Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
January-2026 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review)

  • Authors:
    • Muhammad Hidayat Syahruddin
    • Ika Dewi Ana
    • Dmitry Belyaev
    • Dyah Irnawati
    • Hevi Wihadmadyatami
    • Natalia Beshchasna
    • Rahmi Anggraeni
  • View Affiliations / Copyright

    Affiliations: Doctoral Program in Dental Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Center of Excellence for Carbonate Apatite-based Extracellular Matrix and Adjuvant, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Department of Bio‑ and Nanotechnology, Group of Biodegradation and Nanofunctionalization, Fraunhofer Institute for Ceramic Technologies and Systems, D‑01109 Dresden, Germany, Department of Dental Biomaterials Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency‑Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Copyright: © Syahruddin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 6
    |
    Published online on: November 3, 2025
       https://doi.org/10.3892/br.2025.2079
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bone tissue engineering (BTE) is a cutting‑edge approach within biomedical sciences, especially in regenerative medicine, addressing key challenges such as organ transplantation and complex tissue repair. At the core of BTE is the development of biomimetic scaffolds to replicate native tissue environments. However, conventional models often fall short in accurately mimicking the complexity of human tissue microenvironments. Organ‑on‑a‑chip (OOAC) technology offers a transformative alternative. These microscale systems combine microfluidics, biomaterials and cell cultures to emulate the structural and functional characteristics of human tissue. OOAC platforms facilitate dynamic, real‑time evaluation of scaffold biocompatibility, cellular interactions and mechanical properties under physiological conditions. By overcoming the limitations of traditional preclinical models, OOAC systems minimize the need for animal testing, improve predictive accuracy for in vivo outcomes and accelerate the path to clinical translation. The present study aimed to summarize scaffold development for BTE, with a focus on dental applications, and highlights the integration of OOAC technology. These innovations possess the potential to revolutionize scaffold design and advance broader biomedical research applications.
View Figures
View References

1 

Altyar AE, El-Sayed A, Abdeen A, Piscopo M, Mousa SA, Najda A and Abdel-Daim MM: Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother. 158(114131)2023.PubMed/NCBI View Article : Google Scholar

2 

Mao AS and Mooney DJ: Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA. 112:14452–14459. 2015.PubMed/NCBI View Article : Google Scholar

3 

Tatullo M, Zavan B and Piattelli A: Critical overview on regenerative medicine: New insights into the role of stem cells and innovative biomaterials. Int J Mol Sci. 24(7936)2023.PubMed/NCBI View Article : Google Scholar

4 

Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS and Orlando G: Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol. 10(942750)2022.PubMed/NCBI View Article : Google Scholar

5 

Vacanti JP, Otte JB and Wertheim JA: Introduction: Regenerative medicine and solid organ transplantation from a historical perspective. In: Orlando G, Lerut J, Soker S, Stratta RJ, (eds.). Regenerative Medicine Applications in Organ Transplantation, Boston, Academic Press, pp1-15, 2014.

6 

Del Barrio Cortés E, Matutano Molina C, Rodríguez-Lorenzo L and Cubo-Mateo N: Generation of controlled micrometric fibers inside printed scaffolds using standard FDM 3D printers. Polymers (Basel). 15(96)2022.PubMed/NCBI View Article : Google Scholar

7 

Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ and Rodríguez AP: Polymeric materials, advances and applications in tissue engineering: A review. Bioengineering (Basel). 10(218)2023.PubMed/NCBI View Article : Google Scholar

8 

Ranjan VD, Zeng P, Li B and Zhang Y: In vitro cell culture in hollow microfibers with porous structures. Biomater Sci. 8:2175–2188. 2020.PubMed/NCBI View Article : Google Scholar

9 

Kim MS, Kim JH, Min BH, Chun HJ, Han DK and Lee HB: Polymeric scaffolds for regenerative medicine. Polym Rev. 51:23–52. 2011.

10 

Froemel D and Meurer A: Congenital Bone Disorders. In: Rommens P, Hessmann M. (eds). Intramedullary Nailing. Springer, London, 2015.

11 

Fassier A: Telescopic rodding in children: Technical progression from Dubow-bailey to Fassier-Duval™. Orthop Traumatol Surg Res. 107(102759)2021.PubMed/NCBI View Article : Google Scholar

12 

Toosi S and Behravan J: Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 46:326–340. 2020.PubMed/NCBI View Article : Google Scholar

13 

Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I and Grigolo B: Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 78:1246–1262. 2017.PubMed/NCBI View Article : Google Scholar

14 

Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S and Willie BM: Monitoring in vivo (re)modeling: A computational approach using 4D microCT data to quantify bone surface movements. Bone. 75:210–221. 2015.PubMed/NCBI View Article : Google Scholar

15 

Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JPTM, Ding M and Andersen TL: Understanding age-induced cortical porosity in women: Is a negative BMU balance in quiescent osteons a major contributor? Bone. 117:70–82. 2018.PubMed/NCBI View Article : Google Scholar

16 

Chocholata P, Kulda V and Babuska V: Fabrication of scaffolds for Bone-tissue regeneration. Materials (Basel). 12(568)2019.PubMed/NCBI View Article : Google Scholar

17 

Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J and Jin Y: Advancing application of mesenchymal stem Cell-based bone tissue regeneration. Bioact Mater. 6:666–683. 2021.PubMed/NCBI View Article : Google Scholar

18 

Pereira H, Cengiz IF, Maia FR, Bartolomeu F, Oliveira JM, Reis RL and Silva FS: Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. J Mech Behav Biomed Mater. 112(103997)2020.PubMed/NCBI View Article : Google Scholar

19 

Manzini BM, Machado LMR, Noritomi PY and da Silva JVL: Advances in Bone tissue engineering: A fundamental review. J Biosci. 46(17)2021.PubMed/NCBI

20 

Thormann U, Ray S, Sommer U, ElKhassawna T, Rehling T, Hundgeburth M, Henß A, Rohnke M, Janek J, Lips KS, et al: Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials. 34:8589–8598. 2013.PubMed/NCBI View Article : Google Scholar

21 

O'Brien FJ: Biomaterials & scaffolds for tissue engineering. Mater Today. 14:88–95. 2011.

22 

Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K and Changotade S: The use of Platelet-rich plasma to promote cell recruitment into Low-Molecular-Weight fucoidan-functionalized Poly(Ester-Urea-Urethane) scaffolds for soft-tissue engineering. Polymers (Basel). 11(1016)2019.PubMed/NCBI View Article : Google Scholar

23 

Hunt JA, Chen R, van Veen T and Bryan N: Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B. 2:5319–5338. 2014.PubMed/NCBI View Article : Google Scholar

24 

Koons GL, Diba M and Mikos AG: Materials design for bone-tissue engineering. Nat Rev Mater. 5:584–603. 2020.

25 

Zhao X, Liu S, Yildirimer L, Zhao H, Ding R, Wang H, Cui W and Weitz D: Injectable stem Cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater. 26:2809–2819. 2016.

26 

Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W and Gong X: Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed Eng Online. 19(9)2020.PubMed/NCBI View Article : Google Scholar

27 

Kimura H, Sakai Y and Fujii T: Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet. 33:43–48. 2018.PubMed/NCBI View Article : Google Scholar

28 

Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A, et al: A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 3:520–531. 2019.PubMed/NCBI View Article : Google Scholar

29 

Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J, Chen T, Hao L, Wang M, Lock R, Tavakol DN, et al: Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip. 20:4357–4372. 2020.PubMed/NCBI View Article : Google Scholar

30 

Li Y, Liu Y, Hu C, Chang Q, Deng Q, Yang X and Wu Y: Study of the neurotoxicity of indoor airborne nanoparticles based on a 3D human blood-brain barrier chip. Environ Int. 143(105598)2020.PubMed/NCBI View Article : Google Scholar

31 

Ma C, Peng Y, Li H and Chen W: Organ-on-a-Chip: A new paradigm for drug development. Trends Pharmacol Sci. 42:119–1133. 2021.PubMed/NCBI View Article : Google Scholar

32 

Osório LA, Silva E and Mackay RE: A review of biomaterials and scaffold fabrication for organ-on-a-chip (OOAC) systems. Bioeng. 8(113)2021.PubMed/NCBI View Article : Google Scholar

33 

Zamprogno P, Thoma G, Cencen V, Ferrari D, Putz B, Michler J, Fantner GE and Guenat OT: Mechanical properties of soft biological membranes for Organ-on-a-Chip assessed by bulge test and AFM. ACS Biomater Sci Eng. 7:2990–2997. 2021.PubMed/NCBI View Article : Google Scholar

34 

Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, Pandita S, Tong CW, Marakkar S, Subramanian L, et al: Breakthroughs and Applications of Organ-on-a-Chip technology. Cells. 11(1828)2022.PubMed/NCBI View Article : Google Scholar

35 

Kwon J and Cho H: Nanomechanical characterization of bone quality depending on tissue age via bimodal atomic force microscopy. Nanomanufacturing Metrol. 6:1–11. 2023.

36 

Presbítero G, Gutiérrez D, Lemus-Martínez WR, Vilchez JF, García P and Arizmendi-Morquecho A: Assessment of quality in osteoporotic human trabecular bone and its relationship to mechanical properties. Appl Sci. 11:1–16. 2021.

