|
1
|
Zhu W, He X, Cheng K, Zhang L, Chen D,
Wang X, Qiu G, Cao X and Weng X: Ankylosing spondylitis: Etiology,
pathogenesis, and treatments. Bone Res. 7(22)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Van Royen BJ and Dijkmans BAC (eds):
Ankylosing Spondylitis Diagnosis and Management. CRC Press,
2006.
|
|
3
|
Gouveia EB, Elmann D and de Ávila Morales
MS: Ankylosing spondylitis and uveitis: Overview. Rev Bras
Reumatol. 52:742–756. 2012.PubMed/NCBI(In English, Portuguese).
|
|
4
|
Zink A, Braun J, Listing J and Wollenhaupt
J: Disability and handicap in rheumatoid arthritis and ankylosing
spondylitis-results from the German rheumatological database.
German collaborative arthritis centers. J Rheumatol. 27:613–622.
2000.PubMed/NCBI
|
|
5
|
Landewe R, Dougados M, Mielants H, van der
Tempel H and van der Heijde D: Physical function in ankylosing
spondylitis is independently determined by both disease activity
and radiographic damage of the spine. Ann Rheum Dis. 68:863–867.
2009.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Kim SH and Lee SH: Updates on ankylosing
spondylitis: Pathogenesis and therapeutic agents. J Rheum Dis.
30:220–233. 2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Pedersen SJ and Maksymowych WP: Beyond the
TNF-α inhibitors: New and emerging targeted therapies for patients
with axial spondyloarthritis and their relation to pathophysiology.
Drugs. 78:1397–1418. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Fiorillo MT, Haroon N, Ciccia F and Breban
M: Editorial: Ankylosing spondylitis and related immune-mediated
disorders. Front Immunol. 10(1232)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Arévalo M, Gratacós Masmitjà J, Moreno M,
Calvet J, Orellana C, Ruiz D, Castro C, Carreto P, Larrosa M,
Collantes E, et al: Influence of HLA-B27 on the ankylosing
spondylitis phenotype: Results from the REGISPONSER database.
Arthritis Res Ther. 20(221)2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chen B, Li J, He C, Li D, Tong W, Zou Y
and Xu W: Role of HLA-B27 in the pathogenesis of ankylosing
spondylitis (Review). Mol Med Rep. 15:1943–1951. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Reveille JD: An update on the contribution
of the MHC to AS susceptibility. Clin Rheumatol. 33:749–757.
2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Baraliakos X, Heldmann F, Callhoff J,
Listing J, Appelboom T, Brandt J, Van den Bosch F, Breban M,
Burmester G, Dougados M, et al: Which spinal lesions are associated
with new bone formation in patients with ankylosing spondylitis
treated with anti-TNF agents? A long-term observational study using
MRI and conventional radiography. Ann Rheum Dis. 73:1819–1825.
2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Akkoc N, van der Linden S and Khan MA:
Ankylosing spondylitis and symptom-modifying vs disease-modifying
therapy. Best Pract Res Clin Rheumatol. 20:539–557. 2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Perrotta FM, Scriffignano S, Ciccia F and
Lubrano E: Therapeutic targets for ankylosing spondylitis-recent
insights and future prospects. Open Access Rheumatol. 14:57–66.
2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Agrawal P, Tote S and Sapkale B: Diagnosis
and treatment of ankylosing spondylitis. Cureus.
16(e52559)2024.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Moon KH and Kim YT: Medical treatment of
ankylosing spondylitis. Hip Pelvis. 26:129–135. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Dougados M and Baeten D:
Spondyloarthritis. Lancet. 377:2127–2137. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Vonkeman HE and van de Laar MAFJ:
Nonsteroidal anti-inflammatory drugs: Adverse effects and their
prevention. Semin Arthritis Rheum. 39:294–312. 2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Lindström U, Olofsson T, Wedrén S, Qirjazo
I and Askling J: Impact of extra-articular spondyloarthritis
manifestations and comorbidities on drug retention of a first
TNF-inhibitor in ankylosing spondylitis: A population-based
nationwide study. RMD Open. 4(e000762)2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
van der Heijde D, Song IH, Pangan AL,
Deodhar A, van den Bosch F, Maksymowych WP, Kim TH, Kishimoto M,
Everding A, Sui Y, et al: Efficacy and safety of upadacitinib in
patients with active ankylosing spondylitis (SELECT-AXIS 1): A
multicentre, randomised, double-blind, placebo-controlled, phase
2/3 trial. Lancet. 394:2108–2117. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Maksymowych WP: The role of imaging in the
diagnosis and management of axial spondyloarthritis. Nat Rev
Rheumatol. 15:657–672. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sieper J and Poddubnyy D: Axial
spondyloarthritis. Lancet. 390:73–84. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Taurog JD, Chhabra A and Colbert RA:
Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med.
