Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
June-2025 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review)

  • Authors:
    • Shijian Li
    • Jihua Wu
    • Bing Bin
  • View Affiliations / Copyright

    Affiliations: Transplant Medical Research Institution, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 102
    |
    Published online on: April 22, 2025
       https://doi.org/10.3892/br.2025.1980
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Calcified nanoparticles (CNPs), also known as nanobacteria, are ubiquitously present in both natural minerals and biological systems. However, their properties remain incompletely elucidated, particularly concerning whether they represent the smallest self‑replicating entities on Earth, a topic that remains highly debated. Current research has demonstrated that CNPs can be isolated from various pathological calcification conditions, including kidney stones, vascular calcification, biliary stones, and calculus oral disease. These particles have the potential to infect any tissue or cell type within the human body, forming a mineralized layer around them, which leads to pathological calcification of tissues. It is suggested that CNPs may play a significant role in these diseases by damaging cells, promoting osteogenic differentiation, and influencing metabolic processes, thereby initiating the formation of calcification cores in local tissues. Under the influence of inflammatory responses, these cores can expand further, ultimately leading to the development of calcification diseases. Therefore, the aim of the present review was to explore the roles and pathogenic mechanisms of CNPs in various pathological calcification diseases, providing new insights for in‑depth research into their properties and pathogenic mechanisms, as well as identifying potential therapeutic targets for calcification diseases.
View Figures

Figure 1

View References

1 

Boraldi F, Lofaro FD and Quaglino D: Apoptosis in the extraosseous calcification process. Cells. 10(131)2021.PubMed/NCBI View Article : Google Scholar

2 

Kirsch T: Determinants of pathological mineralization. Curr Opin Rheumatol. 18:174–180. 2006.PubMed/NCBI View Article : Google Scholar

3 

Snijders BMG, Peters MJL and Koek HL: Ectopic calcification: What do we know and what is the way forward? J Clin Med. 12(3687)2023.PubMed/NCBI View Article : Google Scholar

4 

Wu J, Tao Z, Deng Y, Liu Q, Liu Y, Guan X and Wang X: Calcifying nanoparticles induce cytotoxicity mediated by ROS-JNK signaling pathways. Urolithiasis. 47:125–135. 2019.PubMed/NCBI View Article : Google Scholar

5 

Kajander EO and Ciftçioglu N: Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA. 95:8274–8279. 1998.PubMed/NCBI View Article : Google Scholar

6 

Zhu ML, Wang JJ, Pan WN, Liu SR and Zhu YD: Significance of detection of nanobacteria in bile and gallstones. Chin J Nosocomiol. 29:3279–3283. 2019.

7 

Zhang Y, Zhu R, Liu D, Gong M, Hu W, Yi Q and Zhang J: Tetracycline attenuates calcifying nanoparticles-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis in rat models. Transl Androl Urol. 8:619–630. 2019.PubMed/NCBI View Article : Google Scholar

8 

Wu JH, Deng YL, Liu Q, Yu JC, Liu YL, He ZQ and Guan XF: Induction of apoptosis and autophagy by calcifying nanoparticles in human bladder cancer cells. Tumour Biol. 39(1010428317707688)2017.PubMed/NCBI View Article : Google Scholar

9 

Erdemir F, Karabulut A, Ozveren B and Kocagoz T: How much do we know about nanobacteria? Ecotoxicol Environ Saf. 288(117415)2024.PubMed/NCBI View Article : Google Scholar

10 

Wang S, Yang L, Bai G, Gu Y, Fan Q, Guan X, Yuan J and Liu J: A preliminary study on calcifying nanoparticles in dental plaque: Isolation, characterization, and potential mineralization mechanism. Clin Exp Dent Res. 10(e885)2024.PubMed/NCBI View Article : Google Scholar

11 

Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, et al: Role of ROS-induced NLRP3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front Immunol. 13(818625)2022.PubMed/NCBI View Article : Google Scholar

12 

Jahnen-Dechent W, Heiss A, Schäfer C and Ketteler M: Fetuin-A regulation of calcified matrix metabolism. Circ Res. 108:1494–1509. 2011.PubMed/NCBI View Article : Google Scholar

13 

Jahnen-Dechent W, Schäfer C, Ketteler M and McKee MD: Mineral chaperones: A role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med (Berl). 86:379–389. 2008.PubMed/NCBI View Article : Google Scholar

