|
1
|
Pullen RL Jr and Holter V: Nursing
management of a patient with prostate cancer. Nursing. 55:25–35.
2025.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Campodonico F, Ennas M, Zanardi S, Zigoura
E, Piccardo A, Foppiani L, Schiavone C, Squillace L, Benelli A, De
Censi A, et al: Management of prostate cancer with systemic
therapy: A prostate cancer unit perspective. Curr Cancer Drug
Targets. 21:107–116. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Henriques V, Wenzel M, Demes MC and
Köllermann J: Metastatic castration-resistant prostate cancer.
Pathologe. 42:431–441. 2021.(In German).
|
|
4
|
Heck MM, Tauber R, Schwaiger S, Retz M,
D'Alessandria C, Maurer T, Gafita A, Wester H, Gschwend JE, Weber
WA, et al: Treatment outcome, toxicity, and predictive factors for
radioligand therapy with 177Lu-PSMA-I&T in metastatic
castration-resistant prostate cancer. Eur Urol. 75:920–926.
2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
von Amsberg G, Busenbender T, Coym A,
Kaune M, Strewinsky N, Ekrutt J, Tilki D and Dyshlovoy S:
Management of metastatic prostate cancer. Oncol Res Treat. 8:1–12.
2025.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Nezir AE, Khalily MP, Gulyuz S, Ozcubukcu
S, Küçükgüzel SG, Yilmaz O and Telci D: Synthesis and evaluation of
tumor-homing peptides for targeting prostate cancer. Amino Acids.
53:645–652. 2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kumar BV, Sachan R, Garad P, Srivastava N,
Saraf SA and Meher N: Dual targeting of prostate-specific membrane
antigen and fibroblast activation protein: Bridging prostate cancer
theranostics with precision. ACS Appl Bio Mater. 8:962–979.
2025.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H,
Wang Q and Lan X: Mechanisms of Rho GTPases in regulating tumor
proliferation, migration and invasion. Cytokine Growth Factor Rev.
80:168–174. 2024.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Wang J, Zhu J, Meng J, Qiu T, Wang W, Wang
R and Liu J: Baicalin inhibits biofilm formation by influencing
primary adhesion and aggregation phases in Staphylococcus
saprophyticus. Vet Microbiol. 262(109242)2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Du X, Zhang Y, Jia Y and Gao B: The
Development of Al18F-NOTA-FAP-2286 as an FAP-Targeted PET tracer
and the translational application in the diagnosis of acquired drug
resistance in progressive prostate cancer. Pharmaceutics.
17(552)2025.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Grewal K, Dorff TB, Mukhida SS, Agarwal N
and Hahn AW: Advances in targeted therapy for metastatic prostate
cancer. Curr Treat Options Oncol. 26:465–475. 2025.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhao Q, Mo Z, Zeng L, Yuan Y and Wang Y
and Wang Y: Construction and evaluation of hepatic targeted drug
delivery system with hydroxycamptothecin in stem cell-derived
exosomes. Molecules. 29(5174)2024.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Fan L, Gong Y, He Y, Gao W, Dong X, Dong
B, Zhu HH and Xue W: TRIM59 is suppressed by androgen receptor and
acts to promote lineage plasticity and treatment-induced
neuroendocrine differentiation in prostate cancer. Oncogene.
42:559–571. 2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Archer M, Lin KM, Kolanukuduru KP, Zhang
J, Ben-David R, Kotula L and Kyprianou N: Impact of cell plasticity
on prostate tumor heterogeneity and therapeutic response. Am J Clin
Exp Urol. 12:331–351. 2024.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Abida W, Beltran H and Raychaudhuri R:
State of the Art: Personalizing treatment for patients with
metastatic castration-resistant prostate cancer. Am Soc Clin Oncol
Educ Book. 245(e473636)2025.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Xu J, Ma Y, Hu P, Yao J, Chen H and Ma Q:
Recent advances in antibody-drug conjugates for metastatic
castration-resistant prostate cancer. Zhejiang Da Xue Xue Bao Yi
Xue Ban. 54:685–693. 2025.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
17
|
Mulati Y, Shen Q, Tian Y, Chen Y, Yao K,
Yu W, Cui Y, Shi X, He Z, Zhang Q and Fan Y: Characterizing PSMA
heterogeneity in prostate cancer and identifying clinically
actionable tumor associated antigens in PSMA negative cases. Sci
Rep. 15(23902)2025.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Horak J, Petrausch U and Omlin A:
Metastatic castration-resistant prostate cancer-what are rational
sequential treatment options? Urologie. 62:1295–1301.