37 

Dec P, Modrzejewski A and Pawlik A: Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 24(529)2022.PubMed/NCBI View Article : Google Scholar

38 

Qasim M, Chae DS and Lee N: Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 14:4333–4351. 2019.PubMed/NCBI View Article : Google Scholar

39 

Morgan EF, Unnikrisnan GU and Hussein AI: Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 20:119–143. 2018.PubMed/NCBI View Article : Google Scholar

40 

Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF and Audran M: Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 15:13–19. 2000.PubMed/NCBI View Article : Google Scholar

41 

Van Der Linden JC, Verhaar JA and Weinans H: A three-dimensional simulation of age-related remodeling in trabecular bone. J Bone Miner Res. 16:688–696. 2001.PubMed/NCBI View Article : Google Scholar

42 

Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M and Xie YM: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 83:127–141. 2016.PubMed/NCBI View Article : Google Scholar

43 

Qu H, Fu H, Han Z and Sun Y: Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 9:26252–26262. 2019.PubMed/NCBI View Article : Google Scholar

44 

Choi K, Kuhn JL, Ciarelli MJ and Goldstein SA: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 23:1103–1113. 1990.PubMed/NCBI View Article : Google Scholar

45 

Keaveny TM, Morgan EF, Niebur GL and Yeh OC: Biomechanics of trabecular bone. Annu Rev Biomed Eng. 3:307–333. 2001.PubMed/NCBI View Article : Google Scholar

46 

Rho JY, Ashman RB and Turner CH: Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech. 26:111–119. 1993.PubMed/NCBI View Article : Google Scholar

47 

Rho JY, Kuhn-Spearing L and Zioupos P: Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 20:92–102. 1998.PubMed/NCBI View Article : Google Scholar

48 

Sharir A, Barak MM and Shahar R: Whole bone mechanics and mechanical testing. Vet J. 177:8–17. 2008.PubMed/NCBI View Article : Google Scholar

49 

Zimmermann EA, Busse B and Ritchie RO: The fracture mechanics of human bone: Influence of disease and treatment. Bonekey Rep. 4(743)2015.PubMed/NCBI View Article : Google Scholar

50 

Takayanagi H: Osteoclast Biology and Bone Resorption. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 9th edition. Wiley, Hoboken, pp46-53, 2018.

51 

Reznikov N, Shahar R and Weiner S: Bone hierarchical structure in three dimensions. Acta Biomater. 10:3815–3826. 2014.PubMed/NCBI View Article : Google Scholar

52 

Alford AI, Kozloff KM and Hankenson KD: Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 65:20–31. 2015.PubMed/NCBI View Article : Google Scholar

53 

Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS and Mirams M: Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 40:46–62. 2008.PubMed/NCBI View Article : Google Scholar

54 

Oryan A, Monazzah S and Bigham-Sadegh A: Bone injury and fracture healing biology. Biomed Environ Sci. 28:57–71. 2015.PubMed/NCBI View Article : Google Scholar

55 

Salgado AJ, Coutinho OP and Reis RL: Bone tissue engineering: State of the art and future trends. Macromol Biosci. 4:743–765. 2004.PubMed/NCBI View Article : Google Scholar

56 

Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ and Cerri PS: Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015(421746)2015.PubMed/NCBI View Article : Google Scholar

57 

Nakamura H: Morphology, function, and differentiation of bone cells. J Hard Tissue Biol. 16:15–22. 2007.

58 

Capulli M, Paone R and Rucci N: Osteoblast and osteocyte: Games without frontiers. Arch Biochem Biophys. 561:3–12. 2014.PubMed/NCBI View Article : Google Scholar

59 

Damoulis PD and Hauschka PV: Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts. J Bone Miner Res. 12:412–422. 1997.PubMed/NCBI View Article : Google Scholar

60 

Marks SCJ and Popoff SN: Bone cell biology: The regulation of development, structure, and function in the skeleton. Am J Anat. 183:1–44. 1988.PubMed/NCBI View Article : Google Scholar

61 

Feng X and McDonald JM: Disorders of bone remodeling. Annu Rev Pathol. 6:121–45. 2011.PubMed/NCBI View Article : Google Scholar

62 

Crockett JC, Mellis DJ, Scott DI and Helfrich MH: New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: Focus on the RANK/RANKL axis. Osteoporos Int. 22:1–20. 2011.PubMed/NCBI View Article : Google Scholar

63 

Su N, Yang J, Xie Y, Du X, Chen H, Zhou H and Chen L: Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci. 15:776–787. 2019.PubMed/NCBI View Article : Google Scholar

64 

Klein-Nulend J, Bacabac RG and Bakker AD: Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 24:278–2791. 2012.PubMed/NCBI View Article : Google Scholar

65 

Dallas SL, Prideaux M and Bonewald LF: The osteocyte: An endocrine cell and more. Endocr Rev. 34:658–690. 2013.PubMed/NCBI View Article : Google Scholar

66 

Bonewald LF: Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 1116:281–290. 2007.PubMed/NCBI View Article : Google Scholar

67 

Plotkin LI: Apoptotic osteocytes and the control of targeted bone resorption. Curr Osteoporos Rep. 12:121–126. 2014.PubMed/NCBI View Article : Google Scholar

68 

Bellido T: Osteocyte-driven bone remodeling. Calcif Tissue Int. 94:25–34. 2014.PubMed/NCBI View Article : Google Scholar

69 

Metzger CE, Burr DB and Allen MR: Anatomy and Structural. Considerations. In: Encyclopedia of Bone Biology. Zaidi M (ed). Academic Press, Oxford, pp218-232, 2020. https://doi.org/https://doi.org/10.1016/B978-0-12-801238-3.62234-1.

70 

Guo XE, Hu YJ and Dinescu AT: Bone Structure and Function. In: Encyclopedia of Bone Biolog. Zaidi M (ed). Academic Press, Oxford, 233-246, 2020. https://doi.org/https://doi.org/10.1016/B978-0-12-801238-3.11551-X.

71 

Aida N, Saito A and Azuma T: Current status of Next-Generation sequencing in bone genetic diseases. Int J Mol Sci. 24(13802)2023.PubMed/NCBI View Article : Google Scholar

72 

The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). Muscle and Bone Diseases. Health Topics, 2023. Accessed on October 4, 2023. https://www.niams.nih.gov/health-topics/muscle-bone-diseases.

73 

Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, McCloskey EV, Willers C and Borgström F: SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch Osteoporos. 16(82)2021.PubMed/NCBI View Article : Google Scholar

74 

Gheita TA and Hammam N: Epidemiology and awareness of osteoporosis: A viewpoint from the Middle East and North Africa. Int J Clin Rheumtol. 13:134–147. 2018.

75 

Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S and Mohammadi M: The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 16(609)2021.PubMed/NCBI View Article : Google Scholar

76 

Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJL, Harvey N, Kanis J, Leyland S, Low R, et al: UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 17(58)2022.PubMed/NCBI View Article : Google Scholar

77 

Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br Med Bull. 133:105–117. 2020.PubMed/NCBI View Article : Google Scholar

78 

Safiri S, Kolahi AA, Smith E, Hill C, Bettampadi D, Mansournia MA, Hoy D, Ashrafi-Asgarabad A, Sepidarkish M, Almasi-Hashiani A, et al: Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 79:819–828. 2020.PubMed/NCBI View Article : Google Scholar

79 

Allen KD, Thoma LM and Golightly YM: Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 30:184–195. 2022.PubMed/NCBI View Article : Google Scholar

80 

Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, et al: Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396:1204–1222. 2020.PubMed/NCBI View Article : Google Scholar

81 

Vina ER and Kwoh CK: Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 30:160–167. 2018.PubMed/NCBI View Article : Google Scholar

82 

Allen KD and Golightly YM: State of the evidence. Curr Opin Rheumatol. 27:276–283. 2015.PubMed/NCBI View Article : Google Scholar

83 

Callahan LF, Cleveland RJ, Allen KD and Golightly Y: Racial/Ethnic, socioeconomic, and geographic disparities in the epidemiology of knee and hip osteoarthritis. Rheum Dis Clin North Am. 47:1–20. 2021.PubMed/NCBI View Article : Google Scholar

84 

Courties A, Kouki I, Soliman N, Mathiew S and Sellam J: Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthritis Cartilage. 32:1397–1404. 2024.PubMed/NCBI View Article : Google Scholar

85 

Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y and Qian A: Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 21(6985)2020.PubMed/NCBI View Article : Google Scholar

86 

Botter SM, Neri D and Fuchs B: Recent advances in osteosarcoma. Curr Opin Pharmacol. 16:15–23. 2014.PubMed/NCBI View Article : Google Scholar

87 

Cortini M, Avnet S and Baldini N: Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett. 405:90–99. 2017.PubMed/NCBI View Article : Google Scholar

88 

Weiss A, Khoury JD, Hoffer FA, Wu J, Billups CA, Heck RK, Quintana J, Poe D, Rao BN and Daw NC: Telangiectatic osteosarcoma: The St. Jude Children's Research Hospital's experience. Cancer. 109:1627–1637. 2007.PubMed/NCBI View Article : Google Scholar

89 

Whelan J, McTiernan A, Cooper N, Wong YK, Francis M, Vernon S and Strauss SJ: Incidence and survival of malignant bone sarcomas in England 1979-2007. Int J Cancer. 131:E508–E517. 2012.PubMed/NCBI View Article : Google Scholar

90 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 115:1531–1543. 2009.PubMed/NCBI View Article : Google Scholar

91 

Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L and Goncalves F: Bone metastases: An overview. Oncol Rev. 11(321)2017.PubMed/NCBI View Article : Google Scholar

92 

Sheng G, Gao Y, Yang Y and Wu H: Osteosarcoma and metastasis. Front Oncol. 11(780264)2021.PubMed/NCBI View Article : Google Scholar

93 

Urish KL and Cassat JE: Staphylococcus aureus osteomyelitis: Bone, bugs, and surgery. Infect Immun. 88:e00932–19. 2020.PubMed/NCBI View Article : Google Scholar

94 

Metsemakers WJ, Smeets B, Nijs S and Hoekstra H: Infection after fracture fixation of the tibia: Analysis of healthcare utilization and related costs. Injury. 48:1204–1210. 2017.PubMed/NCBI View Article : Google Scholar

95 

Peltola H and Pääkkönen M: Acute osteomyelitis in children. N Engl J Med. 370:352–360. 2014.PubMed/NCBI View Article : Google Scholar

96 

Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, Melton LJ III and Huddleston PM III: Trends in the epidemiology of osteomyelitis: A population-based study, 1969 to 2009. J Bone Joint Surg Am. 97:837–845. 2015.PubMed/NCBI View Article : Google Scholar

97 

Walter N, Bärtl S, Alt V and Rupp M: The epidemiology of osteomyelitis in children. Children (Basel). 8(1000)2021.PubMed/NCBI View Article : Google Scholar

98 

Walter N, Baertl S, Alt V and Rupp M: What is the burden of osteomyelitis in Germany? An analysis of inpatient data from 2008 through 2018. BMC Infect Dis. 21(550)2021.PubMed/NCBI View Article : Google Scholar

99 

The Lancet. Global Burden of Disease 2019: Periodontal diseases-Level 4 cause. Global Health Metrics, 3-4, 2019. Accessed on November 7, 2022. https://www.healthdata.org/results/gbd_summaries/2019/periodontal-diseases-level-4-cause.

