|
1
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q,
Wu J and Liu O: The role of epithelial cells in fibrosis:
Mechanisms and treatment. Pharmacol Res. 202(107144)2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
5
|
Li Y, Ren BX, Li HM, Lu T, Fu R and Wu ZQ:
Omeprazole suppresses aggressive cancer growth and metastasis in
mice through promoting Snail degradation. Acta Pharmacol Sin.
43:1816–1828. 2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Zhang B, Ling T, Zhaxi P, Cao Y, Qian L,
Zhao D, Kang W, Zhang W, Wang L, Xu G and Zou X: Proton pump
inhibitor pantoprazole inhibits gastric cancer metastasis via
suppression of telomerase reverse transcriptase gene expression.
Cancer Lett. 452:23–30. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Feng S, Zheng Z, Feng L, Yang L, Chen Z,
Lin Y, Gao Y and Chen Y: Proton pump inhibitor pantoprazole
inhibits the proliferation, self-renewal and chemoresistance of
gastric cancer stem cells via the EMT/β-catenin pathways. Oncol
Rep. 36:3207–3214. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zhang B, Yang Y, Shi X, Liao W, Chen M,
Cheng AS, Yan H, Fang C, Zhang S, Xu G, et al: Proton pump
inhibitor pantoprazole abrogates adriamycin-resistant gastric
cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin
signaling and Epithelial-mesenchymal transition. Cancer Lett.
356:704–712. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Babu D, Mudiraj A, Yadav N, Y B V K C,
Panigrahi M and Prakash Babu P: Rabeprazole has efficacy per se and
reduces resistance to temozolomide in glioma via EMT inhibition.
Cell Oncol (Dordr). 44:889–905. 2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Dooley S, Said HM, Gressner AM, Floege J,
En-Nia A and Mertens PR: Y-box protein-1 is the crucial mediator of
antifibrotic interferon-gamma effects. J Biol Chem. 281:1784–1795.
2006.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Higashi K, Inagaki Y, Fujimori K, Nakao A,
Kaneko H and Nakatsuka I: Interferon-gamma interferes with
transforming growth factor-beta signaling through direct
interaction of YB-1 with Smad3. J Biol Chem. 278:43470–43479.
2003.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lee EJ, Hwang I, Lee JY, Park JN, Kim KC,
Kim I, Moon D, Park H, Lee SY, Kim HS, et al: Hepatic stellate
cell-specific knockout of transcriptional intermediary factor 1γ
aggravates liver fibrosis. J Exp Med. 217(e20190402)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ikeuchi Y, Dadakhujaev S, Chandhoke AS,
Huynh MA, Oldenborg A, Ikeuchi M, Deng L, Bennett EJ, Harper JW,
Bonni A and Bonni S: TIF1γ protein regulates epithelial-mesenchymal
transition by operating as a small ubiquitin-like modifier (SUMO)
E3 ligase for the transcriptional regulator SnoN1. J Biol Chem.
289:25067–25078. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Su Z, Sun Z, Wang Z, Wang S, Wang Y, Jin
E, Li C, Zhao J, Liu Z, Zhou Z, et al: TIF1γ inhibits lung
adenocarcinoma EMT and metastasis by interacting with the TAF15/TBP
complex. Cell Rep. 41(111513)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Matsuzaki K: Smad3 phosphoisoform-mediated
signaling during sporadic human colorectal carcinogenesis. Histol
Histopathol. 21:645–662. 2006.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ooshima A, Park J and Kim SJ:
Phosphorylation status at Smad3 linker region modulates
transforming growth factor-β-induced Epithelial-mesenchymal
transition and cancer progression. Cancer Sci. 110:481–488.
2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
He W, Dorn DC, Erdjument-Bromage H, Tempst
P, Moore MA and Massague J: Hematopoiesis controlled by distinct
TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell.
125:929–941. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li Y, Hao J, Kong X, Yuan W, Shen Y, Hui Z
and Lu X: Rabeprazole mitigates obesity-induced chronic
inflammation and insulin resistance associated with increased
M2-type macrophage polarization. Biochim Biophys Acta Mol Basis
Dis. 1870(167142)2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Chen SQ, Hu BF, Yang YR, He Y, Yue L, Guo
D, Wu TN, Feng XW, Li Q, Zhang W and Wen JG: The protective effect
of rabeprazole on cisplatin-induced apoptosis and necroptosis of
renal proximal tubular cells. Biochem Biophys Res Commun.
612:91–98. 2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Yang F, Li L, Zhou Y, Pan W, Liang X,
Huang L, Huang J, Cheng Y, Geng L, Xu W and Gong S: Rabeprazole
destroyed gastric epithelial barrier function through
FOXF1/STAT3-mediated ZO-1 expression. Clin Exp Pharmacol Physiol.
50:516–526. 2023.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Son M, Park IS, Kim S, Ma HW, Kim JH, Kim
TI, Kim WH, Han J, Kim SW and Cheon JH: Novel Potassium-competitive
acid blocker, tegoprazan, protects against colitis by improving gut
barrier function. Front Immunol. 13(870817)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhou Y, Chen S, Yang F, Zhang Y, Xiong L,
Zhao J, Huang L, Chen P, Ren L, Li H, et al: Rabeprazole suppresses
cell proliferation in gastric epithelial cells by targeting
STAT3-mediated glycolysis. Biochem Pharmacol.
188(114525)2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Niu R, Lan J, Liang D, Xiang L, Wu J,
Zhang X, Li Z, Chen H, Geng L, Xu W, et al: GZMA suppressed
GPX4-mediated ferroptosis to improve intestinal mucosal barrier
function in inflammatory bowel disease. Cell Commun Signal.