2023.PubMed/NCBI View Article : Google Scholar : (In German).
|
|
19
|
Davis ID: Combination therapy in
metastatic hormone-sensitive prostate cancer: Is three a crowd?
Ther Adv Med Oncol. 14(17588359221086827)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Reichert ZR and Hussain M: Androgen
receptor and beyond, targeting androgen signaling in
castration-resistant prostate cancer. Cancer J. 22:326–329.
2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Li PY, Lu YH and Chen CY: Comparative
effectiveness of abiraterone and enzalutamide in patients with
metastatic castration-resistant prostate cancer in Taiwan. Front
Oncol. 12(822375)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Blanc C, Moktefi A, Jolly A, de la Grange
P, Gay D, Nicolaiew N, Semprez F, Maillé P, Soyeux P, Firlej V, et
al: The Neuropilin-1/PKC axis promotes neuroendocrine
differentiation and drug resistance of prostate cancer. Br J
Cancer. 128:918–927. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Russnes HG, Lingjærde OC, Børresen-Dale AL
and Caldas C: Breast cancer molecular stratification: From
intrinsic subtypes to integrative clusters. Am J Pathol.
187:2152–2162. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Saeed F, Berchuck JE, Bilen MA, Gandhi JS,
Nazha B, Brown JT, Schuster DM, Jani AB, Yu J and Harik LR:
Optimizing treatment for metastatic castration-resistant prostate
cancer: Food and Drug Administration-approved therapies, emerging
strategies, and biomarker-driven approaches. Cancer.
131(e70037)2025.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hollanda CN, Gualberto ACM, Motoyama AB
and Pittella-Silva F: Advancing leukemia management through liquid
biopsy: Insights into biomarkers and clinical utility. Cancers
(Basel). 17(1438)2025.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liu HH, Tsai YS, Lai CL, Tang CH, Lai CH,
Wu HC, Hsieh JT and Yang CR: Evolving personalized therapy for
castration-resistant prostate cancer. Biomedicine (Taipei).
4(2)2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Adnan A and Basu S: PSMA Receptor-Based
PET-CT: The basics and current status in clinical and research
applications. Diagnostics (Basel). 13(158)2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ramnaraign B and Sartor O: PSMA-targeted
radiopharmaceuticals in prostate cancer: Current data and new
trials. Oncologist. 28:392–401. 2023.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rowe SP, Gorin MA and Pomper MG: Imaging
of prostate-specific membrane antigen with small-molecule PET
radiotracers: From the bench to advanced clinical applications.
Annu Rev Med. 70:461–477. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ali H, Rashid Ul Amin S, Hai A and Nizar
N: Bony lesion analysis in carcinoma prostate: Methylene
diphosphonate bone scan vs. Gallium-68 psma-11 pet/ct. J Ayub Med
Coll Abbottabad. 35:415–418. 2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhang M, Li Y, Quan Z, Zhou X, Meng X, Ye
J, Wang Y, Wang J, Qin W, Wang J and Kang F: Value of [68Ga]
Ga-PSMA-11 PET/CT in reflecting the intra- and intertumor
heterogeneity of neovascularization in clear cell renal cell
carcinoma. Mol Pharm. 22:1529–1538. 2025.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Alaskarov A, Barel S, Bakavayev S, Kahn J
and Israelson A: MIF homolog d-dopachrome tautomerase (D-DT/MIF-2)
does not inhibit accumulation and toxicity of misfolded SOD1. Sci
Rep. 12(9570)2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Ihlaseh-Catalano SM, Drigo SA, de Jesus
CM, Domingues MA, Trindade Filho JC, de Camargo JL and Rogatto SR:
STEAP1 protein overexpression is an independent marker for
biochemical recurrence in prostate carcinoma. Histopathology.