374:2563–2574. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Wordsworth BP, Cohen CJ, Davidson C and
Vecellio M: Perspectives on the genetic associations of ankylosing
spondylitis. Front Immunol. 12(603726)2021.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Simone D, Al Mossawi MH and Bowness P:
Progress in our understanding of the pathogenesis of ankylosing
spondylitis. Rheumatology (Oxford). 57 (Suppl 6):vi4–vi9.
2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Madden DR: The three-dimensional structure
of peptide-MHC complexes. Annu Rev Immunol. 13:587–622.
1995.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Bowness P: Hla-B27. Annu Rev Immunol.
33:29–48. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Lin H and Gong YZ: Association of HLA-B27
with ankylosing spondylitis and clinical features of the
HLA-B27-associated ankylosing spondylitis: A meta-analysis.
Rheumatol Int. 37:1267–1280. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Chatzikyriakidou A, Voulgari PV and Drosos
AA: What is the role of HLA-B27 in spondyloarthropathies? Autoimmun
Rev. 10:464–468. 2011.PubMed/NCBI View Article : Google Scholar
|
|
30
|
López de Castro JA: The HLA-B27 peptidome:
Building on the cornerstone. Arthritis Rheum. 62:316–319.
2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Colbert RA, Tran TM and Layh-Schmitt G:
HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol.
57:44–51. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Colbert RA, DeLay ML, Layh-Schmitt G and
Sowders DP: HLA-B27 misfolding and spondyloarthropathies. Prion.
3:15–26. 2009.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lenart I, Guiliano DB, Burn G, Campbell
EC, Morley KD, Fussell H, Powis SJ and Antoniou AN: The MHC class I
heavy chain structurally conserved cysteines 101 and 164
participate in HLA-B27 dimer formation. Antioxid Redox Signal.
16:33–43. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Turner MJ, Sowders DP, DeLay ML, Mohapatra
R, Bai S, Smith JA, Brandewie JR, Taurog JD and Colbert RA: HLA-B27
misfolding in transgenic rats is associated with activation of the
unfolded protein response. J Immunol. 175:2438–2448.
2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Smith JA: Regulation of cytokine
production by the unfolded protein response; implications for
infection and autoimmunity. Front Immunol. 9(422)2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kavadichanda CG, Geng J, Bulusu SN, Negi
VS and Raghavan M: Spondyloarthritis and the human leukocyte
antigen (HLA)-B*27 connection. Front Immunol.
12(601518)2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Payeli SK, Kollnberger S, Marroquin
Belaunzaran O, Thiel M, McHugh K, Giles J, Shaw J, Kleber S, Ridley
A, Wong-Baeza I, et al: Inhibiting HLA-B27 homodimer-driven immune
cell inflammation in spondylarthritis. Arthritis Rheum.
64:3139–3149. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Antoniou AN, Lenart I and Guiliano DB:
Pathogenicity of misfolded and dimeric HLA-B27 molecules. Int J
Rheumatol. 2011(486856)2011.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhang L, Zhang YJ, Chen J, Huang XL, Fang
GS, Yang LJ, Duan Y and Wang J: The association of HLA-B27 and
Klebsiella pneumoniae in ankylosing spondylitis: A
systematic review. Microb Pathog. 117:49–54. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Reveille JD: The genetic basis of
ankylosing spondylitis. Curr Opin Rheumatol. 18:332–341.
2006.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Tsui FW, Haroon N, Reveille JD, Rahman P,
Chiu B, Tsui HW and Inman RD: Association of an ERAP1 ERAP2
haplotype with familial ankylosing spondylitis. Ann Rheum Dis.
69:733–736. 2010.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chen B, Li D and Xu W: Association of
ankylosing spondylitis with HLA-B27 and ERAP1: Pathogenic role of
antigenic peptide. Med Hypotheses. 80:36–38. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Evans DM, Spencer CC, Pointon JJ, Su Z,
Harvey D, Kochan G, Oppermann U, Dilthey A, Pirinen M, Stone MA, et
al: Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis
implicates peptide handling in the mechanism for HLA-B27 in disease
susceptibility. Nat Genet. 43:761–767. 2011.PubMed/NCBI View
Article : Google Scholar
|
|
44
|
Campbell EC, Fettke F, Bhat S, Morley KD
and Powis SJ: Expression of MHC class I dimers and ERAP1 in an
ankylosing spondylitis patient cohort. Immunology. 133:379–385.
2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bowness P, Ridley A, Shaw J, Chan AT,
Wong-Baeza I, Fleming M, Cummings F, McMichael A and Kollnberger S:
Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers
are increased in ankylosing spondylitis. J Immunol. 186:2672–2680.
2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Li Z and Brown MA: Progress of genome-wide
association studies of ankylosing spondylitis. Clin Transl
Immunology. 6(e163)2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Rajalingam R: Human diversity of killer
cell immunoglobulin-like receptors and disease. Korean J Hematol.
46:216–228. 2011.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Yin Y, Wang M, Liu M, Zhou E, Ren T, Chang
X, He M, Zeng K, Guo Y and Wu J: Efficacy and safety of IL-17
inhibitors for the treatment of ankylosing spondylitis: A
systematic review and meta-analysis. Arthritis Res Ther.
