Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April 2012 Volume 3 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April 2012 Volume 3 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Therapeutic strategies for head and neck cancer based on p53 status (Review)

  • Authors:
    • Ichiro Ota
    • Noritomo Okamoto
    • Katsunari Yane
    • Akihisa Takahashi
    • Takashi Masui
    • Hiroshi Hosoi
    • Takeo Ohnishi
  • View Affiliations / Copyright

    Affiliations: Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634‑8522, Japan, Department of Otolaryngology, Nara Hospital, Kinki University School of Medicine, Ikoma, Nara 630‑0293, Japan, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371‑8511, Japan, Department of Radiation Oncology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
  • Pages: 585-591
    |
    Published online on: February 3, 2012
       https://doi.org/10.3892/etm.2012.474
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Squamous cell carcinomas of the head and neck (HNSCC) are one of the most common types of cancers worldwide, and despite advances in treatment, they still represent a clinical challenge. Inactivation of one or more components in the p53 signaling pathway is an extremely common event in human neoplasia, including HNSCC. The loss of p53 function is responsible for increased aggressiveness in cancers, while tumor chemoresistance and radioresistance can depend on deleted p53 expression, or on the expression of mutated‑p53 proteins. Thus, consideration and manipulation of the p53 status during HNSCC cancer therapy should be considered. This review discusses the p53 signaling pathways activated by various cellular stresses, including exposure to cancer therapies. The recognition of the p53 status in cancer cells is a significant factor and could provide valuable assistance during the selection of an effective therapeutic approach.
View Figures

Figure 1

View References

1. 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300

2. 

Poeta ML, Manola J, Goldwasser MA, et al: TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 357:2552–2561. 2007. View Article : Google Scholar : PubMed/NCBI

3. 

Vogelstein B, Lane D and Levine AJ: Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI

4. 

Guimaraes DP and Hainaut P: TP53: a key gene in human cancer. Biochimie. 84:83–93. 2002. View Article : Google Scholar : PubMed/NCBI

5. 

Gasco M and Crook T: The p53 network in head and neck cancer. Oral Oncol. 39:222–231. 2003. View Article : Google Scholar : PubMed/NCBI

6. 

Lowe SW: Cancer therapy and p53. Curr Opin Oncol. 7:547–553. 1995. View Article : Google Scholar

7. 

Velculescu VE and El-Deiry WS: Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem. 42:858–868. 1996.PubMed/NCBI

8. 

Ota I, Ohnishi K, Takahashi A, et al: Transfection with mutant p53 gene inhibits heat-induced apoptosis in a head and neck cell line of human squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 47:495–501. 2000. View Article : Google Scholar : PubMed/NCBI

9. 

Takahashi A: Different inducibility of radiation- or heat-induced p53-dependent apoptosis after acute or chronic irradiation in human cultured squamous cell carcinoma cells. Int J Radiat Biol. 77:215–224. 2001. View Article : Google Scholar

10. 

Ohnishi K, Ota I, Takahashi A, Yane K, Matsumoto H and Ohnishi T: Transfection of mutant p53 gene depresses X-ray- or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck. Apoptosis. 7:367–372. 2002. View Article : Google Scholar : PubMed/NCBI

11. 

Asakawa I, Yoshimura H, Takahashi A, et al: Radiation-induced growth inhibition in transplanted human tongue carcinomas with different p53 gene status. Anticancer Res. 22:2037–2043. 2002.PubMed/NCBI

12. 

Tamamoto T, Yoshimura H, Takahashi A, et al: Heat-induced growth inhibition and apoptosis in transplanted human head and neck squamous cell carcinomas with different status of p53. Int J Hyperthermia. 19:590–597. 2003. View Article : Google Scholar : PubMed/NCBI

13. 

Yuki K, Takahashi A, Ota I, et al: Sensitization by glycerol for CDDP-therapy against human cultured cancer cells and tumors bearing mutated p53 gene. Apoptosis. 9:853–859. 2004. View Article : Google Scholar : PubMed/NCBI

14. 

Lane DP and Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature. 278:261–263. 1979. View Article : Google Scholar : PubMed/NCBI

15. 

