|
1
|
Sawa A and Snyder SH: Schizophrenia:
Diverse approaches to a complex disease. Science. 296:692–695.
2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Giannopoulou I, Georgiades S, Stefanou MI,
Spandidos DA and Rizos E: Links between trauma and psychosis
(Review). Exp Ther Med. 26(386)2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Morgan C, Charalambides M, Hutchinson G
and Murray RM: Migration, ethnicity, and psychosis: Toward a
sociodevelopmental model. Schizophr Bull. 36:655–664.
2010.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Davis EG, Humphreys KL, McEwen LM, Sacchet
MD, Camacho MC, MacIsaac JL, Lin DTS, Kobor MS and Gotlib IH:
Accelerated DNA methylation age in adolescent girls: Associations
with elevated diurnal cortisol and reduced hippocampal volume.
Transl Psychiatry. 7(e1223)2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P,
Sun J, Chen S, Li P and Lin P: Research progress on the correlation
between epigenetics and Schizophrenia. Front Neurosci.
15(688727)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Alameda L, Rodriguez V, Carr E, Aas M,
Trotta G, Marino P, Vorontsova N, Herane-Vives A, Gadelrab R,
Spinazzola E, et al: A systematic review on mediators between
adversity and psychosis: Potential targets for treatment. Psychol
Med. 50:1966–1976. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Theleritis C, Stefanou MI, Demetriou M,
Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA and Rizos E:
Association of gut dysbiosis with first-episode psychosis (Review).
Mol Med Rep. 30(130)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Bayer TA, Falkai P and Maier W: Genetic
and non-genetic vulnerability factors in schizophrenia: The basis
of the ‘two hit hypothesis.’. J Psychiatr Res. 33:543–548.
1999.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Theleritis C, Demetriou M, Stefanou MI,
Alevyzakis E, Makris M, Zoumpourlis V, Peppa M, Smyrnis N,
Spandidos DA and Rizos E: Zinc in psychosis (Review). Mol Med Rep.
32(201)2025.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Lardinois M, Lataster T, Mengelers R, Van
Os J and Myin-Germeys I: Childhood trauma and increased stress
sensitivity in psychosis. Acta Psychiatr Scand. 123:28–35.
2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Walker EF, Trotman HD, Pearce BD,
Addington J, Cadenhead KS, Cornblatt BA, Heinssen R, Mathalon DH,
Perkins DO, Seidman LJ, et al: Cortisol levels and risk for
psychosis: Initial findings from the North American prodrome
longitudinal study. Biol Psychiatry. 74:410–417. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sapolsky RM: Glucocorticoids and
hippocampal atrophy in neuropsychiatric disorders. Arch Gen
Psychiatry. 57:925–935. 2000.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Vita A, De Peri L, Silenzi C and Dieci M:
Brain morphology in first-episode schizophrenia: A meta-analysis of
quantitative magnetic resonance imaging studies. Schizophr Res.
82:75–88. 2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Thompson Ray M, Weickert CS, Wyatt E and
Webster MJ: Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in
the hippocampus of individuals with schizophrenia and mood
disorders. J Psychiatry Neurosci JPN. 36:195–203. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Daskalakis NP, De Kloet ER, Yehuda R,
Malaspina D and Kranz TM: Early life stress effects on
Glucocorticoid-BDNF interplay in the hippocampus. Front Mol
Neurosci. 8(68)2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Rizos EN, Rontos I, Laskos E, Arsenis G,
Michalopoulou PG, Vasilopoulos D, Gournellis R and Lykouras L:
Investigation of serum BDNF levels in drug-naive patients with
schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.
32:1308–1311. 2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rizos EN, Papathanasiou M, Michalopoulou
PG, Mazioti A, Douzenis A, Kastania A, Nikolaidou P, Laskos E,
Vasilopoulou K and Lykouras L: Association of serum BDNF levels
with hippocampal volumes in first psychotic episode drug-naive
schizophrenic patients. Schizophr Res. 129:201–204. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Rizos EN, Michalopoulou PG, Siafakas N,
Stefanis N, Douzenis A, Rontos I, Laskos E, Kastania A, Zoumpourlis
V and Lykouras L: Association of serum brain-derived neurotrophic
factor and duration of untreated psychosis in first-episode
patients with schizophrenia. Neuropsychobiology. 62:87–90.