22(111)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Schett G, Lories RJ, D'Agostino MA,
Elewaut D, Kirkham B, Soriano ER and McGonagle D: Enthesitis: From
pathophysiology to treatment. Nat Rev Rheumatol. 13:731–741.
2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rezaiemanesh A, Abdolmaleki M,
Abdolmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, Soleimanifar N,
Zavvar M and Nicknam MH: Immune cells involved in the pathogenesis
of ankylosing spondylitis. Biomed Pharmacother. 100:198–204.
2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Jain R, Chen Y, Kanno Y, Joyce-Shaikh B,
Vahedi G, Hirahara K, Blumenschein WM, Sukumar S, Haines CJ,
Sadekova S, et al: Interleukin-23-induced transcription factor
blimp-1 promotes pathogenicity of T helper 17 cells. Immunity.
44:131–142. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Garcia-Montoya L, Gul H and Emery P:
Recent advances in ankylosing spondylitis: Understanding the
disease and management. F1000Res. 7(F1000 Faculty
Rev-1512)2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Sato K, Suematsu A, Okamoto K, Yamaguchi
A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y,
et al: Th17 functions as an osteoclastogenic helper T cell subset
that links T cell activation and bone destruction. J Exp Med.
203:2673–2682. 2006.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Babaie F, Hasankhani M, Mohammadi H,
Safarzadeh E, Rezaiemanesh A, Salimi R, Baradaran B and Babaloo Z:
The role of gut microbiota and IL-23/IL-17 pathway in ankylosing
spondylitis immunopathogenesis: New insights and updates. Immunol
Lett. 196:52–62. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Dong C: TH17 cells in development: An
updated view of their molecular identity and genetic programming.
Nat Rev Immunol. 8:337–348. 2008.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Mahmoudi M, Aslani S, Nicknam MH, Karami J
and Jamshidi AR: New insights toward the pathogenesis of ankylosing
spondylitis; genetic variations and epigenetic modifications. Mod
Rheumatol. 27:198–209. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z,
Liao F, Xia G, Wang S, Xu S, et al: Increased serum IL-17 and IL-23
in the patient with ankylosing spondylitis. Clin Rheumatol.
30:269–273. 2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Baeten D and Adamopoulos IE: IL-23
inhibition in ankylosing spondylitis: Where did it go wrong? Front
Immunol. 11(623874)2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
El-Zayadi AA, Jones EA, Churchman SM,
Baboolal TG, Cuthbert RJ, El-Jawhari JJ, Badawy AM, Alase AA,
El-Sherbiny YM and McGonagle D: Interleukin-22 drives the
proliferation, migration and osteogenic differentiation of
mesenchymal stem cells: A novel cytokine that could contribute to
new bone formation in spondyloarthropathies. Rheumatology (Oxford).
56:488–493. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Lee EJ, Lee EJ, Chung YH, Song DH, Hong S,
Lee CK, Yoo B, Kim TH, Park YS, Kim SH, et al: High level of
interleukin-32 gamma in the joint of ankylosing spondylitis is
associated with osteoblast differentiation. Arthritis Res Ther.
17(350)2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Chen B, Huang K, Ye L, Li Y, Zhang J,
Zhang J, Fan X, Liu X, Li L, Sun J, et al: Interleukin-37 is
increased in ankylosing spondylitis patients and associated with
disease activity. J Transl Med. 13(36)2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Lin P, Bach M, Asquith M, Lee AY,
Akileswaran L, Stauffer P, Davin S, Pan Y, Cambronne ED, Dorris M,
et al: HLA-B27 and human β2-microglobulin affect the gut microbiota
of transgenic rats. PLoS One. 9(e105684)2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Xu YY, Tan X, He YT, Zhou YY, He XH and
Huang RY: Role of gut microbiome in ankylosing spondylitis: an
analysis of studies in literature. Discov Med. 22:361–370.
2016.PubMed/NCBI
|
|
64
|
Di Vincenzo F, Del Gaudio A, Petito V,
Lopetuso LR and Scaldaferri F: Gut microbiota, intestinal
permeability, and systemic inflammation: A narrative review. Intern
Emerg Med. 19:275–293. 2024.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Thaiss CA, Zmora N, Levy M and Elinav E:
The microbiome and innate immunity. Nature. 535:65–74.
2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Berthelot JM and Claudepierre P:
Trafficking of antigens from gut to sacroiliac joints and spine in
reactive arthritis and spondyloarthropathies: Mainly through
lymphatics? Joint Bone Spine. 83:485–490. 2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Li C, Zhang Y, Yan Q, Guo R, Chen C, Li S,
Zhang Y, Meng J, Ma J, You W, et al: Alterations in the gut virome
in patients with ankylosing spondylitis. Front Immunol.