63:678–685. 2013.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Uemura H, Nakagawa Y, Yoshida K, Saga S,
Yoshikawa K, Hirao Y and Oosterwijk Y: MN/CA I X/G250 as a
potential target for immunotherapy of renal cell carcinomas. Br J
Cancer. 81:741–746. 1999.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Khanna K, Salmond N, Lynn KS, Leong HS and
Williams KC: Clinical significance of STEAP1 extracellular vesicles
in prostate cancer. Prostate Cancer Prostatic Dis. 24:802–811.
2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Oosterheert W and Gros P: Cryo-electron
microscopy structure and potential enzymatic function of human
six-transmembrane epithelial antigen of the prostate 1 (STEAP1). J
Biol Chem. 295:9502–9512. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Li YJ, Wang Y and Wang YY: MicroRNA-99b
suppresses human cervical cancer cell activity by inhibiting the
PI3K/AKT/mTOR signaling pathway. J Cell Physiol. 234:9577–9591.
2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao
A, Sasaki K, Sun H, Javier G, Nutt S, Coleman I, et al: Targeting
advanced prostate cancer with STEAP1 chimeric antigen receptor T
cell and tumor-localized IL-12 immunotherapy. Nat Commun.
14(2041)2023.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Thorne AH, Malo KN, Wong AJ, Nguyen TT,
Cooch N, Reed C, Yan J, Broderick KE, Smith TRF, Masteller EL and
Humeau L: Adjuvant screen identifies synthetic DNA-Encoding Flt3L
and CD80 immunotherapeutics as candidates for enhancing anti-tumor
T cell responses. Front Immunol. 11(327)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Sperger JM, Helzer KT, Stahlfeld CN, Jiang
D, Singh A, Kaufmann KR, Niles DJ, Heninger E, Rydzewski NR, Wang
L, et al: Expression and therapeutic targeting of TROP-2 in
treatment-resistant prostate cancer. Clin Cancer Res. 29:2324–2335.
2023.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Bardia A, Messersmith WA, Kio EA, Berlin
JD, Vahdat L, Masters GA, Moroose R, Santin AD, Kalinsky K, Picozzi
V, et al: Sacituzumab govitecan, a Trop-2-directed antibody-drug
conjugate, for patients with epithelial cancer: Final safety and
efficacy results from the phase I/II IMMU-132-01 basket trial. Ann
Oncol. 32:746–756. 2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Matera L: The choice of the antigen in the
dendritic cell-based vaccine therapy for prostate cancer. Cancer
Treat Rev. 36:131–41. 2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C,
Wang Y, Huang R, Li K, Lei Y and Huang Y: Chimeric antigen receptor
(CAR)-T cell immunotherapy against thoracic malignancies:
Challenges and opportunities. Front Immunol.
13(871661)2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Puca L, Gavyert K, Sailer V, Conteduca V,
Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L,
et al: Delta-like protein 3 expression and therapeutic targeting in
neuroendocrine prostate cancer. Sci Transl Med.
11(eaav0891)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Mohsin H, Jia F, Sivaguru G, Hudson MJ,
Shelton TD, Hoffman TJ, Cutler CS, Ketring AR, Athey PS, Simón J,
et al: Radiolanthanide-labeled monoclonal antibody CC49 for
radioimmunotherapy of cancer: Biological comparison of DOTA
conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 17:485–492.
2006.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Van Emmenis L, Ku SY, Gayvert K, Branch
JR, Brady NJ, Basu S, Russell M, Cyrta J, Vosoughi A, Sailer V, et
al: The identification of CELSR3 and other potential cell surface
targets in neuroendocrine prostate cancer. Cancer Res Commun.
3:1447–1459. 2023.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hong S, Jeong SH, Han JH, Yuk HD, Jeong
CW, Ku JH and Kwak C: Highly efficient nucleic acid encapsulation
method for targeted gene therapy using antibody conjugation system.
Mol Ther Nucleic Acids. 35(102322)2024.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Patell K, Kurian M, Garcia JA, Mendiratta
P, Barata PC, Jia AY, Spratt DE and Brown JR: Lutetium-177 PSMA for
the treatment of metastatic castrate resistant prostate cancer: A
systematic review. Expert Rev Anticancer Ther. 23:731–744.