22(474)2024.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li P, Wu Y, Deng Z, Samad A, Xi Y, Song J,
Zhang Y, Li J, Zhou YA, Xiong Q and Wu C: Two novel SH3TC2
mutations predispose to Charcot-Marie-Tooth disease type 4C by
mistargeting away from TFRC. Cell Signal.
130(111669)2025.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hesling C, Fattet L, Teyre G, Jury D,
Gonzalo P, Lopez J, Vanbelle C, Morel AP, Gillet G, Mikaelian I and
Rimokh R: Antagonistic regulation of EMT by TIF1γ and Smad4 in
mammary epithelial cells. EMBO Rep. 12:665–672. 2011.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Qi G, Lu G, Yu J, Zhao Y, Wang C, Zhang H
and Xia Q: Up-regulation of TIF1γ by valproic acid inhibits the
epithelial mesenchymal transition in prostate carcinoma through
TGF-β/Smad signaling pathway. Eur J Pharmacol.
860(172551)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yin X, Xu C, Zheng X, Yuan H, Liu M, Qiu Y
and Chen J: SnoN suppresses TGF-β-induced epithelial-mesenchymal
transition and invasion of bladder cancer in a TIF1γ-dependent
manner. Oncol Rep. 36:1535–1541. 2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Sun YM, Wu Y, Li GX, Liang HF, Yong TY, Li
Z, Zhang B, Chen XP, Jin GN and Ding ZY: TGF-β downstream of Smad3
and MAPK signaling antagonistically regulate the viability and
partial epithelial-mesenchymal transition of liver progenitor
cells. Aging (Albany NY). 16:6588–6612. 2024.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zheng M, Li H, Sun L, Cui S, Zhang W, Gao
Y and Gao R: Calcipotriol abrogates TGF-β1/pSmad3-mediated collagen
1 synthesis in pancreatic stellate cells by downregulating RUNX1.
Toxicol Appl Pharmacol. 491(117078)2024.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Xiao J, Liu H, Yao J, Yang S, Shen F, Bu
K, Wang Z, Liu F, Xia N and Yuan Q: The characterization of serum
proteomics and metabolomics across the cancer trajectory in chronic
hepatitis B-related liver diseases. View: 5, 2024.
|
|
31
|
Ito T and Kayama H: Roles of fibroblasts
in the pathogenesis of inflammatory bowel diseases and
IBD-associated fibrosis. Int Immunol. 37:377–392. 2025.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Xie J, Liang X, Xie F, Huang C, Lin Z, Xie
S, Yang F, Zheng F, Geng L, Xu W, et al: Rabeprazole suppressed
gastric intestinal metaplasia through activation of GPX4-mediated
ferroptosis. Front Pharmacol. 15(1409001)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Gu M, Zhang Y, Zhou X, Ma H, Yao H and Ji
F: Rabeprazole exhibits antiproliferative effects on human gastric
cancer cell lines. Oncol Lett. 8:1739–1744. 2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang G, Liu Y, Deng L, Liu H, Deng X, Li
Q, Feng H, Guo Z and Qiu J: Repurposing rabeprazole sodium as an
anti-Clostridium perfringens drug by inhibiting
perfringolysin O. J Appl Microbiol. 134:2023.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Garcia-Torres I, De la Mora-De la Mora I,
Lopez-Velazquez G, Cabrera N, Flores-López LA, Becker I,
Herrera-López J, Hernández R, Pérez-Montfort R and Enríquez-Flores
S: Repurposing of rabeprazole as an anti-Trypanosoma cruzi
drug that targets cellular triosephosphate isomerase. J Enzyme
Inhib Med Chem. 38(2231169)2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Takashima S, Tanaka F, Kawaguchi Y, Usui
Y, Fujimoto K, Nadatani Y, Otani K, Hosomi S, Nagami Y, Kamata N,
et al: Proton pump inhibitors enhance intestinal permeability via
dysbiosis of gut microbiota under stressed conditions in mice.
Neurogastroenterol Motil. 32(e13841)2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Sharaf G, E ME and El-Sayed EK: Augmented
nephroprotective effect of liraglutide and rabeprazole via
inhibition of OCT2 transporter in cisplatin-induced nephrotoxicity
in rats. Life Sci. 321(121609)2023.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Evans CE, Peng Y, Zhu MM, Dai Z, Zhang X
and Zhao YY: Rabeprazole promotes vascular repair and resolution of
Sepsis-induced inflammatory lung injury through HIF-1α. Cells.
11(1425)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Yuki R, Tatewaki T and Yamaguchi N, Aoyama
K, Honda T, Kubota S, Morii M, Manabe I, Kuga T, Tomonaga T and
Yamaguchi N: Desuppression of TGF-β signaling via nuclear
c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610,
and -1048. Oncogene. 38:637–655. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Matsuzaki K: Smad phospho-isoforms direct
context-dependent TGF-β signaling. Cytokine Growth Factor Rev.
24:385–399. 2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhou PZ, Gao L, Wang LW, Zhang YF, Song WL
and Hao YX: Clinical observation of magnesium aluminum carbonate
combined with rabeprazole-based triple therapy in the treatment of
helicobacter pylori-positive gastric ulcer associated with
hemorrhage. Pak J Med Sci. 38:1271–1277. 2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Yuan K, Du X, Dong L, Pan J and Xue W:
Modelling the tumor microenvironment in vitro in prostate cancer:
Current and future perspectives. VIEW:. 5(20240074)2024.
|