14(1154380)2023.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Symposium on Population Studies in
Relation to Chronic Rheumatic Diseases. Rome Ball J, Jeffrey MR and
Kellgren JH: Council for International Organizations of Medical
sciences, University of Manchester Department of Rheumatology: The
epidemiology of chronic rheumatism; Volume 2: Atlas of standard
radiographs of arthritis. Blackwell Scientific Publications,
Oxford, 1963.
|
|
69
|
Goie The HS, Steven MM, van der Linden SM
and Cats A: Evaluation of diagnostic criteria for ankylosing
spondylitis: A comparison of the Rome, New York and modified New
York criteria in patients with a positive clinical history
screening test for ankylosing spondylitis. Br J Rheumatol.
24:242–249. 1985.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ostergaard M and Lambert RG: Imaging in
ankylosing spondylitis. Ther Adv Musculoskelet Dis. 4:301–311.
2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Braun J, van den Berg R, Baraliakos X,
Boehm H, Burgos-Vargas R, Collantes-Estevez E, Dagfinrud H,
Dijkmans B, Dougados M, Emery P, et al: 2010 update of the
ASAS/EULAR recommendations for the management of ankylosing
spondylitis. Ann Rheum Dis. 70:896–904. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Uhrin Z, Kuzis S and Ward MM: Exercise and
changes in health status in patients with ankylosing spondylitis.
Arch Intern Med. 160:2969–2975. 2000.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Regnaux JP, Davergne T, Palazzo C, Roren
A, Rannou F, Boutron I and Lefevre-Colau MM: Exercise programmes
for ankylosing spondylitis. Cochrane Database Syst Rev.
10(CD011321)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kasapoglu Aksoy M, Birtane M, Taştekin N
and Ekuklu G: The effectiveness of structured group education on
ankylosing spondylitis patients. J Clin Rheumatol. 23:138–143.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Song IH, Poddubnyy DA, Rudwaleit M and
Sieper J: Benefits and risks of ankylosing spondylitis treatment
with nonsteroidal antiinflammatory drugs. Arthritis Rheum.
58:929–938. 2008.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Bacchi S, Palumbo P, Sponta A and
Coppolino MF: Clinical pharmacology of non-steroidal
anti-inflammatory drugs: A review. Antiinflamm Antiallergy Agents
Med Chem. 11:52–64. 2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Gagliardi MC, Teloni R, Mariotti S,
Bromuro C, Chiani P, Romagnoli G, Giannoni F, Torosantucci A and
Nisini R: Endogenous PGE2 promotes the induction of human Th17
responses by fungal ß-glucan. J Leukoc Biol. 88:947–954.
2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ward MM, Deodhar A, Akl EA, Lui A, Ermann
J, Gensler LS, Smith JA, Borenstein D, Hiratzka J, Weiss PF, et al:
American college of rheumatology/spondylitis association of
america/spondyloarthritis research and treatment network 2015
recommendations for the treatment of ankylosing spondylitis and
nonradiographic axial spondyloarthritis. Arthritis Care Res
(Hoboken). 68:151–166. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wanders A, van der Heijde D, Landewé R,
Béhier JM, Calin A, Olivieri I, Zeidler H and Dougados M:
Nonsteroidal antiinflammatory drugs reduce radiographic progression
in patients with ankylosing spondylitis: A randomized clinical
trial. Arthritis Rheum. 52:1756–1765. 2005.PubMed/NCBI View Article : Google Scholar
|
|
80
|
van der Heijde D, Ramiro S, Landewé R,
Baraliakos X, Van den Bosch F, Sepriano A, Regel A, Ciurea A,
Dagfinrud H, Dougados M, et al: 2016 update of the ASAS-EULAR
management recommendations for axial spondyloarthritis. Ann Rheum
Dis. 76:978–991. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ebrahimiadib N, Berijani S, Ghahari M and
Pahlaviani FG: Ankylosing spondylitis. J Ophthalmic Vis Res.
16:462–469. 2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Henderson C and Davis JC: Drug insight:
Anti-tumor-necrosis-factor therapy for ankylosing spondylitis. Nat
Clin Pract Rheumatol. 2:211–218. 2006.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Schulz M, Dotzlaw H and Neeck G:
Ankylosing spondylitis and rheumatoid arthritis: Serum levels of
TNF-α and Its soluble receptors during the course of therapy with
etanercept and infliximab. Biomed Res Int.
2014(675108)2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Gorman JD, Sack KE and Davis JC Jr:
Treatment of ankylosing spondylitis by inhibition of tumor necrosis
factor alpha. N Engl J Med. 346:1349–1356. 2002.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Toussirot É: Current therapeutics for
spondyloarthritis. Expert Opin Pharmacother. 12:2469–2477.
2011.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ranatunga S and Miller AV: Active axial
spondyloarthritis: Potential role of certolizumab pegol. Ther Clin
Risk Manag. 10:87–94. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Baraliakos X, Listing J, Fritz C, Haibel
H, Alten R, Burmester GR, Krause A, Schewe S, Schneider M, Sörensen
H, et al: Persistent clinical efficacy and safety of infliximab in
ankylosing spondylitis after 8 years-early clinical response
predicts long-term outcome. Rheumatology (Oxford). 50:1690–1699.