2023.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Fallah J, Agrawal S, Gittleman H, Fiero
MH, Subramaniam S, John C, Chen W, Ricks TK, Niu G, Fotenos A, et
al: FDA approval summary: Lutetium Lu 177 Vipivotide tetraxetan for
patients with metastatic castration-resistant prostate cancer. Clin
Cancer Res. 29:1651–1657. 2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Tschan VJ, Busslinger SD, Bernhardt P,
Grundler PV, Zeevaart JR, Köster U, van der Meulen NP, Schibli R
and Müller C: Albumin-binding and conventional PSMA ligands in
combination with 161Tb: Biodistribution, dosimetry, and preclinical
therapy. J Nucl Med. 64:1625–1631. 2023.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Buteau JP, Kostos L, Jackson PA, Xie J,
Haskali MB, Alipour R, McIntosh LE, Emmerson B, MacFarlane L,
Martin CA, et al: First-in-human results of terbium-161 [161Tb]
Tb-PSMA-I&T dual beta-Auger radioligand therapy in patients
with metastatic castration-resistant prostate cancer (VIOLET): A
single-centre, single-arm, phase 1/2 study. Lancet Oncol.
26:1009–1017. 2025.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Mark C, Lee JS, Cui X and Yuan Y:
Antibody-drug conjugates in breast cancer: Current status and
future directions. Int J Mol Sci. 24(13726)2023.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wang Y, Li G, Wang H, Qi Q, Wang X and Lu
H: Targeted therapeutic strategies for Nectin-4 in breast cancer:
Recent advances and future prospects. Breast.
79(103838)2025.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Nguyen H, Hird K, Cardaci J, Smith S and
Lenzo NP: Lutetium-177 Labelled Anti-PSMA monoclonal antibody
(Lu-TLX591) Therapy for metastatic prostate cancer: Treatment
toxicity and outcomes. Mol Diagn Ther. 28:291–299. 2024.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yassin MT, Al-Otibi FO, Al-Sahli SA,
El-Wetidy MS and Mohamed S: Metal oxide nanoparticles as efficient
nanocarriers for targeted cancer therapy: Addressing
chemotherapy-induced disabilities. Cancers (Basel).
16(4234)2024.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Huang C, Duan X, Wang J, Tian Q, Ren Y,
Chen K, Zhang Z, Li Y, Feng Y, Zhong K, et al: Lipid nanoparticle
delivery system for mRNA encoding B7H3-redirected bispecific
antibody displays potent antitumor effects on malignant tumors. Adv
Sci (Weinh). 10(e2205532)2023.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Deegen P, Thomas O, Nolan-Stevaux O, Li S,
Wahl J, Bogner P, Aeffner F, Friedrich M, Liao MZ, Matthes K, Rau
D, et al: The PSMA-targeting half-life extended BiTE therapy AMG
160 has potent antitumor activity in preclinical models of
metastatic castration-resistant prostate cancer. Clin Cancer Res.
27:2928–2937. 2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wei M, Zuo S, Chen Z, Qian P, Zhang Y,
Kong L, Gao H, Wei J and Dong J: Oncolytic vaccinia virus
expressing a bispecific T-cell engager enhances immune responses in
EpCAM positive solid tumors. Front Immunol.
13(1017574)2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ayzman A, Pachynski RK and Reimers MA:
PSMA-based therapies and novel therapies in advanced prostate
cancer: The now and the future. Curr Treat Options Oncol.
26:375–384. 2025.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Jin Y, Lorvik KB, Jin Y, Beck C, Sike A,
Persiconi I, Kvaløy E, Saatcioglu F, Dunn C and Kyte JA:
Development of STEAP1 targeting chimeric antigen receptor for
adoptive cell therapy against cancer. Mol Ther Oncolytics.
26:189–206. 2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Si M, Xia Y, Cong M, Wang D, Hou Y and Ma
H: In situ co-delivery of doxorubicin and cisplatin by Injectable
thermosensitive hydrogels for enhanced osteosarcoma treatment. Int
J Nanomedicine. 17:1309–1322. 2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Tu Z, Chen Y, Zhang Z, Meng W and Li L:
Barriers and solutions for CAR-T therapy in solid tumors. Cancer
Gene Ther. 32:923–934. 2025.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kim YJ, Li W, Zhelev DV, Mellors JW,
Dimitrov DS and Baek DS: Chimeric antigen receptor-T cells are
effective against CEACAM5 expressing non-small cell lung cancer
cells resistant to antibody-drug conjugates. Front Oncol.