2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Theleritis C, Fisher HL, Shäfer I, Winters
L, Stahl D, Morgan C, Dazzan P, Breedvelt J, Sambath I, Vitoratou
S, et al: Brain derived Neurotropic Factor (BDNF) is associated
with childhood abuse but not cognitive domains in first episode
psychosis. Schizophr Res. 159:56–61. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Fasouli ES and Katsantoni E:
Age-associated myeloid malignancies-the role of STAT3 and STAT5 in
myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett.
598:2809–2828. 2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Fasouli ES and Katsantoni E: JAK-STAT in
Early Hematopoiesis and Leukemia. Front Cell Dev Biol.
9(669363)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Katsantoni E: Protein complexes and target
genes identification by in vivo biotinylation: The STAT5 paradigm.
Sci Signal. 5(pt13)2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Theodorou M, Speletas M, Mamara A,
Papachristopoulou G, Lazou V, Scorilas A and Katsantoni E:
Identification of a STAT5 target gene, Dpf3, provides novel
insights in chronic lymphocytic leukemia. PLoS One.
8(e76155)2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Nanou A, Toumpeki C, Lavigne MD, Lazou V,
Demmers J, Paparountas T, Thanos D and Katsantoni E: The dual role
of LSD1 and HDAC3 in STAT5-dependent transcription is determined by
protein interactions, binding affinities, motifs and genomic
positions. Nucleic Acids Res. 45:142–154. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Jain M, Singh MK, Shyam H, Mishra A, Kumar
S, Kumar A and Kushwaha J: Role of JAK/STAT in the
Neuroinflammation and its association with neurological disorders.
Ann Neurosci. 28:191–200. 2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Melbourne JK, Rosen C, Feiner B, Pang Y
and Sharma RP: The JAK-STAT1 transcriptional signature in
peripheral immune cells reveals alterations related to illness
duration and acuity in psychosis. Brain Behav Immun. 77:37–45.
2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Müller N, Weidinger E, Leitner B and
Schwarz MJ: The role of inflammation in schizophrenia. Front
Neurosci. 9(372)2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chaves C, Dursun SM, Tusconi M and Hallak
JEC: Neuroinflammation and schizophrenia-is there a link? Front
Psychiatry. 15(1356975)2024.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Miller BJ and Goldsmith DR: Evaluating the
hypothesis that schizophrenia is an inflammatory disorder. Focus.
18:391–401. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Konsman JP: Cytokines in the brain and
neuroinflammation: We Didn't Starve the Fire! Pharm Basel Switz.
15(140)2022.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Reale M, Costantini E and Greig NH:
Cytokine imbalance in schizophrenia. From research to clinic:
Potential implications for treatment. Front Psychiatry.
12(536257)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Shariq AS, Brietzke E, Rosenblat JD, Pan
Z, Rong C, Ragguett RM, Park C and McIntyre RS: Therapeutic
potential of JAK/STAT pathway modulation in mood disorders. Rev
Neurosci. 30:1–7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Fond G, Lançon C, Korchia T, Auquier P and
Boyer L: The role of inflammation in the treatment of
Schizophrenia. Front Psychiatry. 11(160)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Hixson KM, Cogswell M, Brooks-Kayal AR and
Russek SJ: Evidence for a non-canonical JAK/STAT signaling pathway
in the synthesis of the brain's major ion channels and
neurotransmitter receptors. BMC Genomics. 20(677)2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Reisinger SN, Sideromenos S, Horvath O,
Derdak S, Cicvaric A, Monje FJ, Bilban M, Häring M, Glat M and
Pollak DD: STAT3 in the dorsal raphe gates behavioural reactivity
and regulates gene networks associated with psychopathology. Mol
Psychiatry. 26:2886–2899. 2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Li J, Mao N, Wang Y, Deng S and Chen K:
Novel insights into the ROCK-JAK-STAT signaling pathway in upper
respiratory tract infections and neurodegenerative diseases. Mol
Ther J Am Soc Gene Ther. 33:32–50. 2025.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Sarapultsev A, Gusev E, Komelkova M,
Utepova I, Luo S and Hu D: JAK-STAT signaling in inflammation and
stress-related diseases: Implications for therapeutic
interventions. Mol Biomed. 4(40)2023.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Klockmeier K, Silva Ramos E, Raskó T,
Martí Pastor A and Wanker EE: Schizophrenia risk candidate protein
ZNF804A interacts with STAT2 and influences interferon-mediated
gene transcription in mammalian cells. J Mol Biol.