14 

Mulay SR and Anders HJ: Crystallopathies. N Engl J Med. 374:2465–2476. 2016.PubMed/NCBI View Article : Google Scholar

15 

Leaf DE: Calcium kidney stones. N Engl J Med. 363:2470–2471. 2010.PubMed/NCBI View Article : Google Scholar

16 

Hutcheson JD, Goettsch C, Rogers MA and Aikawa E: Revisiting cardiovascular calcification: A multifaceted disease requiring a multidisciplinary approach. Semin Cell Dev Biol. 46:68–77. 2015.PubMed/NCBI View Article : Google Scholar

17 

Mager R and Neisius A: Current concepts on the pathogenesis of urinary stones. Urologe A. 58:1272–1280. 2019.PubMed/NCBI View Article : Google Scholar : (In German).

18 

Randall A: The origin and growth of renal calculi. Ann Surg. 105:1009–1027. 1937.PubMed/NCBI View Article : Google Scholar

19 

Wong TY, Wu CY, Martel J, Lin CW, Hsu FY, Ojcius DM, Lin PY and Young JD: Detection and characterization of mineralo-organic nanoparticles in human kidneys. Sci Rep. 5(15272)2015.PubMed/NCBI View Article : Google Scholar

20 

Ciftçioğlu N, Vejdani K, Lee O, Mathew G, Aho KM, Kajander EO, McKay DS, Jones JA and Stoller ML: Association between Randall's plaque and calcifying nanoparticles. Int J Nanomedicine. 3:105–115. 2008.PubMed/NCBI View Article : Google Scholar

21 

Akerman KK, Kuikka JT, Ciftcioglu N, Parkkinen J, Bergstroem KA, Kuronen I and Kajander EO: Radiolabeling and in vivo distribution of nanobacteria in rabbits. Proc SPIE Int Soc Opt Eng. 3111:436–442. 1997.

22 

Kunishige R, Mizoguchi M, Tsubouchi A, Hanaoka K, Miura Y, Kurosu H, Urano Y, Kuro-O M and Murata M: Calciprotein particle-induced cytotoxicity via lysosomal dysfunction and altered cholesterol distribution in renal epithelial HK-2 cells. Sci Rep. 10(20125)2020.PubMed/NCBI View Article : Google Scholar

23 

Ray PD, Huang BW and Tsuji Y: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24:981–990. 2012.PubMed/NCBI View Article : Google Scholar

24 

Chen K, Vita JA, Berk BC and Keaney JF Jr: c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem. 276:16045–16050. 2001.PubMed/NCBI View Article : Google Scholar

25 

Thévenin AF, Zony CL, Bahnson BJ and Colman RF: GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Protein Sci. 20:834–848. 2011.PubMed/NCBI View Article : Google Scholar

26 

Van den B MCW, Van Gogh IJA, Smits AMM, van Triest M, Dansen TB, Visscher M, Polderman PE, Vliem MJ, Rehmann H and Burgering BMT: The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex. J Biol Chem. 288:21729–21741. 2013.PubMed/NCBI View Article : Google Scholar

27 

Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, Han L, Jiang G, Zhang L, Gao C and Zhao W: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 7(13727)2016.PubMed/NCBI View Article : Google Scholar

28 

Khan SR and Thamilselvan S: Nephrolithiasis: A consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol. 4:305–312. 2000.PubMed/NCBI

29 

Huang HS, Ma MC and Chen J: Chronic L-arginine administration increases oxidative and nitrosative stress in rat hyperoxaluric kidneys and excessive crystal deposition. Am J Physiol Renal Physiol. 295:F388–F396. 2008.PubMed/NCBI View Article : Google Scholar

30 

Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH and Romijn JC: Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol. 274:F958–F965. 1998.PubMed/NCBI View Article : Google Scholar

31 

Golub EE: Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol. 33:409–417. 2011.PubMed/NCBI View Article : Google Scholar

32 

Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S and Kroemer G: Senescence, apoptosis or autophagy? When a damaged cell must decide its path-a mini-review. Gerontology. 54:92–99. 2008.PubMed/NCBI View Article : Google Scholar

33 

Liu X, Su H, Chen J, Zhu Y, Luo S, Ji M, Chen K and Tang Y: Effects of Tamm-Horsfall protein on kidney stone formation. J Med Postgrad. 922–925. 2017.