13(1124039)2023.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Jiang Y, Wen W, Yang F, Han D, Zhang W and
Qin W: Prospect of prostate cancer treatment: Armed CAR-T or
combination therapy. Cancers (Basel). 14(967)2022.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Wala JA and Hanna GJ: Chimeric antigen
receptor T-cell therapy for solid tumors. Hematol Oncol Clin North
Am. 37:1149–1168. 2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Bains RS, Raju TG, Semaan LC, Block A,
Yamaguchi Y, Priceman SJ, George SC and Shirure VS: Vascularized
tumor-on-a-chip to investigate immunosuppression of CAR-T cells.
Lab Chip. 25:2390–2400. 2025.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Norde WJ, Hobo W, van der Voort R and
Dolstra H: Coinhibitory molecules in hematologic malignancies:
Targets for therapeutic intervention. Blood. 120:728–736.
2012.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Alavi SE, Ebrahimi Shahmabadi H, Sharma LA
and Sharma A: Nanoparticle-based drug delivery systems for
non-surgical periodontal therapy: Innovations and clinical
applications. 3 Biotech. 15(269)2025.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Guo F, Luo S, Wang L, Wang M, Wu F, Wang
Y, Jiao Y, Du Y, Yang Q, Yang X and Yang G: Protein corona,
influence on drug delivery system and its improvement strategy: A
review. Int J Biol Macromol. 256 (Pt 2)(128513)2024.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Guo L, Shi D, Shang M, Sun X, Meng D, Liu
X, Zhou X and Li J: Utilizing RNA nanotechnology to construct
negatively charged and ultrasound-responsive nanodroplets for
targeted delivery of siRNA. Drug Deliv. 29:316–327. 2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Seifert R, Kessel K, Schlack K, Weckesser
M, Kersting D, Seitzer KE, Weber M, Bögemann M and Rahbar K: Total
tumor volume reduction and low PSMA expression in patients
receiving Lu-PSMA therapy. Theranostics. 11:8143–8151.
2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Shih CH, Hsieh TY and Sung WW:
Prostate-specific membrane antigen-targeted antibody-drug
conjugates: A promising approach for metastatic
castration-resistant prostate cancer. Cells. 14(513)2025.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Liu D, Bao L, Zhu H, Yue Y, Tian J, Gao X
and Yin J: Microenvironment-responsive anti-PD-L1 x CD3 bispecific
T-cell engager for solid tumor immunotherapy. J Control Release.
354:606–614. 2023.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Tan B, Tu C, Xiong H, Xu Y, Shi X, Zhang
X, Yang R, Zhang N, Lin B, Liu M, et al: GITRL enhances
cytotoxicity and persistence of CAR-T cells in cancer therapy. Mol
Ther. 33:2789–2800. 2025.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Techaapornkun P, Rojpalakorn W, Mejun N,
Khaniya A, Thammahong A, Thu MS, Hirankarn N and Pitakkitnukun P:
Comparative efficacy and safety of BCMA-targeted CAR T cells and
BiTEs in relapsed/refractory multiple myeloma: A meta-analysis of
interventional and real-world studies. Ann Hematol. 104:4791–4809.
2025.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Bolsée J, Violle B, Jacques-Hespel C,
Nguyen T, Lonez C and Breman E: Tandem CAR T-cells targeting CD19
and NKG2DL can overcome CD19 antigen escape in B-ALL. Front
Immunol. 16(1557405)2025.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Yamamichi G, Kato T, Watabe T, Hatano K,
Uemura M and Nonomura N: Current status of prostate-specific
membrane antigen-targeted alpha radioligand therapy in prostate
cancer. Anticancer Res. 44:879–888. 2024.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zhang Q, Helfand BT, Carneiro BA, Qin W,
Yang XJ, Lee C, Zhang W, Giles FJ, Cristofanilli M and Kuzel TM:
Efficacy against human prostate cancer by prostate-specific
membrane antigen-specific, transforming growth Factor-β insensitive
genetically targeted CD8+ T-cells derived from patients with
metastatic castrate-resistant disease. Eur Urol. 73:648–652.