2011.PubMed/NCBI View Article : Google Scholar
|
|
88
|
van der Heijde D, Kivitz A, Schiff MH,
Sieper J, Dijkmans BA, Braun J, Dougados M, Reveille JD, Wong RL,
Kupper H, et al: Efficacy and safety of adalimumab in patients with
ankylosing spondylitis: Results of a multicenter, randomized,
double-blind, placebo-controlled trial. Arthritis Rheum.
54:2136–2146. 2006.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Sieper J, van der Heijde D, Dougados M,
Brown LS, Lavie F and Pangan AL: Early response to adalimumab
predicts long-term remission through 5 years of treatment in
patients with ankylosing spondylitis. Ann Rheum Dis. 71:700–706.
2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Steeland S, Libert C and Vandenbroucke RE:
A new venue of TNF targeting. Int J Mol Sci.
19(1442)2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Mazumdar S and Greenwald D: Golimumab.
MAbs. 1:422–431. 2009.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhou H: Clinical pharmacokinetics of
etanercept: A fully humanized soluble recombinant tumor necrosis
factor receptor fusion protein. J Clin Pharmacol. 45:490–497.
2005.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Jethwa H and Bowness P: The interleukin
(IL)-23/IL-17 axis in ankylosing spondylitis: New advances and
potentials for treatment. Clin Exp Immunol. 183:30–36.
2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Miller EA and Ernst JD: Anti-TNF
immunotherapy and tuberculosis reactivation: Another mechanism
revealed. J Clin Invest. 119:1079–1082. 2009.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Baraliakos X, Listing J, Brandt J, Zink A,
Alten R, Burmester G, Gromnica-Ihle E, Kellner H, Schneider M,
Sörensen H, et al: Clinical response to discontinuation of anti-TNF
therapy in patients with ankylosing spondylitis after 3 years of
continuous treatment with infliximab. Arthritis Res Ther.
7:R439–R444. 2005.PubMed/NCBI View
Article : Google Scholar
|
|
96
|
Klavdianou K, Tsiami S and Baraliakos X:
New developments in ankylosing spondylitis-status in 2021.
Rheumatology (Oxford). 60:vi29–vi37. 2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Wendling D, Verhoeven F and Prati C:
Anti-IL-17 monoclonal antibodies for the treatment of ankylosing
spondylitis. Expert Opin Biol Ther. 19:55–64. 2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Baeten D, Sieper J, Braun J, Baraliakos X,
Dougados M, Emery P, Deodhar A, Porter B, Martin R, Andersson M, et
al: Secukinumab, an interleukin-17A inhibitor, in ankylosing
spondylitis. N Engl J Med. 373:2534–2548. 2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Baraliakos X, Braun J, Deodhar A,
Poddubnyy D, Kivitz A, Tahir H, Van den Bosch F, Delicha EM,
Talloczy Z and Fierlinger A: Long-term efficacy and safety of
secukinumab 150 mg in ankylosing spondylitis: 5-Year results from
the phase III MEASURE 1 extension study. RMD Open.
5(e001005)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Deodhar A, Conaghan PG, Kvien TK, Strand
V, Sherif B, Porter B, Jugl SM and Gandhi KK: MEASURE 2 study
group. Secukinumab provides rapid and persistent relief in pain and
fatigue symptoms in patients with ankylosing spondylitis
irrespective of baseline C-reactive protein levels or prior tumour
necrosis factor inhibitor therapy: 2-Year data from the MEASURE 2
study. Clin Exp Rheumatol. 37:260–269. 2019.PubMed/NCBI
|
|
101
|
Kammüller M, Tsai TF, Griffiths CE, Kapoor
N, Kolattukudy PE, Brees D, Chibout SD, Safi J Jr and Fox T:
Inhibition of IL-17A by secukinumab shows no evidence of increased
Mycobacterium tuberculosis infections. Clin Transl Immunology.
6(e152)2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
van der Heijde D, Cheng-Chung Wei J,
Dougados M, Mease P, Deodhar A, Maksymowych WP, Van den Bosch F,
Sieper J, Tomita T, Landewé R, et al: Ixekizumab, an
interleukin-17A antagonist in the treatment of ankylosing
spondylitis or radiographic axial spondyloarthritis in patients
previously untreated with biological disease-modifying
anti-rheumatic drugs (COAST-V): 16 Week results of a phase 3
randomised, double-blind, active-controlled and placebo-controlled
trial. Lancet. 392:2441–2451. 2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Hohenberger M, Cardwell LA, Oussedik E and
Feldman SR: Interleukin-17 inhibition: Role in psoriasis and
inflammatory bowel disease. J Dermatolog Treat. 29:13–18.
