|
1
|
Dudley AC and Griffioen AW: Pathological
angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis.
26:313–347. 2023.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Li J, Zhao Y and Zhu W: Targeting
angiogenesis in myocardial infarction: Novel therapeutics (review).
Exp Ther Med. 23(64)2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Heeschen C, Weis M, Aicher A, Dimmeler S
and Cooke JP: A novel angiogenic pathway mediated by non-neuronal
nicotinic acetylcholine receptors. J Clin Invest. 110:527–536.
2002.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Li X and Wang H: Non-neuronal nicotinic
alpha 7 receptor, a new endothelial target for revascularization.
Life Sci. 78:1863–1870. 2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Wu JC, Chruscinski A, De Jesus Perez VA,
Singh H, Pitsiouni M, Rabinovitch M, Utz PJ and Cooke JP:
Cholinergic modulation of angiogenesis: Role of the 7 nicotinic
acetylcholine receptor. J Cell Biochem. 108:433–446.
2009.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Espinoza H and Figueroa XF: Opening of
Cx43-formed hemichannels mediates the Ca2+ signaling
associated with endothelial cell migration. Biol Direct.
18(52)2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Graupera M, Guillermet-Guibert J, Foukas
LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J,
Cutillas PR, et al: Angiogenesis selectively requires the p110alpha
isoform of PI3K to control endothelial cell migration. Nature.
453:662–666. 2008.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Cain RJ, Vanhaesebroeck B and Ridley AJ:
The PI3K p110alpha isoform regulates endothelial adherens junctions
via Pyk2 and Rac1. J Cell Biol. 188:863–876. 2010.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Matera C, Papotto C, Dallanoce C and De
Amici M: Advances in small molecule selective ligands for
heteromeric nicotinic acetylcholine receptors. Pharmacol Res.
194(106813)2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Gill JK, Chatzidaki A, Ursu D, Sher E and
Millar NS: Contrasting properties of α7-selective orthosteric and
allosteric agonists examined on native nicotinic acetylcholine
receptors. PLoS One. 8(e55047)2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Papke RL and Horenstein NA: Therapeutic
targeting of α7 nicotinic acetylcholine receptors. Pharmacol Rev.
73:1118–1149. 2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Briggs CA, Mckenna DG and Piattina-kaplan
M: Human alpha 7 nicotinic acetylcholine receptor responses to
novel ligands. Neuropharmacology. 34:583–590. 1995.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Grønlien JH, Håkerud M, Ween H,
Thorin-Hagene K, Briggs CA, Gopalakrishnan M and Malysz J: Distinct
profiles of alpha7 nAChR positive allosteric modulation revealed by
structurally diverse chemotypes. Mol Pharmacol. 72:715–724.
2007.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Hurst RS, Hajós M, Raggenbass M, Wall TM,
Higdon NR, Lawson JA, Rutherford-Root KL, Berkenpas MB, Hoffmann
WE, Piotrowski DW, et al: A novel positive allosteric modulator of
the alpha7 neuronal nicotinic acetylcholine receptor: In vitro and
in vivo characterization. J Neurosci. 25:4396–4405. 2005.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Cortés M, Alvarez R, Sepúlveda E,
Jiménez-Aspee F, Astudillo L, Vallejos G and Gutiérrez M: A new
isoxazolic compound acts as alpha7 nicotinic receptor agonist in
human umbilical vein endothelial cells. Z Naturforsch C J Biosci.
69:291–299. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Yuan W and Wang X: Propranolol
participates in the treatment of infantile hemangioma by inhibiting
HUVECs proliferation, migration, invasion, and tube formation.
Biomed Res Int. 2021(6636891)2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Li Y, Xu Q, Shi M, Gan P, Huang Q, Wang A,
Tan G, Fang Y and Liao H: Low-level laser therapy induces human
umbilical vascular endothelial cell proliferation, migration and
tube formation through activating the PI3K/Akt signaling pathway.
Microvasc Res. 129(103959)2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cho YR, Park K, Kang JS, Byun HW, Oh JS,
Seo DW and Ahn EK: Trigonostemon reidioides modulates endothelial
cell proliferation, migration and tube formation via downregulation
of the Akt signaling pathway. Oncol Lett. 14:4677–4683.