2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Guedan S and Delgado J: Immobilizing a
moving target: CAR T cells hit CD22. Clin Cancer Res. 25:5188–5190.
2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Song EZ, Wang X, Philipson BI, Zhang Q,
Thokala R, Zhang L, Assenmacher CA, Binder ZA, Ming GL, O'Rourke
DM, et al: The IAP antagonist birinapant enhances chimeric antigen
receptor T cell therapy for glioblastoma by overcoming antigen
heterogeneity. Mol Ther Oncolytics. 27:288–304. 2022.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Peter J, Toppeta F, Trubert A, Danhof S,
Hudecek M and Däullary T: Multi-Targeting CAR-T cell strategies to
overcome immune evasion in lymphoid and myeloid malignancies. Oncol
Res Treat. 48:265–279. 2025.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Borcoman E, Kamal M, Marret G, Dupain C,
Castel-Ajgal Z and Le Tourneau C: HDAC inhibition to prime immune
checkpoint inhibitors. Cancers (Basel). 14(66)2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
López-Collazo E and Hurtado-Navarro L:
Cell fusion as a driver of metastasis: Re-evaluating an old
hypothesis in the age of cancer heterogeneity. Front Immunol.
16(1524781)2025.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Derderian S, Vesval Q, Wissing MD, Hamel
L, Côté N, Vanhuyse M, Ferrario C, Bladou F, Aprikian A and
Chevalier S: Liquid biopsy-based targeted gene screening highlights
tumor cell subtypes in patients with advanced prostate cancer. Clin
Transl Sci. 15:2597–2612. 2022.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Tserunyan V and Finley SD: Modelling
predicts differences in chimeric antigen receptor T-cell signalling
due to biological variability. R Soc Open Sci.
9(220137)2022.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Fan J, Zhu J, Zhu H and Xu H: Potential
therapeutic targets in myeloid cell therapy for overcoming
chemoresistance and immune suppression in gastrointestinal tumors.
Crit Rev Oncol Hematol. 198(104362)2024.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Wang H, Liu S, Zhan J, Liang Y and Zeng X:
Shaping the immune-suppressive microenvironment on tumor-associated
myeloid cells through tumor-derived exosomes. Int J Cancer.
154:2031–2042. 2024.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Kemp SB, Pasca di Magliano M and Crawford
HC: Myeloid cell mediated immune suppression in pancreatic cancer.
Cell Mol Gastroenterol Hepatol. 12:1531–1542. 2021.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kerr MD, McBride DA, Chumber AK and Shah
NJ: Combining therapeutic vaccines with chemo- and immunotherapies
in the treatment of cancer. Expert Opin Drug Discov. 16:89–99.
2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Ganaie AA, Mansini AP, Hussain T, Rao A,
Siddique HR, Shabaneh A, Ferrari MG, Murugan P, Klingelhöfer J,
Wang J, et al: Anti-S100A4 antibody therapy is efficient in
treating aggressive prostate cancer and reversing
immunosuppression: Serum and biopsy S100A4 as a clinical predictor.
Mol Cancer Ther. 19:2598–2611. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Wang K, Hao Z, Fu X, Li W, Jiao A and Hua
X: Involvement of elevated ASF1B in the poor prognosis and
tumorigenesis in pancreatic cancer. Mol Cell Biochem.
477:1947–1957. 2022.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kim B, Jung S, Kim H, Kwon JO, Song MK,
Kim MK, Kim HJ and Kim HH: The role of S100A4 for bone metastasis
in prostate cancer cells. BMC Cancer. 21(137)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Peng S, Hu P, Xiao YT, Lu W, Guo D, Hu S,
Xie J, Wang M, Yu W, Yang J, et al: Single-cell analysis reveals
EP4 as a target for restoring T-cell infiltration and sensitizing
prostate cancer to immunotherapy. Clin Cancer Res. 28:552–567.
2022.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Yan J, Wang Y, Jia Y, Liu S, Tian C, Pan
W, Liu X and Wang H: Co-delivery of docetaxel and curcumin prodrug
via dual-targeted nanoparticles with synergistic antitumor activity
against prostate cancer. Biomed Pharmacother. 88:374–383.
