSC models of neuroinflammation in
neurodegenerative disease and regenerative medicine. Trends
Immunol. 45:799–813. 2024.PubMed/NCBI View Article : Google Scholar
|
74
|
Antón-Fernández A, Roldán-Lázaro M,
Vallés-Saiz L, Ávila J and Hernández F: In vivo cyclic
overexpression of Yamanaka factors restricted to neurons reverses
age-associated phenotypes and enhances memory performance. Commun
Biol. 7(631)2024.PubMed/NCBI View Article : Google Scholar
|
75
|
Macip CC, Hasan R, Hoznek V, Kim J, Lu YR,
Metzger LE IV, Sethna S and Davidsohn N: Gene therapy-mediated
partial reprogramming extends lifespan and reverses age-related
changes in aged mice. Cell Reprogram. 26:24–32. 2024.PubMed/NCBI View Article : Google Scholar
|
76
|
Li X, Li C, Zhang W, Wang Y, Qian P and
Huang H: Inflammation and aging: Signaling pathways and
intervention therapies. Signal Transduct Target Ther.
8(239)2023.PubMed/NCBI View Article : Google Scholar
|
77
|
Calabrò A, Accardi G, Aiello A, Caruso C,
Galimberti D and Candore G: Senotherapeutics to counteract
senescent cells are prominent topics in the context of anti-ageing
strategies. Int J Mol Sci. 25(1792)2024.PubMed/NCBI View Article : Google Scholar
|
78
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda
K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H and Rahman
I: Emerging roles of senolytics/senomorphics in HIV-related
co-morbidities. Biochem Pharmacol. 228(116179)2024.PubMed/NCBI View Article : Google Scholar
|
79
|
McHugh D, Durán I and Gil J: Senescence as
a therapeutic target in cancer and age-related diseases. Nat Rev
Drug Discov. 24:57–71. 2025.PubMed/NCBI View Article : Google Scholar
|
80
|
Martel J, Ojcius DM and Young JD:
Lifestyle interventions to delay senescence. Biomed J.
47(100676)2024.PubMed/NCBI View Article : Google Scholar
|