2018.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Reis J, Vender R and Torres T:
Bimekizumab: The first dual inhibitor of interleukin (IL)-17A and
IL-17F for the treatment of psoriatic disease and ankylosing
spondylitis. BioDrugs. 33:391–399. 2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
van der Heijde D, Gensler LS, Deodhar A,
Baraliakos X, Poddubnyy D, Kivitz A, Farmer MK, Baeten D, Goldammer
N, Coarse J, et al: Dual neutralisation of interleukin-17A and
interleukin-17F with bimekizumab in patients with active ankylosing
spondylitis: Results from a 48-week phase IIb, randomised,
double-blind, placebo-controlled, dose-ranging study. Ann Rheum
Dis. 79:595–604. 2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Wei JC, Kim TH, Kishimoto M, Ogusu N,
Jeong H and Kobayashi S: 4827-006 study group. Efficacy and safety
of brodalumab, an anti-IL17RA monoclonal antibody, in patients with
axial spondyloarthritis: 16-Week results from a randomised,
placebo-controlled, phase 3 trial. Ann Rheum Dis. 80:1014–1021.
2021.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Danesh MJ and Kimball AB: Brodalumab and
suicidal ideation in the context of a recent economic crisis in the
United States. J Am Acad Dermatol. 74:190–192. 2016.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Vaddi K and Luchi M: JAK inhibition for
the treatment of rheumatoid arthritis: A new era in oral DMARD
therapy. Expert Opin Investig Drugs. 21:961–973. 2012.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Toussirot E: The use of janus kinase
inhibitors in axial spondyloarthritis: Current insights.
Pharmaceuticals (Basel). 15(270)2022.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Schwartz DM, Kanno Y, Villarino A, Ward M,
Gadina M and O'Shea JJ: JAK inhibition as a therapeutic strategy
for immune and inflammatory diseases. Nat Rev Drug Discov.
16:843–862. 2017.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Morelli M, Scarponi C, Mercurio L,
Facchiano F, Pallotta S, Madonna S, Girolomoni G and Albanesi C:
Selective immunomodulation of inflammatory pathways in
keratinocytes by the janus kinase (JAK) inhibitor tofacitinib:
implications for the employment of JAK-targeting drugs in
psoriasis. J Immunol Res. 2018(7897263)2018.PubMed/NCBI View Article : Google Scholar
|
|
112
|
van der Heijde D, Deodhar A, Wei JC,
Drescher E, Fleishaker D, Hendrikx T, Li D, Menon S and Kanik KS:
Tofacitinib in patients with ankylosing spondylitis: A phase II,
16-week, randomised, placebo-controlled, dose-ranging study. Ann
Rheum Dis. 76:1340–1347. 2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Hanson A and Brown MA: Genetics and the
causes of ankylosing spondylitis. Rheum Dis Clin North Am.
43:401–414. 2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
van der Heijde D, Braun J, Deodhar A,
Baraliakos X, Landewé R, Richards HB, Porter B and Readie A:
Modified stoke ankylosing spondylitis spinal score as an outcome
measure to assess the impact of treatment on structural progression
in ankylosing spondylitis. Rheumatology (Oxford). 58:388–400.
2019.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Deodhar A, van der Heijde D, Sieper J, Van
den Bosch F, Maksymowych WP, Kim TH, Kishimoto M, Ostor A, Combe B,
Sui Y, et al: Safety and efficacy of upadacitinib in patients with
active ankylosing spondylitis and an inadequate response to
nonsteroidal antiinflammatory drug therapy: One-year results of a
double-blind, placebo-controlled study and open-label extension.
Arthritis Rheumatol. 74:70–80. 2022.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Akkoc N and Khan MA: JAK inhibitors for
axial spondyloarthritis: What does the future hold? Curr Rheumatol
Rep. 23(34)2021.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Le QA, Kang JH, Lee S and Delevry D:
Cost-effectiveness of treatment strategies with biologics in
accordance with treatment guidelines for ankylosing spondylitis: A
patient-level model. J Manag Care Spec Pharm. 26:1219–1231.
2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Atzeni F, Nucera V, Galloway J, Zoltan S
and Nurmohamed M: Cardiovascular risk in ankylosing spondylitis and
the effect of anti-TNF drugs: A narrative review. Expert Opin Biol
Ther. 20:517–524. 2020.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Stovall R, Peloquin C, Felson D, Neogi T
and Dubreuil M: Relation of NSAIDs, DMARDs, and TNF inhibitors for
ankylosing spondylitis and psoriatic arthritis to risk of total hip
and knee arthroplasty. J Rheumatol. 48:1007–1013. 2021.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Shao T, Wang K, Liao X and Tang W:
Traditional Chinese medicine in treating Corona Virus Disease 2019:
A systematic review and cost-effectiveness analysis. Health Decis.
1:1–6. 2023.
|
|
121
|
Deng H and Shen X: The mechanism of
moxibustion: Ancient theory and modern research. Evid Based
Complement Alternat Med. 2013(379291)2013.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Kogure M, Mimura N, Ikemoto H, Ishikawa S,
Nakanishi-Ueda T, Sunagawa M and Hisamitsu T: Moxibustion at
mingmen reduces inflammation and decreases IL-6 in a
collagen-induced arthritis mouse model. J Acupunct Meridian Stud.