Nigro JM, Baker SJ, Preisinger AC, et al: Mutations in the p53 gene occur in diverse human tumour types. Nature. 342:705–708. 1989. View Article : Google Scholar : PubMed/NCBI

16. 

Finlay CA, Hinds PW and Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI

17. 

Hollstein M, Sidransky D, Vogelstein B and Harris CC: p53 mutations in human cancers. Science. 253:49–53. 1991. View Article : Google Scholar : PubMed/NCBI

18. 

Efeyan A and Serrano M: p53: guardian of the genome and policeman of the oncogenes. Cell Cycle. 6:1006–1010. 2007. View Article : Google Scholar : PubMed/NCBI

19. 

Slee EA, O'Connor DJ and Lu X: To die or not to die: how does p53 decide? Oncogene. 23:2809–2818. 2004. View Article : Google Scholar : PubMed/NCBI

20. 

Vousden KH and Lu X: Live or let die: the cell's response to p53. Nat Rev Cancer. 2:594–604. 2002.

21. 

Bambara RA and Jessee CB: Properties of DNA polymerases delta and epsilon, and their roles in eukaryotic DNA replication. Biochim Biophys Acta. 1088:11–24. 1991. View Article : Google Scholar : PubMed/NCBI

22. 

El-Deiry WS, Tokino T, Velculescu VE, et al: WAF1, a potential mediator of p53 tumor suppression. Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI

23. 

Deng C, Zhang P, Harper JW, Elledge SJ and Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82:675–684. 1995. View Article : Google Scholar : PubMed/NCBI

24. 

Kastan MB, Zhan Q, el-Deiry WS, et al: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 71:587–597. 1992. View Article : Google Scholar : PubMed/NCBI

25. 

Smith ML, Kontny HU, Zhan Q, Sreenath A, O'Connor PM and Fornace AJ Jr: Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to u.v.-irradiation or cisplatin. Oncogene. 13:2255–2263. 1996.PubMed/NCBI

26. 

Miyashita T and Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI

27. 

Yu J and Zhang L: No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell. 4:248–249. 2003. View Article : Google Scholar : PubMed/NCBI

28. 

Owen-Schaub LB, Zhang W, Cusack JC, et al: Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol. 15:3032–3040. 1995.PubMed/NCBI

29. 

Israeli D, Tessler E, Haupt Y, et al: A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16:4384–4392. 1997. View Article : Google Scholar : PubMed/NCBI

30. 

Haupt S, Louria-Hayon I and Haupt Y: P53 licensed to kill? Operating the assassin. J Cell Biochem. 88:76–82. 2003. View Article : Google Scholar : PubMed/NCBI

31. 

Barak Y and Oren M: Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11:2115–2121. 1992.PubMed/NCBI

32. 

Brooks CL and Gu W: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol. 15:164–171. 2003. View Article : Google Scholar : PubMed/NCBI

33. 

Valenzuela MT, Guerrero R, Nunez MI, et al: PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene. 21:1108–1116. 2002. View Article : Google Scholar : PubMed/NCBI

34. 

Schmidt D and Muller S: Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA. 99:2872–2877. 2002. View Article : Google Scholar : PubMed/NCBI

35. 

Melchior F and Hengst L: SUMO-1 and p53. Cell Cycle. 1:245–249. 2002. View Article : Google Scholar

36. 

Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E and Kastan MB: DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11:3471–3481. 1997. View Article : Google Scholar : PubMed/NCBI

37. 

Shieh SY, Ahn J, Tamai K, Taya Y and Prives C: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14:289–300. 2000.PubMed/NCBI

38. 

Urban G, Golden T, Aragon IV, et al: Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression. J Biol Chem. 278:9747–9753. 2003. View Article : Google Scholar : PubMed/NCBI

39. 

Oda K, Arakawa H, Tanaka T, et al: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102:849–862. 2000. View Article : Google Scholar : PubMed/NCBI

40. 

Saito S, Goodarzi AA, Higashimoto Y, et al: ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem. 277:12491–12494. 2002. View Article : Google Scholar : PubMed/NCBI

41. 

Ohnishi T, Matsumoto H, Takahashi A, Shimura M and Majima HJ: Accumulation of mutant p53 and hsp72 by heat treatment, and their association in a human glioblastoma cell line. Int J Hyperthermia. 11:663–671. 1995. View Article : Google Scholar : PubMed/NCBI

42. 

