|
1
|
Sawa A and Snyder SH: Schizophrenia: Diverse approaches to a complex disease. Science. 296:692–695. 2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Giannopoulou I, Georgiades S, Stefanou MI, Spandidos DA and Rizos E: Links between trauma and psychosis (Review). Exp Ther Med. 26(386)2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Morgan C, Charalambides M, Hutchinson G and Murray RM: Migration, ethnicity, and psychosis: Toward a sociodevelopmental model. Schizophr Bull. 36:655–664. 2010.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Davis EG, Humphreys KL, McEwen LM, Sacchet MD, Camacho MC, MacIsaac JL, Lin DTS, Kobor MS and Gotlib IH: Accelerated DNA methylation age in adolescent girls: Associations with elevated diurnal cortisol and reduced hippocampal volume. Transl Psychiatry. 7(e1223)2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P, Sun J, Chen S, Li P and Lin P: Research progress on the correlation between epigenetics and Schizophrenia. Front Neurosci. 15(688727)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Alameda L, Rodriguez V, Carr E, Aas M, Trotta G, Marino P, Vorontsova N, Herane-Vives A, Gadelrab R, Spinazzola E, et al: A systematic review on mediators between adversity and psychosis: Potential targets for treatment. Psychol Med. 50:1966–1976. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA and Rizos E: Association of gut dysbiosis with first-episode psychosis (Review). Mol Med Rep. 30(130)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Bayer TA, Falkai P and Maier W: Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the ‘two hit hypothesis.’. J Psychiatr Res. 33:543–548. 1999.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Theleritis C, Demetriou M, Stefanou MI, Alevyzakis E, Makris M, Zoumpourlis V, Peppa M, Smyrnis N, Spandidos DA and Rizos E: Zinc in psychosis (Review). Mol Med Rep. 32(201)2025.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Lardinois M, Lataster T, Mengelers R, Van Os J and Myin-Germeys I: Childhood trauma and increased stress sensitivity in psychosis. Acta Psychiatr Scand. 123:28–35. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Walker EF, Trotman HD, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA, Heinssen R, Mathalon DH, Perkins DO, Seidman LJ, et al: Cortisol levels and risk for psychosis: Initial findings from the North American prodrome longitudinal study. Biol Psychiatry. 74:410–417. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sapolsky RM: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 57:925–935. 2000.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Vita A, De Peri L, Silenzi C and Dieci M: Brain morphology in first-episode schizophrenia: A meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res. 82:75–88. 2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Thompson Ray M, Weickert CS, Wyatt E and Webster MJ: Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci JPN. 36:195–203. 2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D and Kranz TM: Early life stress effects on Glucocorticoid-BDNF interplay in the hippocampus. Front Mol Neurosci. 8(68)2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Rizos EN, Rontos I, Laskos E, Arsenis G, Michalopoulou PG, Vasilopoulos D, Gournellis R and Lykouras L: Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 32:1308–1311. 2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rizos EN, Papathanasiou M, Michalopoulou PG, Mazioti A, Douzenis A, Kastania A, Nikolaidou P, Laskos E, Vasilopoulou K and Lykouras L: Association of serum BDNF levels with hippocampal volumes in first psychotic episode drug-naive schizophrenic patients. Schizophr Res. 129:201–204. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Rizos EN, Michalopoulou PG, Siafakas N, Stefanis N, Douzenis A, Rontos I, Laskos E, Kastania A, Zoumpourlis V and Lykouras L: Association of serum brain-derived neurotrophic factor and duration of untreated psychosis in first-episode patients with schizophrenia. Neuropsychobiology. 62:87–90. 2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Theleritis C, Fisher HL, Shäfer I, Winters L, Stahl D, Morgan C, Dazzan P, Breedvelt J, Sambath I, Vitoratou S, et al: Brain derived Neurotropic Factor (BDNF) is associated with childhood abuse but not cognitive domains in first episode psychosis. Schizophr Res. 159:56–61. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Fasouli ES and Katsantoni E: Age-associated myeloid malignancies-the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett. 598:2809–2828. 2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Fasouli ES and Katsantoni E: JAK-STAT in Early Hematopoiesis and Leukemia. Front Cell Dev Biol. 9(669363)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Katsantoni E: Protein complexes and target genes identification by in vivo biotinylation: The STAT5 paradigm. Sci Signal. 5(pt13)2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Theodorou M, Speletas M, Mamara A, Papachristopoulou G, Lazou V, Scorilas A and Katsantoni E: Identification of a STAT5 target gene, Dpf3, provides novel insights in chronic lymphocytic leukemia. PLoS One. 8(e76155)2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Nanou A, Toumpeki C, Lavigne MD, Lazou V, Demmers J, Paparountas T, Thanos D and Katsantoni E: The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions. Nucleic Acids Res. 45:142–154. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A and Kushwaha J: Role of JAK/STAT in the Neuroinflammation and its association with neurological disorders. Ann Neurosci. 28:191–200. 2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Melbourne JK, Rosen C, Feiner B, Pang Y and Sharma RP: The JAK-STAT1 transcriptional signature in peripheral immune cells reveals alterations related to illness duration and acuity in psychosis. Brain Behav Immun. 77:37–45. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Müller N, Weidinger E, Leitner B and Schwarz MJ: The role of inflammation in schizophrenia. Front Neurosci. 9(372)2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Chaves C, Dursun SM, Tusconi M and Hallak JEC: Neuroinflammation and schizophrenia-is there a link? Front Psychiatry. 15(1356975)2024.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Miller BJ and Goldsmith DR: Evaluating the hypothesis that schizophrenia is an inflammatory disorder. Focus. 18:391–401. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Konsman JP: Cytokines in the brain and neuroinflammation: We Didn't Starve the Fire! Pharm Basel Switz. 15(140)2022.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Reale M, Costantini E and Greig NH: Cytokine imbalance in schizophrenia. From research to clinic: Potential implications for treatment. Front Psychiatry. 12(536257)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Shariq AS, Brietzke E, Rosenblat JD, Pan Z, Rong C, Ragguett RM, Park C and McIntyre RS: Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Rev Neurosci. 30:1–7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Fond G, Lançon C, Korchia T, Auquier P and Boyer L: The role of inflammation in the treatment of Schizophrenia. Front Psychiatry. 11(160)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Hixson KM, Cogswell M, Brooks-Kayal AR and Russek SJ: Evidence for a non-canonical JAK/STAT signaling pathway in the synthesis of the brain's major ion channels and neurotransmitter receptors. BMC Genomics. 20(677)2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Reisinger SN, Sideromenos S, Horvath O, Derdak S, Cicvaric A, Monje FJ, Bilban M, Häring M, Glat M and Pollak DD: STAT3 in the dorsal raphe gates behavioural reactivity and regulates gene networks associated with psychopathology. Mol Psychiatry. 26:2886–2899. 2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Li J, Mao N, Wang Y, Deng S and Chen K: Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther J Am Soc Gene Ther. 33:32–50. 2025.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S and Hu D: JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol Biomed. 4(40)2023.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Klockmeier K, Silva Ramos E, Raskó T, Martí Pastor A and Wanker EE: Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells. J Mol Biol. 433(167184)2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sharma RP, Rosen C, Melbourne JK, Feiner B and Chase KA: Activated phosphorylated STAT1 levels as a biologically relevant immune signal in Schizophrenia. Neuroimmunomodulation. 23:224–229. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L and Tergaonkar V: Non-coding RNA-based regulation of inflammation. Semin Immunol. 59(101606)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gibbons A, Udawela M and Dean B: Non-coding RNA as novel players in the pathophysiology of schizophrenia. Noncoding RNA. 4(11)2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Liu Y, Chang X, Hahn CG, Gur RE, Sleiman PAM and Hakonarson H: Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl Psychiatry. 8(44)2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ghafouri-Fard S, Eghtedarian R, Taheri M, Beatrix Brühl A, Sadeghi-Bahmani D and Brand S: A review on the expression pattern of Non-coding RNAs in patients with schizophrenia: With a special focus on peripheral blood as a source of expression analysis. Front Psychiatry. 12(640463)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y and Liu S: The emerging role of long non-coding RNAs in schizophrenia. Front Psychiatry. 13(995956)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Guo B, Jiang T, Wu F, Ni H, Ye J, Wu X, Ni C, Jiang M, Ye L, Li Z, et al: LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. Schizophrenia (Heidelb). 8(11)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, Liu Z, Ou H, Jiang T, Liang W, et al: LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 26:4511–4528. 2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hjazi A, Obaid RF, Ali SS, Abdullaev B, Alsaab HO, Huldani H, Romero-Parra RM, Mustafa YF, Hussien BM and Saadoon SJ: The cross-talk between LncRNAs and JAK-STAT signaling pathway in cancer. Pathol Res Pract. 