100 

Ferrari AJ, Santomauro DF, Aali A, Abate YH, Abbafati C, Abbastabar H, ElHafeez SA, Abdelmasseh M, Abd-Elsalam S, Abdollahi A, et al: Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 403:2133–2161. 2024.PubMed/NCBI View Article : Google Scholar

101 

Figueredo CA, Abdelhay N, Figueredo CM, Catunda R and Gibson MP: The impact of vaping on periodontitis: A systematic review. Clin Exp Dent Res. 7:376–384. 2021.PubMed/NCBI View Article : Google Scholar

102 

Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, et al: Periodontitis: Consensus report of workgroup 2 of the 2017 World workshop on the classification of periodontal and Peri-implant diseases and conditions. J Periodontol. 45 (Suppl 20):S162–S170. 2018.PubMed/NCBI View Article : Google Scholar

103 

Birkedal-Hansen H: Role of matrix metalloproteinases in human periodontal diseases. J Periodontol. 64:474–484. 1993.PubMed/NCBI View Article : Google Scholar

104 

Mohanty R, Asopa SJ, Joseph MD, Singh B, Rajguru JP, Saidath K and Sharma U: Red complex: Polymicrobial conglomerate in oral flora: A review. J Family Med Prim Care. 8:3480–3486. 2019.PubMed/NCBI View Article : Google Scholar

105 

Page RC, Offenbacher S, Schroeder HE, Seymour GJ and Kornman KS: Advances in the pathogenesis of periodontitis: Summary of developments, clinical implications and future directions. Periodontol. 14:216–248. 1997.PubMed/NCBI View Article : Google Scholar

106 

Kwon TH, Lamster IB and Levin L: Current concepts in the management of periodontitis. Int Dent J. 71:462–476. 2021.PubMed/NCBI View Article : Google Scholar

107 

Shin CS, Cabrera FJ, Lee R, Kim J, Ammassam Veettil R, Zaheer M, Adumbumkulath A, Mhatre K, Ajayan PM, Curley SA, et al: 3D-Bioprinted inflammation modulating polymer scaffolds for soft tissue repair. Adv Mater. 33(e2003778)2021.PubMed/NCBI View Article : Google Scholar

108 

Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY, et al: Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 26:1583–1592. 2020.PubMed/NCBI View Article : Google Scholar

109 

Hao Q, Wu Y, Wu Y, Wang P and Vadgama JV: Tumor-derived exosomes in Tumor-induced immune suppression. Int J Mol Sci. 23(1461)2022.PubMed/NCBI View Article : Google Scholar

110 

Bucher CH, Schlundt C, Wulsten D, Sass FA, Wendler S, Ellinghaus A, Thiele T, Seemann R, Willie BM, Volk HD, et al: Experience in the adaptive immunity impacts bone homeostasis, remodeling, and healing. Front Immunol. 10(797)2019.PubMed/NCBI View Article : Google Scholar

111 

Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, et al: The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: From mechanism to therapeutic opportunity. Mil Med Res. 9(65)2022.PubMed/NCBI View Article : Google Scholar

112 

Ye J, Xie C, Wang C, Huang J, Yin Z, Heng BC, Chen X and Shen W: Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact Mater. 6:4096–4109. 2021.PubMed/NCBI View Article : Google Scholar

113 

Zhao T, Sun F, Liu J, Ding T, She J, Mao F, Xu W, Qian H and Yan Y: Emerging role of mesenchymal stem Cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther. 14:482–494. 2019.PubMed/NCBI View Article : Google Scholar

114 

Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L and Li J: Supramolecular peptide nanofiber hydrogels for bone tissue engineering: From multihierarchical fabrications to comprehensive applications. Adv Sci (Weinh). 9(e2103820)2022.PubMed/NCBI View Article : Google Scholar

115 

Salhotra A, Shah HN, Levi B and Longaker MT: Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 21:696–711. 2020.PubMed/NCBI View Article : Google Scholar

116 

Andrew JG, Andrew SM, Freemont AJ and Marsh DR: Inflammatory cells in normal human fracture healing. Acta Orthop Scand. 65:462–466. 1994.PubMed/NCBI View Article : Google Scholar

117 

Claes L, Recknagel S and Ignatius A: Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 8:133–143. 2012.PubMed/NCBI View Article : Google Scholar

118 

Bolander ME: Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med. 200:165–1670. 1992.PubMed/NCBI View Article : Google Scholar

119 

Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA and Alblas J: Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. PLoS One. 10(e0132781)2015.PubMed/NCBI View Article : Google Scholar

120 

Salazar VS, Gamer LW and Rosen V: BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 12:203–221. 2016.PubMed/NCBI View Article : Google Scholar

121 

Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y and Takayanagi H: IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 7(10928)2016.PubMed/NCBI View Article : Google Scholar

122 

Bernhardsson M and Aspenberg P: Osteoblast precursors and inflammatory cells arrive simultaneously to sites of a Trabecular-bone injury. Acta Orthop. 89:457–461. 2018.PubMed/NCBI View Article : Google Scholar

123 

Lu LY, Loi F, Nathan K, Lin TH, Pajarinen J, Gibon E, Nabeshima A, Cordova L, Jämsen E, Yao Z and Goodman SB: Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res. 35:2378–2385. 2017.PubMed/NCBI View Article : Google Scholar

124 

Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014.PubMed/NCBI View Article : Google Scholar

125 

Goerke SM, Obermeyer J, Plaha J, Stark GB and Finkenzeller G: Endothelial progenitor cells from peripheral blood support bone regeneration by provoking an angiogenic response. Microvasc Res. 98:40–47. 2015.PubMed/NCBI View Article : Google Scholar

126 

Langen UH, Pitulescu ME, Kim JM, Enriquez-Gasca R, Sivaraj KK, Kusumbe AP, Singh A, Di Russo J, Bixel MG, Zhou B, et al: Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 19:189–201. 2017.PubMed/NCBI View Article : Google Scholar

127 

Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014.PubMed/NCBI View Article : Google Scholar

128 

Jones RE, Salhotra A, Robertson KS, Ransom RC, Foster DS, Shah HN, Quarto N, Wan DC and Longaker MT: Skeletal stem Cell-schwann cell circuitry in mandibular repair. Cell Rep. 28:2757–2766.e5. 2019.PubMed/NCBI View Article : Google Scholar

129 

Cao J, Zhang S, Gupta A, Du Z, Lei D, Wang L and Wang X: Sensory nerves affect bone regeneration in rabbit mandibular distraction osteogenesis. Int J Med Sci. 16:831–837. 2019.PubMed/NCBI View Article : Google Scholar

130 

Wang L, Zhou S, Liu B, Lei D, Zhao Y, Lu C and Tan A: Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res. 24:2238–2245. 2006.PubMed/NCBI View Article : Google Scholar

131 

Vermeulen S, Tahmasebi Z and Habibovic P: Biomaterials Biomaterial-induced pathway modulation for bone regeneration. Biomaterials. 283(121431)2022.PubMed/NCBI View Article : Google Scholar

132 

Lancaster MA and Huch M: Disease modelling in human organoids. Dis Model Mech. 12(dmm039347)2019.PubMed/NCBI View Article : Google Scholar

133 

Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016.PubMed/NCBI View Article : Google Scholar

134 

Yin X, Mead BE, Safaee H, Langer R, Karp JM and Levy O: Engineering stem cell organoids. Cell Stem Cell. 18:25–38. 2016.PubMed/NCBI View Article : Google Scholar

135 

Zhao P, Gu H, Mi H, Rao C, Fu J and Lih-Sheng T: Fabrication of scaffolds in tissue engineering: A review. Front Mechanical Engineering. 13:107–119. 2018.

136 

Groen N, Yuan H, Hebels DGAJ, Koçer G, Mbuyi F, LaPointe V, Truckenmüller R, van Blitterswijk CA, Habibović P and de Boer J: Linking the transcriptional landscape of bone induction to biomaterial design parameters. Adv Mater. 29(1603259)2017.PubMed/NCBI View Article : Google Scholar

137 

Jeong J, Kim JH, Shim JH, Hwang NS and Heo CY: Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 23(4)2019.PubMed/NCBI View Article : Google Scholar

138 

Galván-Chacón VP and Habibovic P: Deconvoluting the bioactivity of calcium Phosphate-based bone graft substitutes: Strategies to understand the role of individual material properties. Adv Healthc Mater. 6(1601478)2017.PubMed/NCBI View Article : Google Scholar

139 

Bohner M, Santoni BLG and Döbelin N: β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 113:23–41. 2020.PubMed/NCBI View Article : Google Scholar

140 

Schmidlin PR, Nicholls F, Kruse A, Zwahlen RA and Weber FE: Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Clin Oral Implants Res. 24:149–157. 2013.PubMed/NCBI View Article : Google Scholar

141 

Kruse A, Jung RE, Nicholls F, Zwahlen RA, Hämmerle CHF and Weber FE: Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. Clin Oral Implants Res. 22:506–511. 2011.PubMed/NCBI View Article : Google Scholar

142 

Roberts TT and Rosenbaum AJ: Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis. 8:114–124. 2012.PubMed/NCBI View Article : Google Scholar

143 

Cornell CN and Lane JM: Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res. 355 (355 Suppl):S267–S273. 1998.PubMed/NCBI View Article : Google Scholar