5:29–33. 2012.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Liu Z, Li X, Zhao C, Chen C, Li M, Tan Q,
Zhang L and Liang W: Effects of moxibustion on Treg/Th17 cell and
its signal pathway in mice with rheumatoid arthritis. Zhongguo Zhen
Jiu. 37:1083–1091. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
124
|
Zhang Y and Song A: Clinical research
progress of acupuncture therapy in the treatment of ankylosing
spondylitis. Med Theory Hypothesis. 5(4)2022.
|
|
125
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang
J, Yue P, Song W, Zhang J, Chen T, et al: Traditional herbal
medicine and nanomedicine: Converging disciplines to improve
therapeutic efficacy and human health. Adv Drug Deliv Rev.
178(113964)2021.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Huang Y, Wu Z, Su R, Ruan G, Du F and Li
G: Current application of chemometrics in traditional Chinese
herbal medicine research. J Chromatogr B Analyt Technol Biomed Life
Sci. 1026:27–35. 2016.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W
and Piao G: How can synergism of traditional medicines benefit from
network pharmacology? Molecules. 22(1135)2017.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Huang RY, Lin JH, He XH, Li X, Lu CL, Zhou
YY, Cai J and He YT: Anti-inflammatory activity of extracts of
Bushen-Qiangdu-Zhilv decoction, a Chinese medicinal formula, in
M1-polarized RAW264.7. BMC Complement Altern Med.
14(268)2014.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Li Q, Li L, Bi L, Xiao C, Lin Z, Cao S,
Liao Z and Gu J: Kunxian capsules in the treatment of patients with
ankylosing spondylitis: A randomized placebo-controlled clinical
trial. Trials. 17(337)2016.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Xie Y, Tu L, Zhang Y, Yu Q, Wu H, Ye S, Li
H, Chen Z, Wu J, Cao S, et al: Efficacy and safety of Fengshi
Gutong Capsule in patients with active ankylosing spondylitis: A
4-week randomized controlled, double-blinded, double-dummy trial. J
Ethnopharmacol. 285(114731)2022.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Xie D, Huang L, Zhao G, Yu Y, Gao J, Li H
and Wen C: Dissecting the underlying pharmaceutical mechanism of
Chinese traditional medicine Yun-Pi-Yi-Shen-Tong-Du-Tang acting on
ankylosing spondylitis through systems biology approaches. Sci Rep.
7(13436)2017.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Ye WF, Liu J, Wan L, Cao YX, Wang SH, Wang
YL and Ruan LP: Effect of xinfeng capsule on AS patients and their
serum immunoglobulin subtypes and peripheral lymphocyte autophagy.
Zhongguo Zhong Xi Yi Jie He Za Zhi. 36:310–316. 2016.PubMed/NCBI(In Chinese).
|
|
133
|
Li X, Liu J, Fang Y, He M, Wang F and Han
Q: Mechanism of xinfeng capsule in the treatment of hypercoagulable
state of ankylosing spondylitis based on data mining and network
pharmacology. Biomed Res Int. 2022(8796980)2022.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Zhang X, Zhou L and Qian X: The mechanism
of ‘treating different diseases with the same treatment’ by qiangji
jianpi decoction in ankylosing spondylitis combined with
inflammatory bowel disease: A comprehensive analysis of multiple
methods. Gastroenterol Res Pract. 2024(9709260)2024.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Seitz M, Lemmel EM, Homfeld J and Kirchner
H: Enhanced interferon-gamma production by lymphocytes induced by a
mitogen from mycoplasma arthritidis in patients with ankylosing
spondylitis. Rheumatol Int. 9:85–90. 1989.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Feng Y, Ding J, Fan CM and Zhu P:
Interferon-γ contributes to HLA-B27-associated unfolded protein
response in spondyloarthropathies. J Rheumatol. 39:574–582.
2012.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Zhuang W, Sun N, Gu C, Liu S, Zheng Y,
Wang H, Tong X and Song J: A literature review on Epimedium,
a medicinal plant with promising slow aging properties. Heliyon.
9(e21226)2023.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Tong D, Chen L, Jiang Z, Ye X, Ma M, Ye A
and Xu J: Progress in the application of Epimedium and its
major bioactive components in the treatment of orthopedic diseases.
Front Pharmacol. 16(1628602)2025.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Wang X, Wu L, Yu M, Wang H, He L, Hu Y, Li
Z, Zheng Y and Peng B: Exploring the molecular mechanism of
Epimedium for the treatment of ankylosing spondylitis based
on network pharmacology, molecular docking, and molecular dynamics
simulations. Mol Mol Divers. 29:591–606. 2025.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Ma W, Liu T, Ogaji OD, Li J, Du K and
Chang Y: Recent advances in Scutellariae radix: A comprehensive
review on ethnobotanical uses, processing, phytochemistry,
pharmacological effects, quality control and influence factors of
biosynthesis. Heliyon. 10(e36146)2024.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Li X, Liu J, Fang Y, Huang D, He M, Wang F
and Han Q: Potential therapeutic mechanism of scutellaria
baicalensis georgi against ankylosing spondylitis based on a
comprehensive pharmacological model. Biomed Res Int.