Matsumoto H, Wang X and Ohnishi T: Binding between wild-type p53 and hsp72 accumulated after UV and gamma-ray irradiation. Cancer Lett. 92:127–133. 1995. View Article : Google Scholar : PubMed/NCBI

43. 

Petros AM, Gunasekera A, Xu N, Olejniczak ET and Fesik SW: Defining the p53 DNA-binding domain/Bcl-x(L)-binding interface using NMR. FEBS Lett. 559:171–174. 2004. View Article : Google Scholar : PubMed/NCBI

44. 

Takahashi A, Ota I, Tamamoto T, et al: p53-dependent hyper-thermic enhancement of tumour growth inhibition by X-ray or carbon-ion beam irradiation. Int J Hyperthermia. 19:145–153. 2003. View Article : Google Scholar : PubMed/NCBI

45. 

Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA and Roth JA: Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst. 86:1458–1462. 1994. View Article : Google Scholar : PubMed/NCBI

46. 

Scardigli R, Bossi G, Blandino G, Crescenzi M, Soddu S and Sacchi A: Expression of exogenous wt-p53 does not affect normal hematopoiesis: implications for bone marrow purging. Gene Ther. 4:1371–1378. 1997. View Article : Google Scholar : PubMed/NCBI

47. 

Bossi G, Mazzaro G, Porrello A, Crescenzi M, Soddu S and Sacchi A: Wild-type p53 gene transfer is not detrimental to normal cells in vivo: implications for tumor gene therapy. Oncogene. 23:418–425. 2004. View Article : Google Scholar : PubMed/NCBI

48. 

Vecil GG and Lang FF: Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J Neurooncol. 65:237–246. 2003. View Article : Google Scholar : PubMed/NCBI

49. 

Pearson S, Jia H and Kandachi K: China approves first gene therapy. Nat Biotechnol. 22:3–4. 2004. View Article : Google Scholar : PubMed/NCBI

50. 

Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G and Sacchi A: Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 25:304–309. 2006.PubMed/NCBI

51. 

Bischoff JR, Kirn DH, Williams A, et al: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 274:373–376. 1996. View Article : Google Scholar : PubMed/NCBI

52. 

Bossi G and Sacchi A: Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck. 29:272–284. 2007. View Article : Google Scholar : PubMed/NCBI

53. 

Ohnishi K, Ota I, Takahashi A and Ohnishi T: Glycerol restores p53-dependent radiosensitivity of human head and neck cancer cells bearing mutant p53. Br J Cancer. 83:1735–1739. 2000. View Article : Google Scholar : PubMed/NCBI

54. 

Welch WJ and Brown CR: Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1:109–115. 1996. View Article : Google Scholar : PubMed/NCBI

55. 

Thomas PJ, Qu BH and Pedersen PL: Defective protein folding as a basis of human disease. Trends Biochem Sci. 20:456–459. 1995. View Article : Google Scholar : PubMed/NCBI

56. 

Ohnishi K, Ota I, Yane K, et al: Glycerol as a chemical chaperone enhances radiation-induced apoptosis in anaplastic thyroid carcinoma cells. Mol Cancer. 1:42002. View Article : Google Scholar

57. 

Imai Y, Ohnishi K, Yasumoto J, et al: Glycerol enhances radio-sensitivity in a human oral squamous cell carcinoma cell line (Ca9-22) bearing a mutant p53 gene via Bax-mediated induction of apoptosis. Oral Oncol. 41:631–636. 2005. View Article : Google Scholar : PubMed/NCBI

58. 

Ohnishi T, Ohnishi K and Takahashi A: Glycerol restores heat-induced p53-dependent apoptosis of human glioblastoma cells bearing mutant p53. BMC Biotechnol. 2:62002. View Article : Google Scholar : PubMed/NCBI

59. 

Yuki K, Takahashi A, Ota I, et al: Glycerol enhances CDDP-induced growth inhibition of thyroid anaplastic carcinoma tumor carrying mutated p53 gene. Oncol Rep. 11:821–824. 2004.PubMed/NCBI

60. 

Bargonetti J, Friedman PN, Kern SE, Vogelstein B and Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell. 65:1083–1091. 1991. View Article : Google Scholar : PubMed/NCBI

61. 