34 

Umekawa T, Chegini N and Khan SR: Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant. 18:664–669. 2003.PubMed/NCBI View Article : Google Scholar

35 

Deng Y, Sun B and Li C: UP-3.135: COM crystals stimulate the expression and activity of NADPH oxidase in macrophage. Urology. 74 (Suppl)(S337)2009.

36 

Mukai H, Miura Y, Kotani K, Kotoda A, Kurosu H, Yamada T, Kuro-O M and Iwazu Y: The effects for inflammatory responses by CPP with different colloidal properties in hemodialysis patients. Sci Rep. 12(21856)2022.PubMed/NCBI View Article : Google Scholar

37 

Viegas CSB, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luís IM, Costa RM, Santos S, Cavaco S, Neves J, et al: Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 35:399–408. 2015.PubMed/NCBI View Article : Google Scholar

38 

Tesfamariam B: Involvement of vitamin K-dependent proteins in vascular calcification. J Cardiovasc Pharmacol Ther. 24:323–333. 2019.PubMed/NCBI View Article : Google Scholar

39 

Koeppert S, Ghallab A, Peglow S, Winkler CF, Graeber S, Büscher A, Hengstler JG and Jahnen-Dechent W: Live imaging of calciprotein particle clearance and receptor mediated uptake: Role of calciprotein monomers. Front Cell Dev Biol. 9(633925)2021.PubMed/NCBI View Article : Google Scholar

40 

Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL and Krenning G: Calciprotein particles: Balancing mineral homeostasis and vascular pathology. Arterioscler Thromb Vasc Biol. 41:1607–1624. 2021.PubMed/NCBI View Article : Google Scholar

41 

Herrmann M, Schäfer C, Heiss A, Gräber S, Kinkeldey A, Büscher A, Schmitt MM, Bornemann J, Nimmerjahn F, Herrmann M, et al: Clearance of fetuin-A-containing calciprotein particles is mediated by scavenger receptor-A. Circ Res. 111:575–584. 2012.PubMed/NCBI View Article : Google Scholar

42 

Heiss A, DuChesne A, Denecke B, Grötzinger J, Yamamoto K, Renné T and Jahnen-Dechent W: Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem. 278:13333–13341. 2003.PubMed/NCBI View Article : Google Scholar

43 

Aghagolzadeh P, Bachtler M, Bijarnia R, Jackson C, Smith ER, Odermatt A, Radpour R and Pasch A: Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis. 251:404–414. 2016.PubMed/NCBI View Article : Google Scholar

44 

Smith ER, Hanssen E, McMahon LP and Holt SG: Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 8(e60904)2013.PubMed/NCBI View Article : Google Scholar

45 

Silaghi CN, Ilyés T, Van Ballegooijen AJ and Crăciun AM: Calciprotein particles and serum calcification propensity: Hallmarks of vascular calcifications in patients with chronic kidney disease. J Clin Med. 9(1287)2020.PubMed/NCBI View Article : Google Scholar

46 

Blaser MC and Aikawa E: Roles and regulation of extracellular vesicles in cardiovascular mineral metabolism. Front Cardiovasc Med. 5(187)2018.PubMed/NCBI View Article : Google Scholar

47 

Disthabanchong S and Srisuwarn P: Mechanisms of vascular calcification in kidney disease. Adv Chronic Kidney Dis. 26:417–426. 2019.PubMed/NCBI View Article : Google Scholar

48 

Shishkova DK, Velikanova EA, Bogdanov LA, Sinitsky MY, Kostyunin AE, Tsepokina AV, Gruzdeva OV, Mironov AV, Mukhamadiyarov RA, Glushkova TV, et al: Calciprotein particles link disturbed mineral homeostasis with cardiovascular disease by causing endothelial dysfunction and vascular inflammation. Int J Mol Sci. 22(12458)2021.PubMed/NCBI View Article : Google Scholar

49 

Shishkova D, Lobov A, Zainullina B, Matveeva V, Markova V, Sinitskaya A, Velikanova E, Sinitsky M, Kanonykina A, Dyleva Y and Kutikhin A: Calciprotein particles cause physiologically significant pro-inflammatory response in endothelial cells and systemic circulation. Int J Mol Sci. 23(14941)2022.PubMed/NCBI View Article : Google Scholar

50 

Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G and Hillebrands JL: Calciprotein particles induce endothelial dysfunction by impairing endothelial nitric oxide metabolism. Arterioscler Thromb Vasc Biol. 43:443–455. 2023.PubMed/NCBI View Article : Google Scholar

