|
1
|
Leung AKC, Lam JM, Wong AHC, Hon KL and Li
X: Iron deficiency anemia: An updated review. Curr Pediatr Rev.
20:339–356. 2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Cappellini MD, Santini V, Braxs C and
Shander A: Iron metabolism and iron deficiency anemia in women.
Fertil Steril. 118:607–614. 2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Johnson-Wimbley TD and Graham DY:
Diagnosis and management of iron deficiency anemia in the 21st
century. Therap Adv Gastroenterol. 4:177–184. 2011.PubMed/NCBI View Article : Google Scholar
|
|
4
|
De Franceschi L, Iolascon A, Taher A and
Cappellini MD: Clinical management of iron deficiency anemia in
adults: Systemic review on advances in diagnosis and treatment. Eur
J Intern Med. 42:16–23. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yanatori I and Kishi F: DMT1 and iron
transport. Free Radic Biol Med. 33:55–63. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Donovan A, Lima CA, Pinkus JL, Pinkus GS,
Zon LI, Robine S and Andrews NC: The iron exporter
ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab.
1:191–200. 2005.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Le Blanc S, Garrick MD and Arredondo M:
Heme carrier protein 1 transports heme and is involved in heme-Fe
metabolism. Am J Physiol Cell Physiol. 302:C1780–C1785.
2012.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Thompson JH: Serotonin
(5-hydroxytryptamine) and iron absorption. Ir J Med Sci. 6:383–388.
1965.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Sibon D, Coman T, Rossignol J, Lamarque M,
Kosmider O, Bayard E, Fouquet G, Rignault R, Topçu S, Bonneau P, et
al: Enhanced renewal of erythroid progenitors in myelodysplastic
anemia by peripheral serotonin. Cell Rep. 26:3246–3256.e4.
2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Amireault P, Hatia S, Bayard E, Bernex F,
Collet C, Callebert J, Launay JM, Hermine O, Schneider E, Mallet J,
et al: Ineffective erythropoiesis with reduced red blood cell
survival in serotonin-deficient mice. Proc Natl Acad Sci U S A.
108:13141–13146. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Merrill JF, Thomson DM, Hardman SE,
Hepworth SD, Willie S and Hancock CR: Iron deficiency causes a
shift in AMP-activated protein kinase (AMPK) subunit composition in
rat skeletal muscle. Nutr Metab (Lond). 9(104)2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bani-Ahmad M, Ahmad M, Obeidat M and
Barqawi M: The modulation of plasma levels of dopamine, serotonin,
and Brain-derived neurotrophic factor in response to variation in
iron availability. Acta Biomed. 93(e2022293)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu X, Chen R, Zhan G, Wang D, Tan X and Xu
H: Enterochromaffin cells: Sentinels to gut microbiota in
hyperalgesia? Front Cell Infect Microbiol.
11(760076)2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Wei L, Singh R and Ghoshal UC:
Enterochromaffin cells-gut microbiota crosstalk: Underpinning the
symptoms, pathogenesis, and pharmacotherapy in disorders of
gut-brain interaction. J Neurogastroenterol Motil. 28:357–375.
2022.PubMed/NCBI View
Article : Google Scholar
|
|
15
|
Yoshinaga M, Nakatsuka Y, Vandenbon A, Ori
D, Uehata T, Tsujimura T, Suzuki Y, Mino T and Takeuchi O:
Regnase-1 maintains iron homeostasis via the degradation of
transferrin receptor 1 and prolyl-hydroxylase-domain-containing
protein 3 mRNAs. Cell Rep. 19:1614–1630. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Abramson R, Wilson H, Natile MM and
Natrajan LS: Development of an Fe2+ sensing system based
on the inner filter effect between upconverting nanoparticles and
ferrozine. RSC Adv. 13:26313–26322. 2023.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Bonhaus DW, Bach C, DeSouza A, Salazar FH,
Matsuoka BD, Zuppan P, Chan HW and Eglen RM: The pharmacology and
distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene
products: Comparison with 5-HT2A and 5-HT2C receptors. Br J
Pharmacol. 115:622–628. 1995.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Naito K, Moteki H, Kimura M, Natsume H and
Ogihara M: Serotonin 5-HT2B receptor-stimulated DNA synthesis and
proliferation are mediated by autocrine secretion of transforming
growth factor-α in primary cultures of adult rat hepatocytes. Biol
Pharm Bull. 39:570–577. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Meunier V, Bourrié M, Berger Y and Fabre
G: The human intestinal epithelial cell line Caco-2;
pharmacological and pharmacokinetic applications. Cell Biol
Toxicol. 11:187–194. 1995.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Hidalgo IJ, Raub TJ and Borchardt RT:
Characterization of the human colon carcinoma cell line (Caco-2) as
a model system for intestinal epithelial permeability.