2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Zhuang R, Xie R, Peng S, Zhou Q, Lin W, Ou
Y, Chen B, Su T, Li Z, Huang H, et al: An anti-androgen
resistance-related gene signature acts as a prognostic marker and
increases enzalutamide efficacy via PLK1 inhibition in prostate
cancer. J Transl Med. 23(480)2025.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Sartor O, de Bono J, Chi KN, Fizazi K,
Herrmann K, Rahbar K, Tagawa ST, Nordquist LT, Vaishampayan N,
El-Haddad G, et al: Lutetium-177-PSMA-617 for metastatic
castration-resistant prostate cancer. N Engl J Med. 385:1091–1103.
2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Vakil V and Trappe W: Drug-resistant
cancer treatment strategies based on the dynamics of clonal
evolution and PKPD modeling of drug combinations. IEEE/ACM Trans
Comput Biol Bioinform. 19:1603–1614. 2022.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Xu J, Yang X, Deshmukh D, Chen H, Fang S
and Qiu Y: The role of crosstalk between AR3 and E2F1 in drug
resistance in prostate cancer cells. Cells. 9(1094)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Chatzilygeroudi T, Karantanos T and Pappa
V: Unraveling venetoclax resistance: Navigating the future of
HMA/Venetoclax-Refractory AML in the molecular era. Cancers
(Basel). 17(1586)2025.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Saad F: Should only patients with BRCA
mutation be treated with a combination of an androgen receptor
pathway inhibitor and a PARP inhibitor for metastatic
castration-resistant prostate cancer? The answer is no. Eur Urol
Focus. 10:506–508. 2024.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Hachem S, Yehya A, El Masri J, Mavingire
N, Johnson JR, Dwead AM, Kattour N, Bouchi Y, Kobeissy F,
Rais-Bahrami S, et al: Contemporary update on clinical and
experimental prostate cancer biomarkers: A multi-omics-focused
approach to detection and risk stratification. Biology (Basel).
13(762)2024.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Chen Y, Fan X, Lu R, Zeng S and Gan P:
PARP inhibitor and immune checkpoint inhibitor have synergism
efficacy in gallbladder cancer. Genes Immun. 25:307–316.
2024.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kumar M, Nguyen TPN, Kaur J, Singh TG,
Soni D, Singh R and Kumar P: Opportunities and challenges in
application of artificial intelligence in pharmacology. Pharmacol
Rep. 75:3–18. 2023.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Danila DC, Szmulewitz RZ, Vaishampayan U,
Higano CS, Baron AD, Gilbert HN, Brunstein F, Milojic-Blair M, Wang
B, Kabbarah O, et al: Phase I study of DSTP3086S, an antibody-drug
conjugate targeting six-transmembrane epithelial antigen of
prostate 1, in metastatic castration-resistant prostate cancer. J
Clin Oncol. 37:3518–3527. 2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Paoletti C and Hayes DF: Circulating tumor
cells. Adv Exp Med Biol. 882:235–258. 2016.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Vis DJ, Palit SAL, Corradi M, Cuppen E,
Mehra N, Lolkema MP, Wessels LFA, van der Heijden MS, Zwart W and
Bergman AM: Whole genome sequencing of 378 prostate cancer
metastases reveals tissue selectivity for mismatch deficiency with
potential therapeutic implications. Genome Med.
17(24)2025.PubMed/NCBI View Article : Google Scholar
|
|
107
|
van der Sar ECA, Kühr AJS, Ebbers SC,
Henderson AM, de Keizer B, Lam MGEH and Braat AJAT: Baseline
imaging derived predictive factors of response following [177Lu]
Lu-PSMA-617 therapy in salvage metastatic castration-resistant
prostate cancer: A lesion- and patient-based analysis.
Biomedicines. 10(1575)2022.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Hwang C, Henderson NC, Chu SC, Holland B,
Cackowski FC, Pilling A, Jang A, Rothstein S, Labriola M, Park JJ,
et al: Biomarker-directed therapy in black and white men with
metastatic castration-resistant prostate cancer. JAMA Netw Open.
