|
1
|
Garcia P, Fernandez-Hernandez R, Cuadrado
A, Coca I, Gomez A, Maqueda M, Latorre-Pellicer A, Puisac B, Ramos
FJ, Sandoval J, et al: Disruption of NIPBL/Scc2 in cornelia de
lange syndrome provokes cohesin genome-wide redistribution with an
impact in the transcriptome. Nat Commun. 12(4551)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Caplan IF, Ye M and Pearlman AN:
Management of nasal polyposis in pediatric patients with cornelia
de lange syndrome: A case series and literature review. Ear Nose
Throat J: Sep 24, 2024 (Epub ahead of print).
|
|
3
|
Parenti I and Kaiser FJ: Cornelia de lange
syndrome as paradigm of chromatinopathies. Front Neurosci.
15(774950)2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Parenti I, Diab F, Gil SR, Mulugeta E,
Casa V, Berutti R, Brouwer RWW, Dupé V, Eckhold J, Graf E, et al:
MAU2 and NIPBL variants impair the heterodimerization of the
cohesin loader subunits and cause cornelia de lange syndrome. Cell
Rep. 31(107647)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Lucia-Campos C, Parenti I,
Latorre-Pellicer A, Gil-Salvador M, Bestetti I, Finelli P, Larizza
L, Arnedo M, Ayerza-Casas A, Del Rincón J, et al: An intragenic
duplication in the AFF2 gene associated with cornelia de lange
syndrome phenotype. Front Genet. 15(1472543)2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Shangguan H and Chen R: Phenotypes of
cornelia de lange syndrome caused by non-cohesion genes: Novel
variants and literature review. Front Pediatr.
10(940294)2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Coursimault J, Rovelet-Lecrux A, Cassinari
K, Brischoux-Boucher E, Saugier-Veber P, Goldenberg A, Lecoquierre
F, Drouot N, Richard AC, Vera G, et al: uORF-introducing variants
in the 5'UTR of the NIPBL gene as a cause of cornelia de lange
syndrome. Hum Mutat. 43:1239–1248. 2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Schuster K, Leeke B, Meier M, Wang Y,
Newman T, Burgess S and Horsfield JA: A neural crest origin for
cohesinopathy heart defects. Hum Mol Genet. 24:7005–7016.
2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Teresa-Rodrigo ME, Eckhold J, Puisac B,
Pozojevic J, Parenti I, Baquero-Montoya C, Gil-Rodríguez MC,
Braunholz D, Dalski A, Hernández-Marcos M, et al: Identification
and functional characterization of two intronic NIPBL mutations in
two patients with cornelia de lange syndrome. Biomed Res Int.
2016(8742939)2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chen Y, Chen Q, Yuan K, Zhu J, Fang Y, Yan
Q and Wang C: A novel de novo variant in 5' UTR of the NIPBL
associated with cornelia de lange syndrome. Genes (Basel).
13(740)2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wieder N, D'Souza EN, Martin-Geary AC,
Lassen FH, Talbot-Martin J, Fernandes M, Chothani SP, Rackham OJL,
Schafer S, Aspden JL, et al: Differences in 5'untranslated regions
highlight the importance of translational regulation of dosage
sensitive genes. Genome Biol. 25(111)2024.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhang S, Übelmesser N, Josipovic N, Forte
G, Slotman JA, Chiang M, Gothe HJ, Gusmao EG, Becker C, Altmüller
J, et al: RNA polymerase II is required for spatial chromatin
reorganization following exit from mitosis. Sci Adv.
7(eabg8205)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Vitoria M, Landwerlin P, Diebold-Durand
ML, Shaik TB, Durand A, Troesch E, Weber C, Brillet K, Lemée MV,
Decroos C, et al: The cohesin ATPase cycle is mediated by specific
conformational dynamics and interface plasticity of SMC1A and SMC3
ATPase domains. Cell Rep. 43(114656)2024.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Panarotto M, Davidson IF, Litos G,
Schleiffer A and Peters JM: Cornelia de Lange syndrome mutations in
NIPBL can impair cohesin-mediated DNA loop extrusion. Proc Natl
Acad Sci USA. 119(e2201029119)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Xu W, Ying Y, Shan L, Feng J, Zhang S, Gao
Y, Xu X, Yao Y, Zhu C and Mao W: Enhanced expression of cohesin
loading factor NIPBL confers poor prognosis and chemotherapy
resistance in non-small cell lung cancer. J Transl Med.
13(153)2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Higashi TL, Eickhoff P, Sousa JS, Locke J,
Nans A, Flynn HR, Snijders AP, Papageorgiou G, O'Reilly N, Chen ZA,
et al: A structure-based mechanism for DNA entry into the cohesin
ring. Mol Cell. 79:917–933.e9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rinaldi L, Fettweis G, Kim S, Garcia DA,
Fujiwara S, Johnson TA, Tettey TT, Ozbun L, Pegoraro G, Puglia M,
et al: The glucocorticoid receptor associates with the cohesin
loader NIPBL to promote long-range gene regulation. Sci Adv.
8(eabj8360)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Weiss FD, Calderon L, Wang YF, Georgieva
R, Guo Y, Cvetesic N, Kaur M, Dharmalingam G, Krantz ID, Lenhard B,
et al: Neuronal genes deregulated in cornelia de lange syndrome
respond to removal and re-expression of cohesin. Nat Commun.