51 

Durand MJ and Gutterman DD: Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 20:239–247. 2013.PubMed/NCBI View Article : Google Scholar

52 

Zhao Y, Vanhoutte PM and Leung SWS: Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 129:83–94. 2015.PubMed/NCBI View Article : Google Scholar

53 

Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J. 33:829–837, 837a-837d. 2012.PubMed/NCBI View Article : Google Scholar

54 

Oe Y, Mitsui S, Sato E, Shibata N, Kisu K, Sekimoto A, Miyazaki M, Sato H, Ito S and Takahashi N: Lack of endothelial nitric oxide synthase accelerates ectopic calcification in uremic mice fed an adenine and high phosphorus diet. Am J Pathol. 191:283–293. 2021.PubMed/NCBI View Article : Google Scholar

55 

Lee HL, Woo KM, Ryoo HM and Baek JH: Tumor necrosis factor-alpha increases alkaline phosphatase expression in vascular smooth muscle cells via MSX2 induction. Biochem Biophys Res Commun. 391:1087–1092. 2010.PubMed/NCBI View Article : Google Scholar

56 

Zickler D, Luecht C, Willy K, Chen L, Witowski J, Girndt M, Fiedler R, Storr M, Kamhieh-Milz J, Schoon J, et al: Tumour necrosis factor-alpha in uraemic serum promotes osteoblastic transition and calcification of vascular smooth muscle cells via extracellular signal-regulated kinases and activator protein 1/c-FOS-mediated induction of interleukin 6 expression. Nephrol Dial Transplant. 33:574–585. 2018.PubMed/NCBI View Article : Google Scholar

57 

Sage AP, Lu J, Tintut Y and Demer LL: Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79:414–422. 2011.PubMed/NCBI View Article : Google Scholar

58 

Li X, Yang HY and Giachelli CM: BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 199:271–277. 2008.PubMed/NCBI View Article : Google Scholar

59 

Liberman M, Johnson RC, Handy DE, Loscalzo J and Leopold JA: Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification. Biochem Biophys Res Commun. 413:436–441. 2011.PubMed/NCBI View Article : Google Scholar

60 

Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM and Chen Y: Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 283:15319–15327. 2008.PubMed/NCBI View Article : Google Scholar

61 

Liu H, Li X, Qin F and Huang K: Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcification by inhibiting the activation of the PI3K/AKT and ERK signaling pathways and endoplasmic reticulum stress. J Biol Inorg Chem. 19:375–388. 2014.PubMed/NCBI View Article : Google Scholar

62 

Blanc A, Pandey NR and Srivastava AK: Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells. Antioxid Redox Signal. 6:353–366. 2004.PubMed/NCBI View Article : Google Scholar

63 

Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C and Wang X: Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int. 79:1071–1079. 2011.PubMed/NCBI View Article : Google Scholar

64 

Shishkova D, Velikanova E, Sinitsky M, Tsepokina A, Gruzdeva O, Bogdanov L and Kutikhin A: Calcium phosphate bions cause intimal hyperplasia in intact aortas of normolipidemic rats through endothelial injury. Int J Mol Sci. 20(5728)2019.PubMed/NCBI View Article : Google Scholar

65 

Kurozumi A, Nakano K, Yamagata K, Okada Y, Nakayamada S and Tanaka Y: IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2. Bone. 124:53–61. 2019.PubMed/NCBI View Article : Google Scholar

66 

Tintut Y, Parhami F, Boström K, Jackson SM and Demer LL: cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 273:7547–7553. 1998.PubMed/NCBI View Article : Google Scholar

67 

Turner ME, Bartoli-Leonard F and Aikawa E: Small particles with large impact: Insights into the unresolved roles of innate immunity in extracellular vesicle-mediated cardiovascular calcification. Immunol Rev. 312:20–37. 2022.PubMed/NCBI View Article : Google Scholar

68 

Ewence AE, Bootman M, Roderick HL, Skepper JN, McCarthy G, Epple M, Neumann M, Shanahan CM and Proudfoot D: Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: A potential mechanism in atherosclerotic plaque destabilization. Circ Res. 103:e28–e34. 2008.PubMed/NCBI View Article : Google Scholar

69 

Wang S and Zhang Z: Biological characteristics of nanobacteria and the relationship between nanobacteria and oral stone diseases. J Oral Sci Res. 35:827–829. 2019.