433(167184)2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sharma RP, Rosen C, Melbourne JK, Feiner B
and Chase KA: Activated phosphorylated STAT1 levels as a
biologically relevant immune signal in Schizophrenia.
Neuroimmunomodulation. 23:224–229. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ashrafizadeh M, Zarrabi A, Mostafavi E,
Aref AR, Sethi G, Wang L and Tergaonkar V: Non-coding RNA-based
regulation of inflammation. Semin Immunol.
59(101606)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gibbons A, Udawela M and Dean B:
Non-coding RNA as novel players in the pathophysiology of
schizophrenia. Noncoding RNA. 4(11)2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Liu Y, Chang X, Hahn CG, Gur RE, Sleiman
PAM and Hakonarson H: Non-coding RNA dysregulation in the amygdala
region of schizophrenia patients contributes to the pathogenesis of
the disease. Transl Psychiatry. 8(44)2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ghafouri-Fard S, Eghtedarian R, Taheri M,
Beatrix Brühl A, Sadeghi-Bahmani D and Brand S: A review on the
expression pattern of Non-coding RNAs in patients with
schizophrenia: With a special focus on peripheral blood as a source
of expression analysis. Front Psychiatry. 12(640463)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y
and Liu S: The emerging role of long non-coding RNAs in
schizophrenia. Front Psychiatry. 13(995956)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Guo B, Jiang T, Wu F, Ni H, Ye J, Wu X, Ni
C, Jiang M, Ye L, Li Z, et al: LncRNA RP5-998N21.4 promotes immune
defense through upregulation of IFIT2 and IFIT3 in schizophrenia.
Schizophrenia (Heidelb). 8(11)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ni C, Jiang W, Wang Z, Wang Z, Zhang J,
Zheng X, Liu Z, Ou H, Jiang T, Liang W, et al: LncRNA-AC006129.1
reactivates a SOCS3-mediated anti-inflammatory response through DNA
methylation-mediated CIC downregulation in schizophrenia. Mol
Psychiatry. 26:4511–4528. 2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hjazi A, Obaid RF, Ali SS, Abdullaev B,
Alsaab HO, Huldani H, Romero-Parra RM, Mustafa YF, Hussien BM and
Saadoon SJ: The cross-talk between LncRNAs and JAK-STAT signaling
pathway in cancer. Pathol Res Pract. 248(154657)2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang
J, Jiao J, Shao J and Zhang X: Noncoding RNAs involved in the STAT3
pathway in glioma. Cancer Cell Int. 21(445)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Qing X, Tan GL, Liu HW, Li W, Ai JG, Xiong
SS, Yang MQ and Wang TS: LINC00669 insulates the JAK/STAT
suppressor SOCS1 to promote nasopharyngeal cancer cell
proliferation and invasion. J Exp Clin Cancer Res.
39(166)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rizos E, Siafakas N, Skourti E,
Papageorgiou C, Tsoporis J, Parker TH, Christodoulou DI, Spandidos
DA, Katsantoni E and Zoumpourlis V: miRNAs and their role in the
correlation between schizophrenia and cancer. Mol Med Rep.
14:4942–4946. 2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rizos E, Siafakas N, Katsantoni E, Skourti
E, Salpeas V, Rizos I, Tsoporis JN, Kastania A, Filippopoulou A,
Xiros N, et al: Let-7, Mir-98 and Mir-181 as biomarkers for cancer
and schizophrenia. PLoS One. 10(e0123522)2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rizos E, Siafakas N, Koumarianou A,
Katsantoni E, Filippopoulou A, Ntounas P, Touloumis Ch, Kastania A
and Zoumpourlis V: miR-183 as a molecular and protective biomarker
for cancer in schizophrenic subjects. Oncol Rep. 28:2200–2204.
2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dhiflaoui A and Almawi WY: Mechanisms and
clinical implications of microRNA associations and signaling
pathways in B-cell acute lymphoblastic leukemia. Gene.
967(149730)2025.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Shenoy A, Danial M and Blelloch RH: Let-7
and miR-125 cooperate to prime progenitors for astrogliogenesis.
EMBO J. 34:1180–1194. 2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Patel K, Kollory A, Takashima A, Sarkar S,
Faller DV and Ghosh SK: MicroRNA let-7 downregulates STAT3
phosphorylation in pancreatic cancer cells by increasing SOCS3
expression. Cancer Lett. 347:54–64. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow
P, Chung AY, Jooi LL and Lee CG: Lethal-7 is down-regulated by the
hepatitis B virus x protein and targets signal transducer and
activator of transcription 3. J Hepatol. 53:57–66. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu
X, Shen Y and Huang TT: Interplay between microRNAs and the STAT3
signaling pathway in human cancers. Physiol Genomics. 45:1206–1214.