Gastroenterology. 96:736–749. 1989.PubMed/NCBI
|
|
21
|
Tsuji Y: Transmembrane protein western
blotting: Impact of sample preparation on detection of SLC11A2
(DMT1) and SLC40A1 (ferroportin). PLoS One.
15(e0235563)2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li X, Xie J, Lu L, Zhang L, Zhang L, Zou
Y, Wang Q, Luo X and Li S: Kinetics of manganese transport and gene
expressions of manganese transport carriers in Caco-2 cell
monolayers. Biometals. 26:941–953. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shirase T, Mori K, Okazaki Y, Itoh K,
Yamamoto M, Tabuchi M, Kishi F, Jiang L, Akatsuka S, Nakao K and
Toyokuni S: Suppression of SLC11A2 expression is essential to
maintain duodenal integrity during dietary iron overload. Am J
Pathol. 177:677–685. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Niitsu Y: Progress in the study of
molecular genetics of iron metabolism. Nihon Naika Gakkai Zasshi.
89:768–773. 2000.PubMed/NCBI(In Japanese).
|
|
25
|
Lin J, Liu C, Bai R, Zhang C, Pang J, Liu
Z, Ye X, Chen S, Liu X, Li H and Hu S: The effect of iron
absorption in ferrous gluconate form from enriched rice flour using
an in vitro digestion model and a Caco-2 cell model. Food Funct.
15:8788–8796. 2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mohammad-Zadeh LF, Moses L and
Gwaltney-Brant SM: Serotonin: A review. J Vet Pharmacol Ther.
31:187–199. 2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Hoyer D, Clarke DE, Fozard JR, Hartig PR,
Martin GR, Mylecharane EJ, Saxena PR and Humphrey PP: International
union of pharmacology classification of receptors for
5-hydroxytryptamine (serotonin). Pharmacol Rev. 46:157–203.
1994.PubMed/NCBI
|
|
28
|
Manzella CR, Jayawardena D, Pagani W, Li
Y, Alrefai WA, Bauer J, Jung B, Weber CR and Gill RK: Serum
serotonin differentiates between disease activity states in Crohn's
patients. Inflamm Bowel Dis. 26:1607–1618. 2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Jørandli JW, Thorsvik S, Skovdahl HK,
Kornfeld B, Sæterstad S, Gustafsson BI, Sandvik AK and van Beelen
Granlund A: The serotonin reuptake transporter is reduced in the
epithelium of active Crohn's disease and ulcerative colitis. Am J
Physiol Gastrointest Liver Physiol. 319:G761–G768. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ayme-Dietrich E, Lawson R, Côté F, de
Tapia C, Da Silva S, Ebel C, Hechler B, Gachet C, Guyonnet J,
Rouillard H, et al: The role of 5-HT2B receptors in
mitral valvulopathy: Bone marrow mobilization of endothelial
progenitors. Br J Pharmacol. 174:4123–4139. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dumotier BM and Urban L: Preclinical
mitigation of 5-HT2B agonism-related cardiac valvulopathy
revisited. J Pharmacol Toxicol Methods. 128(107542)2024.PubMed/NCBI View Article : Google Scholar
|