70 

Kao WK, Chole RA and Ogden MA: Evidence of a microbial etiology for sialoliths. Laryngoscope. 130:69–74. 2020.PubMed/NCBI View Article : Google Scholar

71 

Zeng J, Yang F, Zhang W, Gong Q, Du Y and Ling J: Association between dental pulp stones and calcifying nanoparticles. Int J Nanomedicine. 6:109–118. 2011.PubMed/NCBI View Article : Google Scholar

72 

Zhang SM, Tian F, Jiang XQ, Li J, Xu C, Guo XK and Zhang FQ: Evidence for calcifying nanoparticles in gingival crevicular fluid and dental calculus in periodontitis. J Periodontol. 80:1462–1470. 2009.PubMed/NCBI View Article : Google Scholar

73 

Yang F, Zeng J, Zhang W, Sun X and Ling J: Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: A preliminary investigation. Int J Nanomedicine. 6:13–18. 2010.PubMed/NCBI View Article : Google Scholar

74 

Sakai Y, Nemoto E, Kanaya S, Shimonishi M and Shimauchi H: Calcium phosphate particles induce interleukin-8 expression in a human gingival epithelial cell line via the nuclear factor-κB signaling pathway. J Periodontol. 85:1464–1473. 2014.PubMed/NCBI View Article : Google Scholar

75 

Demir T: Is there any relation of nanobacteria with periodontal diseases? Med Hypotheses. 70:36–39. 2008.PubMed/NCBI View Article : Google Scholar

76 

Sun H, Warren J, Yip J, Ji Y, Hao S, Han W and Ding Y: Factors influencing gallstone formation: A review of the literature. Biomolecules. 12(550)2022.PubMed/NCBI View Article : Google Scholar

77 

Wen Y, Li Y, Yang Z, Wang XJ, Wei H, Liu W, Tan AL, Miao XY, Wang QW, Huang SF, et al: Nanobacteria in serum, bile and gallbladder mucosa of cholecystolithiasis patients. Zhonghua Wai Ke Za Zhi. 41:267–270. 2003.PubMed/NCBI(In Chinese).

78 

Wang L, Shen W, Wen J, An X, Cao L and Wang B: An animal model of black pigment gallstones caused by nanobacteria. Dig Dis Sci. 51:1126–1132. 2006.PubMed/NCBI View Article : Google Scholar

79 

Wen Y, Li YG, Yang ZL, Wang XJ, Wei H, Liu W, Miao XY, Wang QW, Huang SF, Yang J, et al: Detection of nanobacteria in serum, bile and gallbladder mucosa of patients with cholecystolithiasis. Chin Med J (Engl). 118:421–424. 2005.PubMed/NCBI

80 

Kajander EO: Nanobacteria-propagating calcifying nanoparticles. Lett Appl Microbiol. 42:549–552. 2006.PubMed/NCBI View Article : Google Scholar

81 

Liang L, Jin Z, Xu B, Guo Y, Peng M and Wen Z: Mechanism of nanobacteria promoting apoptosis of human gallbladder epithelial cells. Chin J Exp Surg. 36:1410–1413. 2019.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li S, Wu J and Bin B: Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review). Biomed Rep 22: 102, 2025.
APA
Li, S., Wu, J., & Bin, B. (2025). Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review). Biomedical Reports, 22, 102. https://doi.org/10.3892/br.2025.1980
MLA
Li, S., Wu, J., Bin, B."Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review)". Biomedical Reports 22.6 (2025): 102.
Chicago
Li, S., Wu, J., Bin, B."Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review)". Biomedical Reports 22, no. 6 (2025): 102. https://doi.org/10.3892/br.2025.1980
Copy and paste a formatted citation
x
Spandidos Publications style
Li S, Wu J and Bin B: Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review). Biomed Rep 22: 102, 2025.
APA
Li, S., Wu, J., & Bin, B. (2025). Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review). Biomedical Reports, 22, 102. https://doi.org/10.3892/br.2025.1980
MLA
Li, S., Wu, J., Bin, B."Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review)". Biomedical Reports 22.6 (2025): 102.
Chicago
Li, S., Wu, J., Bin, B."Mechanism of influence of calcified nanoparticles in the development of calcified diseases (Review)". Biomedical Reports 22, no. 6 (2025): 102. https://doi.org/10.3892/br.2025.1980
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team