2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Lago SG, Tomasik J, van Rees GF, Rustogi
N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B
and Bahn S: Peripheral lymphocyte signaling pathway deficiencies
predict treatment response in first-onset drug-naïve schizophrenia.
Brain Behav Immun. 103:37–49. 2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Schwartz DM, Kanno Y, Villarino A, Ward M,
Gadina M and O'Shea JJ: JAK inhibition as a therapeutic strategy
for immune and inflammatory diseases. Nat Rev Drug Discov.
16:843–862. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Al-Samhari MM, Al-Rasheed NM, Al-Rejaie S,
Al-Rasheed NM, Hasan IH, Mahmoud AM and Dzimiri N: Possible
involvement of the JAK/STAT signaling pathway in
N-acetylcysteine-mediated antidepressant-like effects. Exp Biol
Med. 241:509–518. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Long Y, Wang Y, Shen Y, Huang J, Li Y, Wu
R and Zhao J: Minocycline and antipsychotics inhibit inflammatory
responses in BV-2 microglia activated by LPS via regulating the
MAPKs/JAK-STAT signaling pathway. BMC Psychiatry.
23(514)2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Elmaci I and Altinoz MA: Targeting the
cellular schizophrenia. Likely employment of the antipsychotic
agent pimozide in treatment of refractory cancers and glioblastoma.
Crit Rev Oncol Hematol. 128:96–109. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Shaw V, Srivastava S and Srivastava SK:
Repurposing antipsychotics of the diphenylbutylpiperidine class for
cancer therapy. Semin Cancer Biol. 68:75–83. 2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hu X, Li J, Fu M, Zhao X and Wang W: The
JAK/STAT signaling pathway: From bench to clinic. Signal Transduct
Target Ther. 6(402)2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mosquera FEC, Guevara-Montoya MC,
Serna-Ramirez V and Liscano Y: Neuroinflammation and schizophrenia:
New therapeutic strategies through psychobiotics, nanotechnology,
and artificial intelligence (AI). J Personalized Med.
14(391)2024.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Stachowiak EK, Benson CA, Narla ST,
Dimitri A, Chuye LEB, Dhiman S, Harikrishnan K, Elahi S, Freedman
D, Brennand KJ, et al: Cerebral organoids reveal early cortical
maldevelopment in schizophrenia-computational anatomy and genomics,
role of FGFR1. Transl Psychiatry. 7(6)2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS,
Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK and
Martins-de-Souza D: Proteomic signatures of schizophrenia-sourced
iPSC-derived neural cells and brain organoids are similar to
patients' postmortem brains. Cell Biosci. 12(189)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kathuria A, Lopez-Lengowski K, Jagtap SS,
McPhie D, Perlis RH, Cohen BM and Karmacharya R: Transcriptomic
landscape and functional characterization of induced pluripotent
stem Cell-derived cerebral organoids in schizophrenia. JAMA
Psychiatry. 77:745–754. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sebastian R, Jin K, Pavon N, Bansal R,
Potter A, Song Y, Babu J, Gabriel R, Sun Y, Aronow B and Pak C:
Schizophrenia-associated NRXN1 deletions induce
developmental-timing- and cell-type-specific vulnerabilities in
human brain organoids. Nat Commun. 14(3770)2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ahmed AAA, Alegret N, Almeida B,
Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ,
Becker C, Blick RH, Bonakdar S, et al: Interfacing with the Brain:
How nanotechnology can contribute. ACS Nano. 19:10630–10717.
2025.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Rajendran R, Menon KN and Nair SC:
Nanotechnology approaches for enhanced CNS drug delivery in the
management of schizophrenia. Adv Pharm Bull. 12:490–508.
2022.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Palumbo M and Janowsky A: Delivering
MicroRNA-137 to the brain via nanoparticles. FASEB J.
36(fasebj.2022.36.S1.R5716)2022.
|
|
73
|
Radaic A and Martins-de-Souza D: The state
of the art of nanopsychiatry for schizophrenia diagnostics and
treatment. Nanomedicine Nanotechnol Biol Med.
28(102222)2020.PubMed/NCBI View Article : Google Scholar
|