144 

Weber FE: Reconsidering osteoconduction in the era of additive manufacturing. Tissue Eng Part B Rev. 25:375–386. 2019.PubMed/NCBI View Article : Google Scholar

145 

Branemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O and Ohman A: Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Recons. 16:1–132. 1977.PubMed/NCBI

146 

Albrektsson T and Johansson C: Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 10 (Suppl 2):S96–S101. 2001.PubMed/NCBI View Article : Google Scholar

147 

Albrektsson T, Branemark P, Hansson H and Lindström J: Osseointegrated titanium implants: Requirements for ensuring a Long-lasting, Direct Bone-to-Implant anchorage in man. Acta Orthop Scand. 52:155–170. 1981.PubMed/NCBI View Article : Google Scholar

148 

Brown TD: Techniques for mechanical stimulation of cells in vitro: A review. J Biomech. 33:3–14. 2000.PubMed/NCBI View Article : Google Scholar

149 

Walker M, Rizzuto P, Godin M and Pelling AE: Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Sci Rep. 10(7696)2020.PubMed/NCBI View Article : Google Scholar

150 

Zhang X, Wang X, Lee Y, Feng L, Wang B, Pan Q, Meng X, Cao H, Li L, Wang H, et al: Bioactive scaffold fabricated by 3D printing for enhancing osteoporotic bone regeneration. Bioengineering (Basel). 9(525, 525,)2022.PubMed/NCBI View Article : Google Scholar

151 

de Wildt BWM, Cramer EEA, de Silva LS, Ito K, Gawlitta D and Hofmann S: Evaluating Material-driven regeneration in a tissue engineered human in vitro bone defect model. Bone. 166(116597)2023.PubMed/NCBI View Article : Google Scholar

152 

Langer R and Vacanti JP: Tissue engineering. Science. 260:920–926. 1993.PubMed/NCBI View Article : Google Scholar

153 

Koushik TM, Miller CM and Antunes E: Bone tissue engineering scaffolds: Function of Multi-material hierarchically structured scaffolds. Adv. Healthcare Mater. 12(e2202766)2023.PubMed/NCBI View Article : Google Scholar

154 

Abdelaziz AG, Nageh H, Abdo SM, Abdalla MS, Amer AA, Abdal-hay A and Barhoum A: A Review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering (Basel). 10(204)2023.PubMed/NCBI View Article : Google Scholar

155 

Filip N, Radu I, Veliceasa B, Filip C, Pertea M, Clim A, Pînzariu A, Drochioi LC, Hilitanu RL and Serban IL: Biomaterials in orthopedic devices: Current issues and future perspectives. Coatings. 12(1544)2022.

156 

Atala A, Kurtis Kasper F and Mikos AG: Engineering complex tissues. Sci Transl Med. 4(60rv12)2012.

157 

Bouet G, Marchat D, Cruel M, Malaval L and Vico L: In vitro Three-dimensional bone tissue models: From cells to controlled and dynamic environment. Tissue Eng Part B Rev. 21:133–156. 2014.PubMed/NCBI View Article : Google Scholar

158 

Hutmacher DW: Scaffolds in tissue engineering bone and cartilage. Biomaterials. 21:2529–2543. 2000.PubMed/NCBI View Article : Google Scholar

159 

Dehghani F and Annabi N: Engineering porous scaffolds using Gas-based techniques. Curr Opin Biotechnol. 22:661–666. 2011.PubMed/NCBI View Article : Google Scholar

160 

Hollister SJ: Porous scaffold design for tissue engineering. Nat Mater. 4:518–524. 2005.PubMed/NCBI View Article : Google Scholar

161 

Grafahrend D, Heffels KH, Beer MV, Gasteier P, Möller M, Boehm G, Dalton PD and Groll J: Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater. 10:67–73. 2011.PubMed/NCBI View Article : Google Scholar

162 

Chernozem RV, Guselnikova O, Surmeneva MA, Postnikov PS, Abalymov AA, Parakhonskiy BV, De Roo N, Depla D, Skirtach AG and Surmenev RA: Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth. Appl Mater Today. 20(100758)2020.

163 

Dave K and Gomes VG: Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Mater Sci Eng C Mater Biol Appl. 105(110078)2019.PubMed/NCBI View Article : Google Scholar

164 

Suamte L, Tirkey A, Barman J and Jayasekhar Babu P: Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing. 1(100011)2023.

165 

Amini AR, Laurencin CT and Nukavarapu SP: Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 40:363–408. 2012.PubMed/NCBI View Article : Google Scholar

166 

Gokce C, Gurcan C, Delogu LG and Yilmazer A: 2D materials for cardiac tissue repair and regeneration. Front Cardiovasc Med. 9:1–16. 2022.PubMed/NCBI View Article : Google Scholar

167 

Gentile P, Chiono V, Carmagnola I and Hatton PV: An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 15:3640–359. 2014.PubMed/NCBI View Article : Google Scholar

168 

Williams DF: There is no such thing as a biocompatible material. Biomaterials. 35:10009–10014. 2014.PubMed/NCBI View Article : Google Scholar

169 

Bian N, Chu C, Rung S, Huangphattarakul V, Man Y, Lin J and Hu C: Immunomodulatory biomaterials and emerging analytical techniques for probing the immune Micro-Environment. Tissue Eng Regen Med. 20:11–24. 2023.PubMed/NCBI View Article : Google Scholar

170 

Hofmann S and Garcia-Fuentes M: Bioactive scaffolds for the controlled formation of complex skeletal tissues. In: Regenerative Medicine and Tissue Engineering. Eberli D (ed). IntechOpen, Rijeka, pp18, 2011. https://doi.org/10.5772/22061.

171 

Sultana N: Mechanical and biological properties of scaffold materials. Functional 3D Tissue Engineering Scaffolds, Materials, Technologies, and Applications, pp1-21, 2018. https://doi.org/10.1016/B978-0-08-100979-6.00001-X.

172 

Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, et al: Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 22:1160–119. 2016.PubMed/NCBI View Article : Google Scholar

173 

Eltom A, Zhong G and Muhammad A: Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Materials Sci Engineering, Mar 7, 2019 doi: 10.1155/2019/3429527.

174 

Yuan N, Rezzadeh KS and Lee JC: Biomimetic scaffolds for osteogenesis. Recept Clin Investig. 2(898)2015.PubMed/NCBI

175 

Liu J, Chen G, Xu H, Hu K, Sun J, Liu M, Zhang F and Gu N: Pre-vascularization in fibrin Gel/PLGA microsphere scaffolds designed for bone regeneration. NPG Asia Mater. 10:827–839. 2018.

176 

Iviglia G, Kargozar S and Baino F: Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. J Funct Biomater. 10(3)2019.PubMed/NCBI View Article : Google Scholar

177 

Nainar SM, Vignesh Vicki W, Begum S and Ansari MNM: A review on bioscaffolds for tissue engineering application. Scholars J Engineering Technol. 2:184–192. 2014.

178 

Dalby MJ, Gadegaard N and Oreffo RO: Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 13:558–569. 2014.PubMed/NCBI View Article : Google Scholar

179 

Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, Desai RM, Madl CM, Xu M, Zhao X, et al: Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 14:1269–1277. 2015.PubMed/NCBI View Article : Google Scholar

180 

Jiang S, Lyu C, Zhao P, Li W, Kong W, Huang C, Genin GM and Du Y: Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat Commun. 10(3491)2019.PubMed/NCBI View Article : Google Scholar

181 

Lee SS, Du X, Kim   and Ferguson SJ: Scaffolds for bone-tissue engineering. Matter. 5:2722–2759. 2022.

182 

Zhao W, Jin X, Cong Y, Liu Y and Fu J: Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 88:327–339. 2013.

183 

Chanes-Cuevas OA, Perez-Soria A, Cruz-Maya I, Guarino V and Alvarez-Perez MA: Macro-, micro- and mesoporous materials for tissue engineering applications. AIMS Mater Sci. 5:1124–1140. 2018.

184 

Silva R, Fabry B and Boccaccini AR: Fibrous protein-based hydrogels for cell encapsulation. Biomaterials. 35:6727–6738. 2014.PubMed/NCBI View Article : Google Scholar

185 

Shirazi S, Ravindran S and Cooper LF: Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials. 291(121903)2022.PubMed/NCBI View Article : Google Scholar

186 

Mitra J, Tripathi G, Sharma A and Basu B: Scaffolds for bone tissue engineering: Role of surface patterning on osteoblast response. RSC Adv. 3:11073–11094. 2013.

187 

Wang JR, Ahmed SF, Gadegaard N, Meek RMD, Dalby MJ and Yarwood SJ: Nanotopology potentiates growth hormone signalling and osteogenesis of mesenchymal stem cells. Growth Horm IGF Res. 24:245–250. 2014.PubMed/NCBI View Article : Google Scholar

188 

Cabezas MD, Meckes B, Mirkin CA and Mrksich M: Subcellular control over focal adhesion anisotropy, independent of cell morphology, dictates stem cell fate. ACS Nano. 13:11144–11152. 2019.PubMed/NCBI View Article : Google Scholar

189 

Lam MT and Wu JC: Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther. 10:1039–1049. 2012.PubMed/NCBI View Article : Google Scholar

190 

Guggenbichler JP, Assadian O, Boeswald M and Kramer A: Incidence and clinical implication of nosocomial infections associated with implantable biomaterials-catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. (6)2011.PubMed/NCBI View Article : Google Scholar

191 

The Food and Drug Administration (FDA). Sterilization for Medical Devices, 2024. Accessed on June 8, 2024. https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/sterilization-medical-devices.

192 

Griffin M, Naderi N, Kalaskar DM, Malins E, Becer R, Thornton CA, Whitaker IS, Mosahebi A, Butler PEM and Seifalian AM: Evaluation of sterilisation techniques for regenerative medicine scaffolds fabricated with polyurethane nonbiodegradable and bioabsorbable nanocomposite materials. Int J Biomater. 2018(6565783)2018.PubMed/NCBI View Article : Google Scholar

193 

Kumar A and Jacob A: Techniques in scaffold fabrication process for tissue engineering applications: A review. J Appl Biol Biotechnol. 10:163–176. 2022.