248(154657)2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, Jiao J, Shao J and Zhang X: Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int. 21(445)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Qing X, Tan GL, Liu HW, Li W, Ai JG, Xiong SS, Yang MQ and Wang TS: LINC00669 insulates the JAK/STAT suppressor SOCS1 to promote nasopharyngeal cancer cell proliferation and invasion. J Exp Clin Cancer Res. 39(166)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rizos E, Siafakas N, Skourti E, Papageorgiou C, Tsoporis J, Parker TH, Christodoulou DI, Spandidos DA, Katsantoni E and Zoumpourlis V: miRNAs and their role in the correlation between schizophrenia and cancer. Mol Med Rep. 14:4942–4946. 2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rizos E, Siafakas N, Katsantoni E, Skourti E, Salpeas V, Rizos I, Tsoporis JN, Kastania A, Filippopoulou A, Xiros N, et al: Let-7, Mir-98 and Mir-181 as biomarkers for cancer and schizophrenia. PLoS One. 10(e0123522)2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rizos E, Siafakas N, Koumarianou A, Katsantoni E, Filippopoulou A, Ntounas P, Touloumis Ch, Kastania A and Zoumpourlis V: miR-183 as a molecular and protective biomarker for cancer in schizophrenic subjects. Oncol Rep. 28:2200–2204. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dhiflaoui A and Almawi WY: Mechanisms and clinical implications of microRNA associations and signaling pathways in B-cell acute lymphoblastic leukemia. Gene. 967(149730)2025.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Shenoy A, Danial M and Blelloch RH: Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. EMBO J. 34:1180–1194. 2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Patel K, Kollory A, Takashima A, Sarkar S, Faller DV and Ghosh SK: MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 347:54–64. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL and Lee CG: Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 53:57–66. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu X, Shen Y and Huang TT: Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol Genomics. 45:1206–1214. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Lago SG, Tomasik J, van Rees GF, Rustogi N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B and Bahn S: Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia. Brain Behav Immun. 103:37–49. 2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M and O'Shea JJ: JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 16:843–862. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Al-Samhari MM, Al-Rasheed NM, Al-Rejaie S, Al-Rasheed NM, Hasan IH, Mahmoud AM and Dzimiri N: Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects. Exp Biol Med. 241:509–518. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Long Y, Wang Y, Shen Y, Huang J, Li Y, Wu R and Zhao J: Minocycline and antipsychotics inhibit inflammatory responses in BV-2 microglia activated by LPS via regulating the MAPKs/JAK-STAT signaling pathway. BMC Psychiatry. 23(514)2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Elmaci I and Altinoz MA: Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit Rev Oncol Hematol. 128:96–109. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Shaw V, Srivastava S and Srivastava SK: Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin Cancer Biol. 68:75–83. 2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hu X, Li J, Fu M, Zhao X and Wang W: The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 6(402)2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mosquera FEC, Guevara-Montoya MC, Serna-Ramirez V and Liscano Y: Neuroinflammation and schizophrenia: New therapeutic strategies through psychobiotics, nanotechnology, and artificial intelligence (AI). J Personalized Med. 14(391)2024.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Stachowiak EK, Benson CA, Narla ST, Dimitri A, Chuye LEB, Dhiman S, Harikrishnan K, Elahi S, Freedman D, Brennand KJ, et al: Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl Psychiatry. 7(6)2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK and Martins-de-Souza D: Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell Biosci. 12(189)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kathuria A, Lopez-Lengowski K, Jagtap SS, McPhie D, Perlis RH, Cohen BM and Karmacharya R: Transcriptomic landscape and functional characterization of induced pluripotent stem Cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry. 77:745–754. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sebastian R, Jin K, Pavon N, Bansal R, Potter A, Song Y, Babu J, Gabriel R, Sun Y, Aronow B and Pak C: Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat Commun. 14(3770)2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Ahmed AAA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, et al: Interfacing with the Brain: How nanotechnology can contribute. ACS Nano. 19:10630–10717. 2025.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Rajendran R, Menon KN and Nair SC: Nanotechnology approaches for enhanced CNS drug delivery in the management of schizophrenia. Adv Pharm Bull. 12:490–508. 2022.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Palumbo M and Janowsky A: Delivering MicroRNA-137 to the brain via nanoparticles. FASEB J. 36(fasebj.2022.36.S1.R5716)2022.
|
|
73
|
Radaic A and Martins-de-Souza D: The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine Nanotechnol Biol Med. 28(102222)2020.PubMed/NCBI View Article : Google Scholar
|