Cho Y, Gorina S, Jeffrey PD and Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 265:346–355. 1994. View Article : Google Scholar : PubMed/NCBI

62. 

Halazonetis TD and Kandil AN: Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12:5057–5064. 1993.PubMed/NCBI

63. 

Hupp TR, Meek DW, Midgley CA and Lane DP: Regulation of the specific DNA binding function of p53. Cell. 71:875–886. 1992. View Article : Google Scholar : PubMed/NCBI

64. 

Hupp TR and Lane DP: Allosteric activation of latent p53 tetramers. Curr Biol. 4:865–875. 1994. View Article : Google Scholar : PubMed/NCBI

65. 

Hupp TR, Sparks A and Lane DP: Small peptides activate the latent sequence-specific DNA binding function of p53. Cell. 83:237–245. 1995. View Article : Google Scholar : PubMed/NCBI

66. 

Hupp TR, Meek DW, Midgley CA and Lane DP: Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 21:3167–3174. 1993. View Article : Google Scholar : PubMed/NCBI

67. 

Abarzua P, LoSardo JE, Gubler ML, et al: Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene. 13:2477–2482. 1996.PubMed/NCBI

68. 

Selivanova G, Iotsova V, Okan I, et al: Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 3:632–638. 1997. View Article : Google Scholar : PubMed/NCBI

69. 

Kim AL, Raffo AJ, Brandt-Rauf PW, et al: Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem. 274:34924–34931. 1999. View Article : Google Scholar : PubMed/NCBI

70. 

Ohnishi K, Inaba H, Yasumoto J, Yuki K, Takahashi A and Ohnishi T: C-terminal peptides of p53 molecules enhance radiation-induced apoptosis in human mutant p53 cancer cells. Apoptosis. 9:591–597. 2004. View Article : Google Scholar : PubMed/NCBI

71. 

Selivanova G, Ryabchenko L, Jansson E, Iotsova V and Wiman KG: Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol. 19:3395–3402. 1999.PubMed/NCBI

72. 

Foster BA, Coffey HA, Morin MJ and Rastinejad F: Pharmacological rescue of mutant p53 conformation and function. Science. 286:2507–2510. 1999. View Article : Google Scholar : PubMed/NCBI

73. 

Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J and el-Deiry WS: The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 1:47–55. 2002. View Article : Google Scholar : PubMed/NCBI

74. 

Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG and Fersht AR: Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene. 21:2119–2129. 2002. View Article : Google Scholar : PubMed/NCBI

75. 

Bykov VJ, Issaeva N, Shilov A, et al: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI

76. 

Peng Y, Li C, Chen L, Sebti S and Chen J: Rescue of mutant p53 transcription function by ellipticine. Oncogene. 22:4478–4487. 2003. View Article : Google Scholar : PubMed/NCBI

77. 

Vassilev LT, Vu BT, Graves B, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI

78. 

Blakely EA and Kronenberg A: Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness. Radiat Res. 150:S126–S145. 1998. View Article : Google Scholar : PubMed/NCBI

79. 

Guida P, Vazquez ME and Otto S: Cytotoxic effects of low- and high-LET radiation on human neuronal progenitor cells: induction of apoptosis and TP53 gene expression. Radiat Res. 164:545–551. 2005. View Article : Google Scholar : PubMed/NCBI

80. 

Demizu Y, Kagawa K, Ejima Y, et al: Cell biological basis for combination radiotherapy using heavy-ion beams and high-energy X-rays. Radiother Oncol. 71:207–211. 2004. View Article : Google Scholar : PubMed/NCBI

81. 

Debus J, Jackel O, Kraft G and Wannenmacher M: Is there a role for heavy ion beam therapy? Recent Results Cancer Res. 150:170–182. 1998. View Article : Google Scholar : PubMed/NCBI

82. 

Takahashi A, Matsumoto H, Yuki K, et al: High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. Int J Radiat Oncol Biol Phys. 60:591–597. 2004. View Article : Google Scholar : PubMed/NCBI

83. 

Takahashi A, Matsumoto H, Furusawa Y, Ohnishi K, Ishioka N and Ohnishi T: Apoptosis induced by high-LET radiations is not affected by cellular p53 gene status. Int J Radiat Biol. 81:581–586. 2005. View Article : Google Scholar : PubMed/NCBI

84. 