194 

Nikolova MP and Chavali MS: Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 4:271–292. 2019.PubMed/NCBI View Article : Google Scholar

195 

Chan BP and Leong KW: Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur Spine J. 17 (Suppl 4):S467–S479. 2008.PubMed/NCBI View Article : Google Scholar

196 

Wei G and Ma PX: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 25:4749–4757. 2004.PubMed/NCBI View Article : Google Scholar

197 

Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L and Vallet-Regi M: Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater. 9:4836–4844. 2013.PubMed/NCBI View Article : Google Scholar

198 

Boyan BD, Hummert TW, Dean DD and Schwartz Z: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 17:137–146. 1996.PubMed/NCBI View Article : Google Scholar

199 

Le M, Wu BM and Dunn JCY: Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A. 87A:1010–1016. 2008.PubMed/NCBI View Article : Google Scholar

200 

Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD and Stelling FH: Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 4:433–456. 1970.PubMed/NCBI View Article : Google Scholar

201 

Rampichová M, Buzgo M, Chvojka J, Prosecká E, Kofronová O and Amler E: Cell penetration to nanofibrous scaffolds: Forcespinning®, an alternative approach for fabricating 3D nanofibers. Cell Adh Migr. 8:36–41. 2014.PubMed/NCBI View Article : Google Scholar

202 

Ren L, Pandit V, Elkin J, Denman T, Cooper JA and Kotha SP: Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale. 5:2337–2345. 2013.PubMed/NCBI View Article : Google Scholar

203 

Wang L, Shi J, Liu L, Secret E and Chen Y: Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies. Microelectron Eng. 88:1718–1721. 2011.

204 

Loordhuswamy AM, Krishnaswamy VR, Korrapati PS, Thinakaran S and Rengaswami GD: Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater Sci Eng C Mater Biol Appl. 42:799–807. 2014.PubMed/NCBI View Article : Google Scholar

205 

Xu F, Weng B, Materon LA, Kuang A, Trujillo JA and Lozano K: Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning. J Polymer Engineering. 36:269–278. 2016.

206 

Melke J, Midha S, Ghosh S, Ito K and Hofmann S: Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31:1–16. 2016.PubMed/NCBI View Article : Google Scholar

207 

Xia H, Chen Q, Fang Y, Liu D, Zhong D, Wu H, Xia Y, Yan Y, Tang W and Sun X: Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. Brain Res. 1565:18–27. 2014.PubMed/NCBI View Article : Google Scholar

208 

Vasita R and Katti DS: Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 1:15–30. 2006.PubMed/NCBI View Article : Google Scholar

209 

Brannon-Peppas L: Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm. 116:1–9. 1995.

210 

Stephens D, Li L, Robinson D, Chen S, Chang HC, Liu RM, Tian Y, Ginsburg EJ, Gao X and Stultz T: Investigation of the in vitro release of gentamicin from a polyanhydride matrix. J Control Release. 63:305–317. 2000.PubMed/NCBI View Article : Google Scholar

211 

Bergmann NM and Peppas NA: Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Prog Polym Sci. 33:271–288. 2008.

212 

Wang S, Chen X, Han X, Hong X, Li X, Zhang H, Li M, Wang Z and Zheng A: A Review of 3D printing technology in pharmaceutics: Technology and applications, now and future. Pharmaceutics. 15(416)2023.PubMed/NCBI View Article : Google Scholar

213 

Matai I, Kaur G, Seyedsalehi A, McClinton A and Laurencin CT: Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 226(119536)2020.PubMed/NCBI View Article : Google Scholar

214 

Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, et al: The bioprinting roadmap. Biofabrication. 12(022002)2020.PubMed/NCBI View Article : Google Scholar

215 

Ahmad J, Garg A, Mustafa G, Mohammed AA and Ahmad MZ: 3D printing technology as a promising tool to design Nanomedicine-based solid dosage forms: Contemporary research and future scope. Pharmaceutics. 15(1448)2023.PubMed/NCBI View Article : Google Scholar

216 

Marzuka S and Umme Kulsum J: 3D printing: A new avenue in pharmaceuticals. World J Pharm Res. 5:1686–1701. 2016.

217 

Samiei N: Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: A mini review. Beni-Suef Univ J Basic Appl Sci. 9:1–12. 2020.

218 

Gross BC, Erkal JL, Lockwood SY, Chen C and Spence DM: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 86:3240–3253. 2014.PubMed/NCBI View Article : Google Scholar

219 

Perez-Puyana V, Jiménez-Rosado M, Romero A and Guerrero A: Polymer-based scaffolds for Soft-tissue engineering. Polymers (Basel). 12(1566)2020.PubMed/NCBI View Article : Google Scholar

220 

Aranaz I, Gutiérrez MC, Ferrer ML and del Monte F: Preparation of chitosan nanocomposites with a macroporous structure by unidirectional freezing and subsequent Freeze-drying. Mar Drugs. 12:5619–5642. 2014.PubMed/NCBI View Article : Google Scholar

221 

Sanz-Herrera JA, García-Aznar JM and Doblaré M: On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomater. 5:219–229. 2009.PubMed/NCBI View Article : Google Scholar

222 

Venkatesan J, Bhatnagar I and Kim SK: Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs. 12:300–316. 2014.PubMed/NCBI View Article : Google Scholar

223 

Harris LD, Kim BS and Mooney DJ: Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Sci. 42:396–402. 1998.PubMed/NCBI View Article : Google Scholar

224 

Kopp A, Smeets R, Gosau M, Kröger N, Fuest S, Köpf M, Kruse M, Krieger J, Rutkowski R, Henningsen A and Burg S: Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioact Mater. 5:241–252. 2020.PubMed/NCBI View Article : Google Scholar

225 

Mabrouk M, Beherei HH and Das DB: Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 110(110716)2020.PubMed/NCBI View Article : Google Scholar

226 

Agrawal CM and Ray RB: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 55:141–150. 2001.PubMed/NCBI View Article : Google Scholar

227 

Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, Noh I, Mikos AG and Zhang S: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 137:37–48. 2017.PubMed/NCBI View Article : Google Scholar

228 

Awad A, Fina F, Goyanes A, Gaisford S and Basit AW: 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 586(119594)2020.PubMed/NCBI View Article : Google Scholar

229 

Madrid APM, Vrech SM, Sanchez MA and Rodriguez AP: Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl. 100:631–644. 2019.PubMed/NCBI View Article : Google Scholar

230 

Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A and Malaquin L: Fabrication of 3D scaffolds reproducing intestinal epithelium topography by High-resolution 3D stereolithography. Biomaterials. 221(119404)2019.PubMed/NCBI View Article : Google Scholar

231 

Melčová V, Svoradová K, Menčík P, Kontárová S, Rampichová M, Hedvičáková V, Sovková V, Přikryl R and Vojtová L: FDM 3D printed composites for bone tissue engineering based on plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers (Basel). 12(2806)2020.PubMed/NCBI View Article : Google Scholar

232 

Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT and Carelli S: Advances in tissue engineering and innovative fabrication techniques for 3-D-Structures: Translational applications in neurodegenerative diseases. Cells. 9(1636)2020.PubMed/NCBI View Article : Google Scholar

233 

Yuan B, Zhou SY and Chen XS: Rapid prototyping technology and its application in bone tissue engineering. J Zhejiang Univ Sci B. 18:303–315. 2017.PubMed/NCBI View Article : Google Scholar

234 

Murphy SV and Atala A: 3D bioprinting of tissues and organs. Nat Biotechnol. 32:773–785. 2014.PubMed/NCBI View Article : Google Scholar

235 

Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J and Cai X: Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C Mater Biol Appl. 109(110625)2020.PubMed/NCBI View Article : Google Scholar

236 

Simon CG, Yaszemski MJ, Ratcliffe A, Tomlins P, Luginbuehl R and Tesk JA: ASTM international workshop on standards and measurements for tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater. 103:949–959. 2015.PubMed/NCBI View Article : Google Scholar

237 

Pamies D, Ekert J, Zurich MG, Frey O, Werner S, Piergiovanni M, Freedman BS, Keong Teo AK, Erfurth H, Reyes DR, et al: Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep. 19:604–617. 2024.PubMed/NCBI View Article : Google Scholar

238 

Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M and Pensabene V: . Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering. 7(112)2020.PubMed/NCBI View Article : Google Scholar

239 

Lyu Y: Organ-on-chip technology's development and usages: A comprehensive review. Theor Nat Sci 32: pp288-292, 2024. https://doi.org/10.54254/2753-8818/32/20240886.

240 

Morais AS, Mendes M, Cordeiro MA, Sousa JJ, Pais AC, Mihăilă SM and Vitorino C: Organ-on-a-Chip: Ubi sumus? Fundamentals and design aspects. Pharmaceutics. 16(615)2024.PubMed/NCBI View Article : Google Scholar

241 

Syahruddin MH, Anggraeni R and Ana ID: A microfluidic organ-on-a-chip: Into the next decade of bone tissue engineering applied in dentistry. Future Sci OA. 9(FSO902)2023.PubMed/NCBI View Article : Google Scholar

242 

Europe Medicines Agency (EMA): EMA implements new measures to minimise animal testing during medicines development, 2021. Accessed on August 3, 2024. https://www.ema.europa.eu/en/news/ema-implements-new-measures-minimise-animal-testing-during-medicines-development.

243 

Food and Drug Administration (FDA): Advancing Alternative Methods at FDA, 2023. Accessed on August 3, 2024. https://www.fda.gov/science-research/about-science-research-fda/advancing-alternative-methods-fda.