6(e2334208)2023.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Parghane RV and Basu S: PSMA-targeted
radioligand therapy in prostate cancer: Current status and future
prospects. Expert Rev Anticancer Ther. 23:959–975. 2023.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Petrylak DP, Vogelzang NJ, Chatta K,
Fleming MT, Smith DC, Appleman LJ, Hussain A, Modiano M, Singh P,
Tagawa ST, et al: PSMA ADC monotherapy in patients with progressive
metastatic castration-resistant prostate cancer following
abiraterone and/or enzalutamide: Efficacy and safety in open-label
single-arm phase 2 study. Prostate. 80:99–108. 2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Thang SP, Violet J, Sandhu S, Iravani A,
Akhurst T, Kong G, Ravi Kumar A, Murphy DG, Williams SG, Hicks RJ
and Hofman MS: Poor outcomes for patients with metastatic
castration-resistant prostate cancer with low prostate-specific
membrane antigen (PSMA) expression deemed ineligible for
177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2:670–676.
2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Fu Y, Urban DJ, Nani RR, Zhang YF, Li N,
Fu H, Shah H, Gorka AP, Guha R, Chen L, et al: Glypican-3-specific
antibody drug conjugates targeting hepatocellular carcinoma.
Hepatology. 70:563–576. 2019.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Xu J, Liu W, Fan F, Zhang B, Sun C and Hu
Y: Advances in nano-immunotherapy for hematological malignancies.
Exp Hematol Oncol. 13(57)2024.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Cao P and Bae Y: Polymer nanoparticulate
drug delivery and combination cancer therapy. Future Oncol.
8:1471–1480. 2012.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Paschalis A, Sheehan B, Riisnaes R,
Rodrigues DN, Gurel B, Bertan C, Ferreira A, Lambros MBK, Seed G,
Yuan W, et al: Prostate-specific membrane antigen heterogeneity and
DNA repair defects in prostate cancer. Eur Urol. 76:469–478.
2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Hong J, Bae S, Cavinato L, Seifert R,
Ryhiner M, Rominger A, Erlandsson K, Wilks M, Normandin M,
El-Fakhri G, et al: Deciphering the effects of radiopharmaceutical
therapy in the tumor microenvironment of prostate cancer: An
in-silico exploration with spatial transcriptomics. Theranostics.
14:7122–7139. 2024.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Narayana RVL and Gupta R: Exploring the
therapeutic use and outcome of antibody-drug conjugates in ovarian
cancer treatment. Oncogene. 44:2343–2356. 2025.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Grosso C, Silva A, Delerue-Matos C and
Barroso MF: Single and multitarget systems for drug delivery and
detection: Up-to-date strategies for brain disorders.
Pharmaceuticals (Basel). 16(1721)2023.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Yeh CY, Hsiao JK, Wang YP, Lan CH and Wu
HC: Peptide-conjugated nanoparticles for targeted imaging and
therapy of prostate cancer. Biomaterials. 99:1–15. 2016.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Bimbatti D, Maruzzo M, Pierantoni F,
Diminutto A, Dionese M, Deppieri FM, Lai E, Zagonel V and Basso U:
Immune checkpoint inhibitors rechallenge in urological tumors: An
extensive review of the literature. Crit Rev Oncol Hematol.
170(103579)2022.PubMed/NCBI View Article : Google Scholar
|
|
121
|
McMullan C, Turner G, Retzer A, Belli A,
Davies EH, Nice L, Flavell L, Flavell J and Calvert M: Testing an
electronic patient-reported outcome platform in the context of
traumatic brain injury: PRiORiTy usability study. JMIR Form Res.
9(e58128)2025.PubMed/NCBI View
Article : Google Scholar
|
|
122
|
Ramos-Casals M and Sisó-Almirall A:
Immune-related adverse events of immune checkpoint inhibitors. Ann
Intern Med. 177:ITC17–ITC32. 2024.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Naing A, Hajjar J, Gulley JL, Atkins MB,
Ciliberto G, Meric-Bernstam F and Hwu P: Strategies for improving
the management of immune-related adverse events. J Immunother
Cancer. 8(e001754)2020.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Ong SY and Baird JH: A primer on chimeric
antigen receptor T-cell therapy-related toxicities for the
intensivist. J Intensive Care Med. 39:929–938. 2024.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Ciano-Petersen NL, Muñiz-Castrillo S,
Vogrig A, Joubert B and Honnorat J: Immunomodulation in the acute
phase of autoimmune encephalitis. Rev Neurol (Paris). 178:34–47.
2022.PubMed/NCBI View Article : Google Scholar
|