Takahashi A, Ohnishi K, Wang X, et al: The dependence of p53 on the radiation enhancement of thermosensitivity at different LET. Int J Radiat Oncol Biol Phys. 47:489–494. 2000. View Article : Google Scholar : PubMed/NCBI

85. 

Yamakawa N, Takahashi A, Mori E, et al: High LET radiation enhances apoptosis in mutated p53 cancer cells through caspase-9 activation. Cancer Sci. 99:1455–1460. 2008. View Article : Google Scholar : PubMed/NCBI

86. 

Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL and Bedford JS: Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation. Cancer Res. 62:6400–6404. 2002.

87. 

Collis SJ, Swartz MJ, Nelson WG and DeWeese TL: Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res. 63:1550–1554. 2003.PubMed/NCBI

88. 

Tauchi H, Kobayashi J, Morishima K, et al: Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature. 420:93–98. 2002. View Article : Google Scholar : PubMed/NCBI

89. 

Sakamoto S, Iijima K, Mochizuki D, et al: Homologous recombination repair is regulated by domains at the N- and C-terminus of NBS1 and is dissociated with ATM functions. Oncogene. 26:6002–6009. 2007. View Article : Google Scholar : PubMed/NCBI

90. 

Tauchi H, Matsuura S, Kobayashi J, Sakamoto S and Komatsu K: Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene. 21:8967–8980. 2002. View Article : Google Scholar : PubMed/NCBI

91. 

Nelms BE, Maser RS, MacKay JF, Lagally MG and Petrini JH: In situ visualization of DNA double-strand break repair in human fibroblasts. Science. 280:590–592. 1998. View Article : Google Scholar : PubMed/NCBI

92. 

Zhang Y, Lim CU, Williams ES, et al: NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells. Cancer Res. 65:5544–5553. 2005. View Article : Google Scholar : PubMed/NCBI

93. 

Lee SJ, Dimtchev A, Lavin MF, Dritschilo A and Jung M: A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-kappaB. Oncogene. 17:1821–1826. 1998. View Article : Google Scholar : PubMed/NCBI

94. 

Orlowski RZ and Baldwin AS Jr: NF-kappaB as a therapeutic target in cancer. Trends Mol Med. 8:385–389. 2002. View Article : Google Scholar : PubMed/NCBI

95. 

Yamagishi N, Miyakoshi J and Takebe H: Enhanced radiosensitivity by inhibition of nuclear factor kappa B activation in human malignant glioma cells. Int J Radiat Biol. 72:157–162. 1997. View Article : Google Scholar : PubMed/NCBI

96. 

Habraken Y, Jolois O and Piette J: Differential involvement of the hMRE11/hRAD50/NBS1 complex, BRCA1 and MLH1 in NF-kappaB activation by camptothecin and X-ray. Oncogene. 22:6090–6099. 2003. View Article : Google Scholar : PubMed/NCBI

97. 

LaCasse EC, Baird S, Korneluk RG and MacKenzie AE: The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 17:3247–3259. 1998. View Article : Google Scholar : PubMed/NCBI

98. 

Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A and Ohnishi T: siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res. 166:454–462. 2006. View Article : Google Scholar : PubMed/NCBI

99. 

Ohnishi K, Scuric Z, Yau D, et al: Heat-induced phosphorylation of NBS1 in human skin fibroblast cells. J Cell Biochem. 99:1642–1650. 2006. View Article : Google Scholar : PubMed/NCBI

100. 

Okamoto N, Takahashi A, Ota I, et al: siRNA targeted for NBS1 enhances heat sensitivity in human anaplastic thyroid carcinoma cells. Int J Hyperthermia. 27:297–304

101. 

Ohnishi K, Nagata Y, Takahashi A, Taniguchi S and Ohnishi T: Effective enhancement of X-ray-induced apoptosis in human cancer cells with mutated p53 by siRNA targeting XIAP. Oncol Rep. 20:57–61. 2008.PubMed/NCBI

102. 

Nicholson KM and Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14:381–395. 2002. View Article : Google Scholar : PubMed/NCBI

103. 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI

104. 