244 

Cho S, Lee S and Ahn SI: Design and engineering of organ-on-a-chip. Biomed Eng Lett. 13:97–109. 2023.PubMed/NCBI View Article : Google Scholar

245 

Mandenius CF: Conceptual design of Micro-Bioreactors and Organ-on-chips for studies of cell cultures. Bioengineering (Basel). 5(56)2018.PubMed/NCBI View Article : Google Scholar

246 

Torino S, Corrado B, Iodice M and Coppola G: PDMS-based microfluidic devices for cell culture. Inventions. 3:1–14. 2018.PubMed/NCBI View Article : Google Scholar

247 

Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R and Iqbal HMN: Organs-on-a-chip module: A review from the development and applications perspective. Micromachines (Basel). 9(536)2018.PubMed/NCBI View Article : Google Scholar

248 

Srinivasan A, Lopez-Ribot JL and Ramasubramanian AK: Microscale microbial culture. Future Microbiol. 10:143–146. 2015.PubMed/NCBI View Article : Google Scholar

249 

Whitesides GM: The origins and the future of microfluidics. Nature. 442:368–373. 2006.PubMed/NCBI View Article : Google Scholar

250 

Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HVR, Canali C, Dufva M, Emnéus J and Wolff A: Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C. 55:569–578. 2015.PubMed/NCBI View Article : Google Scholar

251 

Ahmed I, Iqbal HMN and Akram Z: Microfluidics engineering: Recent trends, valorization, and applications. Arab J Sci Eng. 43:23–32. 2018.

252 

Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z and Wang Q: Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials. 34:4109–4117. 2013.PubMed/NCBI View Article : Google Scholar

253 

Singh G, Mishra A, Mathur A, Shastri S, Nizam A, Rizwan A, Dadial AS, Firdous A and Hassan H: Advancement of organ-on-chip towards next generation medical technology. Biosens Bioelectron X. 18(100480)2024.

254 

Milton LA, Viglione MS, Ong LJY, Nordin GP and Toh YC: Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications. Lab Chip. 23:3537–3560. 2023.PubMed/NCBI View Article : Google Scholar

255 

Tajeddin A and Mustafaoglu N: Design and fabrication of organ-on-chips: Promises and challenges. Micromachines (Basel). 12(1443)2021.PubMed/NCBI View Article : Google Scholar

256 

Walter FR, Valkai S, Kincses A, Petnehazi A, Czeller T, Veszelka S, Ormos P, Deli MA and Dér A: A versatile lab-on-a-chip tool for modeling biological barriers. Sens Actuators B Chem. 222:1209–1219. 2016.

257 

França CM, Tahayeri A, Rodrigues NS, Ferdosian S, Puppin Rontani RM, Sereda G, Ferracane JL and Bertassoni LE: The tooth on-a-chip: A microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip. 20:405–413. 2020.PubMed/NCBI View Article : Google Scholar

258 

Shin W, Wu A, Massidda MW, Foster C, Thomas N, Lee DW, Koh H, Ju Y, Kim J and Kim HJ: A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an Anoxic-Oxic Interface-on-a-Chip. Front Bioeng Biotechnol. 7(13)2019.PubMed/NCBI View Article : Google Scholar

259 

lebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, et al: Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros. 21:606–615. 2021.PubMed/NCBI View Article : Google Scholar

260 

Cao T, Shao C, Yu X, Xie R, Yang C, Sun Y, Yang S, He W, Xu Y, Fan Q and Ye F: Biomimetic Alveolus-on-a-Chip for SARS-COV-2 infection recapitulation. Research (Wash D C). 2022(9819154)2022.PubMed/NCBI View Article : Google Scholar

261 

Tan J, Zhu L, Shi J, Zhang J, Kuang J, Guo Q, Zhu X, Chen Y, Zhou C and Gao X: Evaluation of drug resistance for EGFR-TKIs in lung cancer via multicellular lung-on-a-chip. Eur J Pharm Sci. 199(106805)2024.PubMed/NCBI View Article : Google Scholar

262 

Zakharova M, Palma Do Carmo MA, Van Der Helm MW, Le-The H, De Graaf MNS, Orlova V, van den Berg A, van der Meer AD, Broersen K and Segerink LI: Multiplexed blood-brain barrier organ-on-chip. Lab Chip. 20:3132–3143. 2020.PubMed/NCBI View Article : Google Scholar

263 

Zheng F, Fu F, Cheng Y, Wang C, Zhao Y and Gu Z: Organ-on-a-Chip systems: Microengineering to biomimic living systems. Small. 12:2253–2282. 2016.PubMed/NCBI View Article : Google Scholar

264 

Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, et al: Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 24:995–1005.e6. 2019.PubMed/NCBI View Article : Google Scholar

265 

Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, et al: Hypoxia-enhanced Blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun. 10(2621)2019.PubMed/NCBI View Article : Google Scholar

266 

Wu C, Luo Y, Cuniberti G, Xiao Y and Gelinsky M: Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7:2644–2650. 2011.PubMed/NCBI View Article : Google Scholar

267 

Sachlos E, Czernuszka JT, Gogolewski S and Dalby M: Making tissue engineering scaffolds work. Review on the application ofsolid freeform fabrication technology to the production of tissue engineeringscaffolds. Eur Cells Mater. 5:29–40. 2003.PubMed/NCBI View Article : Google Scholar

268 

Grenier J, Duval H, Barou F, Lv P, David B and Letourneur D: Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 94:195–203. 2019.PubMed/NCBI View Article : Google Scholar

269 

Doshi J and Reneker DH: Electrospinning process and applications of electrospun fibers. Conf Rec Ind Appl Soc IEEE-IAS Annu Meet. 3:1698–1703. 1993.

270 

Dhariwala B, Hunt E and Boland T: Rapid prototyping of Tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322. 2004.PubMed/NCBI View Article : Google Scholar

271 

Lee DK, Kwon JY and Cho YH: Fabrication of microfluidic channels with various cross-sectional shapes using anisotropic etching of Si and self-alignment. Applied Physics A. 125(291)2019.

272 

Kobayashi J, Kikuchi A, Aoyagi T and Okano T: Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. J Biomed Mater Res A. 107:955–967. 2019.PubMed/NCBI View Article : Google Scholar

273 

Damiati S, Kompella UB, Damiati SA and Kodzius R: Microfluidic devices for drug delivery systems and drug screening. Genes (Basel). 9(103)2018.PubMed/NCBI View Article : Google Scholar

274 

Caballero D, Kaushik S, Correlo VM, Oliveira JM, Reis RL and Kundu SC: Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials. 149:98–115. 2017.PubMed/NCBI View Article : Google Scholar

275 

Imparato G, Urciuolo F and Netti PA: Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 9(28)2022.PubMed/NCBI View Article : Google Scholar

276 

Zuchowska A and Skorupska S: Multi-organ-on-chip approach in cancer research. Organs-on-a-Chip. 4(100014)2022.

277 

Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, et al: AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 91:195–208. 2019.PubMed/NCBI View Article : Google Scholar

278 

Kamei K, Mashimo Y, Koyama Y, Fockenberg C, Nakashima M, Nakajima M, Li J and Chen Y: 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed Microdevices. 17(36)2015.PubMed/NCBI View Article : Google Scholar

279 

Grant J, Lee E, Almeida M, Kim S, LoGrande N, Goyal G, Sesay AM, Breault DT, Prantil-Baun R and Ingber DE: Establishment of physiologically relevant oxygen gradients in microfluidic organ chips. Lab Chip. 22:1584–1593. 2022.PubMed/NCBI View Article : Google Scholar

280 

Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, Sudo R, Kamm RD and Chung S: In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip. 11:2175–2181. 2011.PubMed/NCBI View Article : Google Scholar

281 

Ribas J, Zhang YS, Pitrez PR, Leijten J, Miscuglio M, Rouwkema J, Dokmeci MR, Nissan X, Ferreira L and Khademhosseini A: Biomechanical Strain exacerbates inflammation on a Progeria-on-a-Chip model. Small. 13(1603737)2017.PubMed/NCBI View Article : Google Scholar

282 

Wang X, Phan DTT, Zhao D, George SC, Hughes CCW and Lee AP: An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms. Lab Chip. 16:868–876. 2016.PubMed/NCBI View Article : Google Scholar

283 

Feric NT, Pallotta I, Singh R, Bogdanowicz DR, Gustilo MM, Chaudhary KW, Willette RN, Chendrimada TP, Xu X, Graziano MP and Aschar-Sobbi R: Engineered cardiac tissues generated in the Biowire II: A platform for Human-based drug discovery. Toxicol Sci. 172:89–97. 2019.PubMed/NCBI View Article : Google Scholar

284 

Lee D, Erickson A, You T, Dudley AT and Ryu S: Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. Lab Chip. 18:2077–2086. 2018.PubMed/NCBI View Article : Google Scholar

285 

Occhetta P, Mainardi A, Votta E, Vallmajo-Martin Q, Ehrbar M, Martin I, Barbero A and Rasponi M: Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng. 3:545–557. 2019.PubMed/NCBI View Article : Google Scholar

286 

Rosalem GS, Torres LAG, de Las Casas EB, Mathias FAS, Ruiz JC and Carvalho MGR: Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. PLoS One. 15(e0243840)2020.PubMed/NCBI View Article : Google Scholar

287 

Ashammakhi N, Nasiri R, De NR, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG and Khademhosseini A: Gut-on-a-chip: Current progress and future opportunities. Biomaterials. 255(120196)2020.PubMed/NCBI View Article : Google Scholar

288 

Pang L, Shen S, Ma C, Ma T, Zhang R, Tian C, Zhao L, Liu W and Wang J: Deformability and size-based cancer cell separation using an integrated microfluidic device. Analyst. 140:7335–7346. 2015.PubMed/NCBI View Article : Google Scholar

289 

Dressaire E and Sauret A: Clogging of microfluidic systems. Soft Matter. 13:37–48. 2017.

290 

van der Sman RGM: Simulations of confined suspension flow at multiple length scales. Soft Matter. 5:4376–4387. 2009.