2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Jaffe EA, Nachman RL, Becker CG and Minick
CR: Culture of human endothelial cells derived from umbilical
veins. Identification by morphologic and immunologic criteria. J
Clin Invest. 52:2745–2756. 1973.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Repetto G, del Peso A and Zurita JL:
Neutral red uptake assay for the estimation of cell
viability/cytotoxicity. Nat Protoc. 3:1125–1131. 2008.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Vichai V and Kirtikara K: Sulforhodamine B
colorimetric assay for cytotoxicity screening. Nat Protoc.
1:1112–1116. 2006.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Suarez-Arnedo A, Figueroa FT, Clavijo C,
Arbeláez P, Cruz JC and Muñoz-Camargo C: An image J plugin for the
high throughput image analysis of in vitro scratch wound healing
assays. PLoS One. 15(e0232565)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Arnaoutova I and Kleinman HK: In vitro
angiogenesis: Endothelial cell tube formation on gelled basement
membrane extract. Nat Protoc. 5:628–635. 2010.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Carpentier G, Martinelli M, Courty J and
Cascone I: Angiogenesis analyzer for ImageJ. ImageJ Plugin, 2012.
Available from: http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ.
|
|
26
|
Systat Software Inc: SigmaPlot (Version
11.0, Build 11.0.0.77). Systat Software, Inc., Chicago IL, 2008.
Available from: https://systatsoftware.com/products/sigmaplot/.
|
|
27
|
Li Z, Chan K, Nickels J and Cheng X:
Electrostatic contributions to the binding free energy of nicotine
to the acetylcholine binding protein. J Phys Chem B. 126:8669–8679.
2022.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Huang S, Li SX, Bren N, Cheng K, Gomoto R,
Chen L and Sine SM: Complex between α-bungarotoxin and an α7
nicotinic receptor ligand-binding domain chimaera. Biochem J.
454:303–310. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Blum AP, Lester HA and Dougherty DA:
Nicotinic pharmacophore: The pyridine N of nicotine and carbonyl of
acetylcholine hydrogen bond across a subunit interface to a
backbone NH. Proc Natl Acad Sci USA. 107:13206–13211.
2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Peng W and Ding F: Biomolecular
recognition of antagonists by α7 nicotinic acetylcholine receptor:
Antagonistic mechanism and structure-activity relationships
studies. Eur J Pharm Sci. 76:119–132. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Arunrungvichian K, Boonyarat C, Fokin VV,
Taylor P and Vajragupta O: Cognitive improvements in a mouse model
with substituted 1,2,3-triazole agonists for nicotinic
acetylcholine receptors. ACS Chem Neurosci. 6:1331–1340.
2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Moccia F, Negri S, Shekha M, Faris P and
Guerra G: Endothelial Ca2+ signaling, angiogenesis and
vasculogenesis: Just what it takes to make a blood vessel. Int J
Mol Sci. 20(3962)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Moccia F, Berra-Romani R and Tanzi F:
Update on vascular endothelial Ca(2+) signalling: A tale of ion
channels, pumps and transporters. World J Biol Chem. 3:127–158.
2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Debir B, Meaney C, Kohandel M and Unlu MB:
The role of calcium oscillations in the phenotype selection in
endothelial cells. Sci Rep. 11(23781)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Noren DP, Chou WH, Lee SH, Qutub AA,
Warmflash A, Wagner DS, Popel AS and Levchenko A: Endothelial cells
decode VEGF-mediated Ca2+ signaling patterns to produce distinct
functional responses. Sci Signal. 9(ra20)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhao L, Kuo YP, George AA, Peng JH,
Purandare MS, Schroeder KM, Lukas RJ and Wu J: Functional
properties of homomeric, human alpha 7-nicotinic acetylcholine
receptors heterologously expressed in the SH-EP1 human epithelial
cell line. J Pharmacol Exp Ther. 305:1132–1141. 2003.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ng MKC, Wu J, Chang E, Wang BY,
Katzenberg-Clark R, Ishii-Watabe A and Cooke JP: A central role for
nicotinic cholinergic regulation of growth factor-induced
endothelial cell migration. Arterioscler Thromb Vasc Biol.
27:106–112. 2007.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Dawson NS, Zawieja DC, Wu MH and Granger
HJ: Signaling pathways mediating VEGF165-induced calcium transients
and membrane depolarization in human endothelial cells. FASEB J.
20:991–993. 2006.PubMed/NCBI View Article : Google Scholar
|