12(2919)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Luna-Peláez N, March-Díaz R,
Ceballos-Chávez M, Guerrero-Martínez JA, Grazioli P,
García-Gutiérrez P, Vaccari T, Massa V, Reyes JC and
García-Domínguez M: The cornelia de lange syndrome-associated
factor NIPBL interacts with BRD4 ET domain for transcription
control of a common set of genes. Cell Death Dis.
10(548)2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Fallmann J, Will S, Engelhardt J, Grüning
B, Backofen R and Stadler PF: Recent advances in RNA folding. J
Biotechnol. 261:97–104. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Ambrosini C, Destefanis E, Kheir E, Broso
F, Alessandrini F, Longhi S, Battisti N, Pesce I, Dassi E, Petris
G, et al: Translational enhancement by base editing of the Kozak
sequence rescues haploinsufficiency. Nucleic Acids Res.
50:10756–10771. 2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Whiffin N, Karczewski KJ, Zhang X,
Chothani S, Smith MJ, Evans DJ, Roberts AM, Quaife NM, Schafer S,
Rackham O, et al: Characterising the loss-of-function impact of 5'
untranslated region variants in 15,708 individuals. Nat Commun.
11(2523)2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Mills JA, Herrera PS, Kaur M, Leo L,
McEldrew D, Tintos-Hernandez JA, Rajagopalan R, Gagne A, Zhang Z,
Ortiz-Gonzalez XR and Krantz ID: NIPBL(+/-) haploinsufficiency
reveals a constellation of transcriptome disruptions in the
pluripotent and cardiac states. Sci Rep. 8(1056)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Alonso-Gil D, Cuadrado A, Giménez-Llorente
D, Rodríguez-Corsino M and Losada A: Different NIPBL requirements
of cohesin-STAG1 and cohesin-STAG2. Nat Commun.
14(1326)2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Newkirk DA, Chen YY, Chien R, Zeng W,
Biesinger J, Flowers E, Kawauchi S, Santos R, Calof AL, Lander AD,
et al: The effect of Nipped-B-like (Nipbl) haploinsufficiency on
genome-wide cohesin binding and target gene expression: Modeling
cornelia de lange syndrome. Clin Epigenetics. 9(89)2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mannini L, C Lamaze F, Cucco F, Amato C,
Quarantotti V, Rizzo IM, Krantz ID, Bilodeau S and Musio A: Mutant
cohesin affects RNA polymerase II regulation in Cornelia de Lange
syndrome. Sci Rep. 5(16803)2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xu X, Wang D, Xu W, Li H, Chen N, Li N,
Yao Q, Chen W, Zhong J and Mao W: Author Correction: NIPBL-mediated
RAD21 facilitates tumorigenicity by the PI3K pathway in
non-small-cell lung cancer. Commun Biol. 7(397)2024.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Pileggi S, La Vecchia M, Colombo EA,
Fontana L, Colapietro P, Rovina D, Morotti A, Tabano S, Porta G,
Alcalay M, et al: Cohesin mutations induce chromatin conformation
perturbation of the H19/IGF2 imprinted region and gene expression
dysregulation in cornelia de lange syndrome cell lines.
Biomolecules. 11(1622)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Avagliano L, Parenti I, Grazioli P, Di
Fede E, Parodi C, Mariani M, Kaiser FJ, Selicorni A, Gervasini C
and Massa V: Chromatinopathies: A focus on Cornelia de Lange
syndrome. Clin Genet. 97:3–11. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
De Falco A, De Brasi D, Della Monica M,
Cesario C, Petrocchi S, Novelli A, D'Alterio G, Iolascon A, Capasso
M and Piscopo C: A novel variant in RAD21 in cornelia de lange
syndrome type 4: Case report and bioinformatic analysis. Genes
(Basel). 14(119)2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Yu R, Roseman S, Siegenfeld AP, Gardner Z,
Nguyen SC, Tran KA, Joyce EF, Jain R, Liau BB, Krantz ID, et al:
CTCF/RAD21 organize the ground state of chromatin-nuclear speckle
association. Nat Struct Mol Biol. 32:1069–1080. 2025.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yue X, Chen M, Ke X, Yang H, Gong F, Wang
L, Duan L, Pan H and Zhu H: Clinical characteristics, genetic
analysis, and literature review of cornelia de lange syndrome type
4 associated with a RAD21 variant. Mol Genet Genomic Med.
12(e70009)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Grazioli P, Parodi C, Mariani M, Bottai D,
Di Fede E, Zulueta A, Avagliano L, Cereda A, Tenconi R, Wierzba J,
et al: Lithium as a possible therapeutic strategy for Cornelia de
Lange syndrome. Cell Death Discov. 7(34)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Gruca-Stryjak K, Doda-Nowak E, Dzierla J,
Wróbel K, Szymankiewicz-Bręborowicz M and Mazela J: Advancing the
clinical and molecular understanding of cornelia de lange syndrome:
A multidisciplinary pediatric case series and review of the
literature. J Clin Med. 13(2423)2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Pallotta MM, Di Nardo M and Musio A:
Synthetic lethality between cohesin and WNT signaling pathways in
diverse cancer contexts. Cells. 13(608)2024.PubMed/NCBI View Article : Google Scholar
|