291 

He X, Wang B, Meng J, Zhang S and Wang S: How to prevent bubbles in microfluidic channels. Langmuir. 37:2187–2194. 2021.PubMed/NCBI View Article : Google Scholar

292 

Busek M, Aizenshtadt A, Amirola-Martinez M, Delon L and Krauss S: Academic user view: Organ-on-a-Chip technology. Biosensors (Basel). 12(126)2022.PubMed/NCBI View Article : Google Scholar

293 

Li J, Liang W, Chen Z, Li X, Gu P, Liu A, Chen P, Li Q, Mei X, Yang J, et al: OOCDB: A comprehensive, systematic, and real-time organs-on-a-chip database. Genom Proteom Bioinform. 21:243–58. 2023.PubMed/NCBI View Article : Google Scholar

294 

Mauriac H and Casquillas GV: Organ-on-chip companies developing innovative technologies. ELVESYS Microfluidic Innovation Centre. Accessed on August 7, 2024. https://www.elveflow.com/microfluidic-reviews/organs-on-chip-3d-cell-culture/organ-chip-companies/.

295 

4Dcell: 4Dcell-Application. 4Dcell, Montreuil, 2024. https://www.4dcell.com/cell-types/#. Accessed August 7, 2024.

296 

AIM Biotech: AIM Biotech-Our Products. https://aimbiotech.com/products/. Accessed August 6, 2024.

297 

Altis Biosystems: Altis Biosystems-Products. Altis Biosystems, Inc., Durham NC, 2024. https://www.altisbiosystems.com/kits/. Accessed August 6, 2024.

298 

ANANDA Devices: ANANDA Devices-Products. Ananda Devices, Quebec, 2024. https://www.anandadevices.com/en/products. Accessed August 7, 2024.

299 

AlveoliX: AlveoliX-AXLung-on-Chip System. Alveolix AG, Bern, 2024. https://www.alveolix.com/axlung-on-chip-system/.

300 

Aracari Biosciences: Aracari Biosciences-Services. Aracari Biosciences Inc., Irvine CA, 2024. Accessed https://aracaribio.com/services/. Accessed August 7, 2024, 2024.

301 

AxoSim: AxoSim-Products. AxoSim, Inc., New Orleans, LA, 2024. https://axosim.com/products/. Accessed August 7, 2024.

302 

Beonchip: Beonchip-Products. Beonchip, Zaragoza, 2024. https://beonchip.com/blog. Accessed August 7, 2024.

303 

BiomimX: BiomimX-Applications. BiomimX, Milan, 2024. https://www.biomimx.com/our-pipeline/. Accessed August 7, 2024.

304 

Bi/ond: Bi/ond-Applications. Bi/ond Solutions, Delft, 2024. https://www.gobiond.com/applications/. Accessed August 7, 2024.

305 

Cherry Biotech: Cherry Biotech-CubiX Platform. Cherry Biotech, Montreuil, 2024. https://www.cherrybiotech.com/cubix/. Accessed August 7, 2024.

306 

chiron: chiron-Our Science. https://www.chrn.co/science. Accessed August 7, 2024.

307 

CN Bio: CN Bio-OOC Single-& Multi-Organ Models. CN Bio, Cambridge, 2024. https://cn-bio.com/organ-models/. Accessed August 7, 2024.

308 

DiNABIOS: DiNABIOS-Our Technology. DiNABIOS AG, Zurich, 2024. https://dinabios.com/technology/. Accessed August 7, 2024.

309 

Dynamic42: Dynamic42-Organ-on-chip models for research & development. Dynamic42 GmbH, Jena, 2024. https://dynamic42.com/. Accessed on August 7, 2024.

310 

Draper Laboratory: Draper-PREDICT96. Draper Laboratory, Massachusetts, 2024. https://www.draper.com/explore-solutions/predict96. Accessed August 7, 2024.

311 

Elvesys: Elveflow-Products & Applications. https://www.elveflow.com/microfluidic-products/. Accessed August 7, 2024.

312 

Emulate Inc. Emulate-Organ-Chip Products & Services. n.d. https://emulatebio.com/products-services/. Accessed August 7, 2024).

313 

Hesperos Inc: Hesperos-Services. Hesperos Inc., Orlando FL, 2024. https://hesperosinc.com/services/. Accessed August 7, 2024.

314 

Ibidi: Ibidi-Products and Applications. https://ibidi.com/content/category/37-products. Accessed August 7, 2024.

315 

InSphero: InSphero-Technology and solution. https://insphero.com/. Accessed August 7, 2024.

316 

Jiksak Bioengineering: Jiksak Bioengineering-Nerve OrganoidTM. Jiksak Bioengineering, Kanagawa, 2024. https://www.jiksak.co.jp/technology/nerve-organoid. Accessed August 7, 2024.

317 

Kirkstall Ltd: Kirkstall-Products and Applications. Kirkstall Ltd., York, 2024. https://kirkstall.com/. Accessed August 7, 2024.

318 

MesoBioTech: MesoBioTech-Organ on-a-chip. https://mesobiotech.com/organ-chip/. Accessed August 7, 2024.

319 

Microbrain Biotech: MICROBRAIN BT-Services. Mocrobrain Biotech, Marly-le-Roi, 2024. https://www.microbrainbiotech.io/our-services. Accessed August 7, 2024.

320 

Mimetas: Mimetas-OrganoReady®. Mimetas, Oegstgeest, 2024. https://www.mimetas.com/en/organoready/. Accessed on August 7, 2024.

321 

NETRI: NETRI-NeuroFluidics Cultures. NETRI, Lyon, 2025. https://netri.com/netri-products/neurofluidics-cultures/. Accessed on August 7, 2024.

322 

Numa Bioscience: NumaBio-NuVivoTM organ chips. Numa Bioscience, Bothell, 2025. https://www.numabio.com/. Accessed August 7, 2024.

323 

Quris-AI: Quris-AI-Patients-on-a-Chip. https://www.quris.ai/. Accessed August 7, 2024.

324 

REVIVO Biosystems: REVIVO Biosystems-Products. REVIVO Biosystems, Singapore, 2024. https://www.revivobio.com/products. Accessed August 7, 2024.

325 

SynVivo: SynVivo-Products. SynVivo, Huntsville, 2024. https://www.synvivobio.com/products/. Accessed August 7, 2024.

326 

TissUse GmbH: TissUse-HUMIMIC Products and Services. TissUse GmbH, Berlin, 2024. Accessed on August 7, 2024. https://www.tissuse.com/en/services/.

327 

Xona Microfluidics: Xona Microfluidics-XONACHIPS®. Xona Microfluidics, North Carolina, 2025. https://xonamicrofluidics.com/xonachips/. Accessed August 7, 2024.

328 

Ching T, Toh YC, Hashimoto M and Zhang YSL: Bridging the academia-to-industry gap: Organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci. 42:715–728. 2021.PubMed/NCBI View Article : Google Scholar

329 

Sevinc Ozdemir N, Belyaev D, Castro MN, Balakin S, Opitz J, Wihadmadyatami H, Anggraeni R, Yucel D, Kenar H, Beshchasna N, et al: Advances in in vitro blood-Air barrier models and the use of nanoparticles in COVID-19 research. Tissue Eng Part B Rev. 30:82–96. 2024.PubMed/NCBI View Article : Google Scholar

330 

Dasgupta Q, Jiang A, Wen AM, Mannix RJ, Man Y, Hall S, Javorsky E and Ingber DE: A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nat Commun. 14(6506)2023.PubMed/NCBI View Article : Google Scholar

331 

Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Hinojosa CD, Tien-Street W, Manolakos ES, Vekrellis K, Hamilton GA, Ewart L, et al: Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. NatCommun. 12(5907)2021.PubMed/NCBI View Article : Google Scholar

332 

Campisi M, Shin Y, Osaki T, Hajal C, Chiono V and Kamm RD: 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 180:117–129. 2018.PubMed/NCBI View Article : Google Scholar

333 

Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL and Kang YJ: Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 36:2720–2731. 2021.PubMed/NCBI View Article : Google Scholar

334 

Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, Sebastian S, Bonilla D, Gandolfo S, Boukataya Y, et al: Customizable Microfluidic Origami Liver-on-a-Chip (oLOC). Adv Mater Technol. 7(2100677)2022.PubMed/NCBI View Article : Google Scholar

335 

Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, et al: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 110:45–59. 2016.PubMed/NCBI View Article : Google Scholar

336 

Nguyen VVT, Ye S, Gkouzioti V, van Wolferen ME, Yengej FY, Melkert D, Siti S, de Jong B, Besseling PJ, Spee B, et al: A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles. J Extracell Vesicles. 11(e12280)2022.PubMed/NCBI View Article : Google Scholar

337 

Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS, Anand A, Deely AM, Shirure VS, Anderson L, Lowen JM, et al: Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials. 280(121245)2022.PubMed/NCBI View Article : Google Scholar

338 

Shim KY, Lee D, Han J, Nguyen NT, Park S and Sung JH: Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices. 19(37)2017.PubMed/NCBI View Article : Google Scholar

339 

Mansoorifar A, Gordon R, Bergan RC and Bertassoni LE: Bone-on-a-Chip: Microfluidic technologies and microphysiologic models of bone tissue. Adv Funct Mater. 31(2006796)2021.PubMed/NCBI View Article : Google Scholar

340 

Ng FL, Cen Z, Toh YC and Tan LP: A 3D-printed micro-perfused culture device with embedded 3D fibrous scaffold for enhanced biomimicry. Int J Bioprint. 10:143–159. 2023.