Bjornsti MA and Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 4:335–348. 2004. View Article : Google Scholar : PubMed/NCBI

105. 

Wang F, Arun P, Friedman J, Chen Z and Van Waes C: Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol. 9:389–395. 2009. View Article : Google Scholar : PubMed/NCBI

106. 

Raimondi AR, Molinolo A and Gutkind JS: Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res. 69:4159–4166. 2009. View Article : Google Scholar : PubMed/NCBI

107. 

Shaw M, Cohen P and Alessi DR: The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J. 336:241–246. 1998.

108. 

Rosenzweig KE, Youmell MB, Palayoor ST and Price BD: Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res. 3:1149–1156. 1997.

109. 

Gupta AK, Cerniglia GJ, Mick R, et al: Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys. 56:846–853. 2003. View Article : Google Scholar : PubMed/NCBI

110. 

Ohnishi K, Yasumoto J, Takahashi A and Ohnishi T: LY294002, an inhibitor of PI-3K, enhances heat sensitivity independently of p53 status in human lung cancer cells. Int J Oncol. 29:249–253. 2006.PubMed/NCBI

111. 

Guertin DA and Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 12:9–22. 2007. View Article : Google Scholar

112. 

Hay N and Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 18:1926–1945. 2004. View Article : Google Scholar

113. 

Beuvink I, Boulay A, Fumagalli S, et al: The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 120:747–759. 2005. View Article : Google Scholar : PubMed/NCBI

114. 

Majumder PK, Febbo PG, Bikoff R, et al: mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 10:594–601. 2004. View Article : Google Scholar

115. 

Boulay A, Zumstein-Mecker S, Stephan C, et al: Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 64:252–261. 2004. View Article : Google Scholar

116. 

Mabuchi S, Altomare DA, Cheung M, et al: RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res. 13:4261–4270. 2007. View Article : Google Scholar

117. 

Cao C, Subhawong T, Albert JM, et al: Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 66:10040–10047. 2006. View Article : Google Scholar : PubMed/NCBI

118. 

Albert JM, Kim KW, Cao C and Lu B: Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 5:1183–1189. 2006. View Article : Google Scholar : PubMed/NCBI

119. 

Nagata Y, Takahashi A, Ohnishi K, et al: Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status. Int J Oncol. 37:1001–1010

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ota I, Okamoto N, Yane K, Takahashi A, Masui T, Hosoi H and Ohnishi T: Therapeutic strategies for head and neck cancer based on p53 status (Review). Exp Ther Med 3: 585-591, 2012.
APA
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., & Ohnishi, T. (2012). Therapeutic strategies for head and neck cancer based on p53 status (Review). Experimental and Therapeutic Medicine, 3, 585-591. https://doi.org/10.3892/etm.2012.474
MLA
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., Ohnishi, T."Therapeutic strategies for head and neck cancer based on p53 status (Review)". Experimental and Therapeutic Medicine 3.4 (2012): 585-591.
Chicago
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., Ohnishi, T."Therapeutic strategies for head and neck cancer based on p53 status (Review)". Experimental and Therapeutic Medicine 3, no. 4 (2012): 585-591. https://doi.org/10.3892/etm.2012.474
Copy and paste a formatted citation
x
Spandidos Publications style
Ota I, Okamoto N, Yane K, Takahashi A, Masui T, Hosoi H and Ohnishi T: Therapeutic strategies for head and neck cancer based on p53 status (Review). Exp Ther Med 3: 585-591, 2012.
APA
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., & Ohnishi, T. (2012). Therapeutic strategies for head and neck cancer based on p53 status (Review). Experimental and Therapeutic Medicine, 3, 585-591. https://doi.org/10.3892/etm.2012.474
MLA
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., Ohnishi, T."Therapeutic strategies for head and neck cancer based on p53 status (Review)". Experimental and Therapeutic Medicine 3.4 (2012): 585-591.
Chicago
Ota, I., Okamoto, N., Yane, K., Takahashi, A., Masui, T., Hosoi, H., Ohnishi, T."Therapeutic strategies for head and neck cancer based on p53 status (Review)". Experimental and Therapeutic Medicine 3, no. 4 (2012): 585-591. https://doi.org/10.3892/etm.2012.474
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team