2022(9887012)2022.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S,
Tang M, Li Y, Niu J, Fu M, et al: Salvia miltiorrhiza: A
potential red light to the development of cardiovascular diseases.
Curr Pharm Des. 23:1077–1097. 2017.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Fang Y, Liu J, Xin L, Jiang H, Guo J, Li
X, Wang F, He M, Han Q and Huang D: Radix Salvia
miltiorrhiza for ankylosing spondylitis: determining potential
inflammatory molecular targets and mechanism using network
pharmacology. Biomed Res Int. 2022(3816258)2022.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Youssef FS, Eid SY, Alshammari E, Ashour
ML, Wink M and El-Readi MZ: Chrysanthemum indicum and
Chrysanthemum morifolium: Chemical composition of their
essential oils and their potential use as natural preservatives
with antimicrobial and antioxidant activities. Foods.
14(1460)2020.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Liang Y, Liu T, Wang D and Liu Q:
Exploring the antimicrobial, anti-inflammatory, antioxidant, and
immunomodulatory properties of Chrysanthemum morifolium and
Chrysanthemum indicum: A narrow review. Front Pharmacol.
16(1538311)2025.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Cheng W, Li J, You T and Hu C:
Anti-inflammatory and immunomodulatory activities of the extracts
from the inflorescence of Chrysanthemum indicum Linné. J
Ethnopharmacol. 101:334–337. 2005.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Dong M, Yu D, Duraipandiyan V and Abdullah
Al-Dhabi N: The protective effect of Chrysanthemum indicum
extract against ankylosing spondylitis in mouse models. Biomed Res
Int. 2017(8206281)2017.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Xie Y, Kuan H, Wei Q, Gianoncelli A,
Ribaudo G and Coghi P:
(2R,4aS,6aS,12bR,14aS,14bR)10-Hydroxy-N-(4-((6-methoxyquinolin-8-yl)amino)pentyl)-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxamide.
Molbank. 2023(M1716)2023.
|
|
149
|
Jo S, Han J, Lee YL, Yoon S, Lee J, Wang
SE and Kim TH: Regulation of osteoblasts by alkaline phosphatase in
ankylosing spondylitis. Int J Rheum Dis. 22:252–261.
2019.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Jo S, Lee SH, Jeon C, Jo HR, Ko E, Whangbo
M, Kim TJ, Park YS and Kim TH: Elevated BMPR2 expression amplifies
osteoblast differentiation in ankylosing spondylitis. J Rheum Dis.
30:243–250. 2023.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Zou YC, Yang XW, Yuan SG, Zhang P and Li
YK: Celastrol inhibits prostaglandin E2-induced proliferation and
osteogenic differentiation of fibroblasts isolated from ankylosing
spondylitis hip tissues in vitro. Drug Des Devel Ther. 10:933–948.
2016.PubMed/NCBI View Article : Google Scholar
|
|
152
|
Chen R, Qi QL, Wang MT and Li QY:
Therapeutic potential of naringin: An overview. Pharm Biol.
54:3203–3210. 2016.PubMed/NCBI View Article : Google Scholar
|
|
153
|
Yu KE, Alder KD, Morris MT, Munger AM, Lee
I, Cahill SV, Kwon HK, Back J and Lee FY: Re-appraising the
potential of naringin for natural, novel orthopedic biotherapies.
Ther Adv Musculoskelet Dis. 12(1759720X20966135)2020.PubMed/NCBI View Article : Google Scholar
|
|
154
|
Liu K, Wu L, Shi X and Wu F: Protective
effect of naringin against ankylosing spondylitis via ossification,
inflammation and oxidative stress in mice. Exp Ther Med.
12:1153–1158. 2016.PubMed/NCBI View Article : Google Scholar
|
|
155
|
Feng X, Yang Q, Wang C, Tong W and Xu W:
Punicalagin exerts protective effects against ankylosing
spondylitis by regulating NF-κB-TH17/JAK2/STAT3 signaling and
oxidative stress. Biomed Res Int. 2020(4918239)2020.PubMed/NCBI View Article : Google Scholar
|
|
156
|
Liu W, Zhang Y, Zhu W, Ma C, Ruan J, Long
H and Wang Y: Sinomenine inhibits the progression of rheumatoid
arthritis by regulating the secretion of inflammatory cytokines and
monocyte/macrophage subsets. Front Immunol. 9(2228)2018.PubMed/NCBI View Article : Google Scholar
|
|
157
|
Dong B: Protective effects of sinomenine
against ankylosing spondylitis and the underlying molecular
mechanisms. Med Sci Monit. 24:3631–3636. 2018.PubMed/NCBI View Article : Google Scholar
|