341 

Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, et al: Development of a Scaffold-on-a-Chip platform to evaluate cell infiltration and osteogenesis on the 3D-Printed scaffold for bone regeneration. ACS Biomater Sci Eng. 9:968–977. 2023.PubMed/NCBI View Article : Google Scholar

342 

Bahmaee H, Owen R, Boyle L, Perrault CM, Garcia-Granada AA, Reilly GC and Claeyssens F: Design and evaluation of an Osteogenesis-on-a-Chip microfluidic device incorporating 3D cell culture. Front Bioeng Biotechnol. 8(557111)2020.PubMed/NCBI View Article : Google Scholar

343 

Killinger M, Kratochvilová A, Reihs EI, Matalová E, Klepárník K and Rothbauer M: Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng. 17(77)2023.PubMed/NCBI View Article : Google Scholar

344 

Scheinpflug J, Höfer CT, Schmerbeck SS, Steinfath M, Doka J, Tesfahunegn YA, Violet N, Renko K, Gulich K, John T, et al: A microphysiological system for studying human bone biology under simultaneous control of oxygen tension and mechanical loading. Lab Chip. 23:3405–3423. 2023.PubMed/NCBI View Article : Google Scholar

345 

Nguyen M, Tong A, Volosov M, Madhavarapu S, Freeman J and Voronov R: Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants in vivo. Biomicrofluidics. 17(024103)2023.PubMed/NCBI View Article : Google Scholar

346 

Salerno E, Orlandi G, Ongaro C, D'Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J and Angeli D: Liquid flow in scaffold derived from natural source: Experimental observations and biological outcome. Regen Biomater. 9(rbac034)2022.PubMed/NCBI View Article : Google Scholar

347 

López-Canosa A, Pérez-Amodio S, Engel E and Castaño O: Microfluidic 3D platform to evaluate endothelial progenitor cell recruitment by bioactive materials. Acta Biomater. 151:264–277. 2022.PubMed/NCBI View Article : Google Scholar

348 

Peticone C, Thompson DDS, Dimov N, Jevans B, Glass N, Micheletti M, Knowles JC, Kim HW, Cooper-White JJ and Wall IB: Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J Tissue Eng. 11(2041731420954712)2020.PubMed/NCBI View Article : Google Scholar

349 

Lyu J, Chen L, Zhang J, Kang X, Wang Y, Wu W, Tang H, Wu J, He Z and Tang K: A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-To-bone interface healing. Biomater Sci. 8:3649–3663. 2020.PubMed/NCBI View Article : Google Scholar

350 

Goldman SM and Barabino GA: Spatial engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores Open Access. 5:109–117. 2016.PubMed/NCBI View Article : Google Scholar

351 

Jusoh N, Oh S, Kim S, Kim J and Jeon NL: Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix. Lab Chip. 15:3984–3988. 2015.PubMed/NCBI View Article : Google Scholar

352 

Parhizkar M, Sofokleous P, Stride E and Edirisinghe M: Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique. Biofabrication. 6(045010)2014.PubMed/NCBI View Article : Google Scholar

353 

Rashidi N, Slater A, Peregrino G and Santin M: A novel, microfluidic high-throughput single-cell encapsulation of human bone marrow mesenchymal stromal cells. J Mater Sci, Mater Med. 35(19)2024.PubMed/NCBI View Article : Google Scholar

354 

An C, Zhou R, Zhang H, Zhang Y, Liu W, Liu J, Bao B, Sun K, Ren C, Zhang Y, et al: Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomater. 157:91–107. 2023.PubMed/NCBI View Article : Google Scholar

355 

Yang G, Mahadik B, Choi JY, Yu JR, Mollot T, Jiang B, He X and Fisher JP: Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomater. 121:204–213. 2021.PubMed/NCBI View Article : Google Scholar

356 

Rajabnejadkeleshteri A, Basiri H, Mohseni SS, Farokhi M, Mehrizi AA and Moztarzadeh F: Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. Int J Biol Macromol. 184:29–41. 2021.PubMed/NCBI View Article : Google Scholar

357 

Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ and Lee NY: Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int J Pharm. 581(119248)2020.PubMed/NCBI View Article : Google Scholar

358 

Moradikhah F, Doosti-Telgerd M, Shabani I, Soheili S, Dolatyar B and Seyedjafari E: icrofluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sci. 254(17768)2020.PubMed/NCBI View Article : Google Scholar

359 

Hou Y, Xie W, Achazi K, Cuellar-Camacho JL, Melzig MF, Chen W and Haag R: Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 77:28–37. 2018.PubMed/NCBI View Article : Google Scholar

360 

Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, et al: Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials. 174:1–16. 2018.PubMed/NCBI View Article : Google Scholar

361 

Li F, Truong VX, Thissen H, Frith JE and Forsythe JS: Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Appl Mater Interfaces. 9:8589–8601. 2017.PubMed/NCBI View Article : Google Scholar

362 

Angelozzi M, Miotto M, Penolazzi L, Mazzitelli S, Keane T, Badylak SF, Piva R and Nastruzzi C: Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential. Mater Sci Eng C Mater Biol Appl. 56:141–153. 2015.PubMed/NCBI View Article : Google Scholar

363 

Ding S, Li L, Liu X, Yang G, Zhou G and Zhou S: A nano-micro alternating multilayer scaffold loading with rBMSCs and BMP-2 for bone tissue engineering. Colloids Surf B Biointerfaces. 133:286–295. 2015.PubMed/NCBI View Article : Google Scholar

364 

Blow N: Microfluidics: In search of a killer application. Nat Methods. 4:665–670. 2007.

365 

Sackmann EK, Fulton AL and Beebe DJ: The present and future role of microfluidics in biomedical research. Nature. 507:181–189. 2014.PubMed/NCBI View Article : Google Scholar

366 

Picollet-D'hahan N, Zuchowska A, Lemeunier I and Le Gac S: Multiorgan-on-a-Chip: A systemic approach to model and decipher Inter-organ communication. Trends Biotechnol. 39:788–810. 2021.PubMed/NCBI View Article : Google Scholar

367 

Spagnuolo G, Codispoti B, Marrelli M, Rengo C, Rengo S and Tatullo M: Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J (Basel). 6(72)2018.PubMed/NCBI View Article : Google Scholar

368 

Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A and Liu S: oncise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 33:627–638. 2015.PubMed/NCBI View Article : Google Scholar

369 

Nielsen AV, Beauchamp MJ, Nordin GP and Woolley AT: 3D printed microfluidics. Annu Rev Anal Chem (Palo Alto Calif). 13:45–65. 2020.PubMed/NCBI View Article : Google Scholar

370 

Sooriyaarachchi D, Zhou Y, Maharubin S and Tan GZ: Microtube-embedded microfluidic devices for potential applications in blood brain barrier research. Procedia Manuf. 48:294–301. 2020.

371 

Zhou Y: The recent development and applications of fluidic channels by 3D printing. J Biomed Sci. (24)2017.PubMed/NCBI View Article : Google Scholar

372 

Moore S: Current Global Market of Organ-on-a-Chip, 2023. https://www.azolifesciences.com/article/Global-Market-Overview-Organ-on-a-Chip.aspx (accessed August 8, 2024).

373 

Singh D, Mathur A, Arora S, Roy S and Mahindroo N: Journey of organ on a chip technology and its role in future healthcare scenario. Appl Surf Sci Adv. 9(100246)2022.

374 

Franzen N, van Harten WH, Retèl VP, Loskill P, van den Eijnden-van Raaij J and IJzerman M: Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov Today. 24:1720–1724. 2019.PubMed/NCBI View Article : Google Scholar

375 

Hubrecht RC and Carter E: The 3Rs and humane experimental technique: Implementing change. Animals (Basel). 9(754)2019.PubMed/NCBI View Article : Google Scholar

376 

Goetz LH and Schork NJ: Personalized medicine: Motivation, challenges, and progress. Fertil Steril. 109:952–963. 2018.PubMed/NCBI View Article : Google Scholar

377 

Syama S and Mohanan PV: Microfluidic based human-on-a-chip: A revolutionary technology in scientific research. Trends Food Sci Technol. 110:711–728. 2021.

378 

Srivastava SK, Foo GW, Aggarwal N and Chang MW: Organ-on-chip technology: Opportunities and challenges. Biotechnology Notes. 5:8–12. 2024.PubMed/NCBI View Article : Google Scholar

379 

Haddrick M and Simpson PB: Organ-on-a-chip technology: Turning its potential for clinical benefit into reality. Drug Discov Today. 24:1217–1223. 2019.PubMed/NCBI View Article : Google Scholar

380 

Riehl BD and Lim JY: Macro and microfluidic flows for skeletal regenerative medicine. Cells. 1:1225–1245. 2012.PubMed/NCBI View Article : Google Scholar

381 

Abuwatfa WH, Pitt WG and Husseini GA: Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 31(7)2024.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Syahruddin MH, Ana ID, Belyaev D, Irnawati D, Wihadmadyatami H, Beshchasna N and Anggraeni R: Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review). Biomed Rep 24: 6, 2026.
APA
Syahruddin, M.H., Ana, I.D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., & Anggraeni, R. (2026). Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review). Biomedical Reports, 24, 6. https://doi.org/10.3892/br.2025.2079
MLA
Syahruddin, M. H., Ana, I. D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., Anggraeni, R."Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review)". Biomedical Reports 24.1 (2026): 6.
Chicago
Syahruddin, M. H., Ana, I. D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., Anggraeni, R."Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review)". Biomedical Reports 24, no. 1 (2026): 6. https://doi.org/10.3892/br.2025.2079
Copy and paste a formatted citation
x
Spandidos Publications style
Syahruddin MH, Ana ID, Belyaev D, Irnawati D, Wihadmadyatami H, Beshchasna N and Anggraeni R: Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review). Biomed Rep 24: 6, 2026.
APA
Syahruddin, M.H., Ana, I.D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., & Anggraeni, R. (2026). Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review). Biomedical Reports, 24, 6. https://doi.org/10.3892/br.2025.2079
MLA
Syahruddin, M. H., Ana, I. D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., Anggraeni, R."Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review)". Biomedical Reports 24.1 (2026): 6.
Chicago
Syahruddin, M. H., Ana, I. D., Belyaev, D., Irnawati, D., Wihadmadyatami, H., Beshchasna, N., Anggraeni, R."Potential of organ‑on‑a‑chip in advancing synthetic extracellular matrix technology for bone tissue engineering in dentistry (Review)". Biomedical Reports 24, no. 1 (2026): 6. https://doi.org/10.3892/br.2025.2079
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team