|
1
|
Klapper M, Nenov S, Haschick R, Müller K
and Müllen K: Oil-in-oil emulsions: a unique tool for the formation
of polymer nanoparticles. Acc Chem Res. 41:1190–1201. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Morimoto Y, Kobayashi N, Shinohara N,
Myojo T, Tanaka I and Nakanishi J: Hazard assessments of
manufactured nanomaterials. J Occup Health. 52:325–334. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Scuri M, Chen BT, Castranova V, et al:
Effects of titanium dioxide nanoparticle exposure on neuroimmune
responses in rat airways. J Toxicol Environ Health A. 73:1353–1369.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Buffle J: The key role of environmental
colloids/nanoparticles for the sustainability of life. Environ
Chem. 3:155–158. 2006. View Article : Google Scholar
|
|
5
|
Ng C, Li JJ, Bay B and Yung LL: Current
studies into the genotoxic effects of nanomaterials. J Nucleic
Acids. 2010:9478592010.PubMed/NCBI
|
|
6
|
Rushton EK, Jiang J, Leonard SS, et al:
Concept of assessing nanoparticle hazards considering nanoparticle
dosemetric and chemical/biological response metrics. J Toxicol
Environ Health A. 73:445–461. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Buzea C, Pacheco II and Robbie K:
Nanomaterials and nanoparticles: sources and toxicity.
Biointerphases. 2:MR17–MR71. 2007.PubMed/NCBI
|
|
8
|
LeBlanc AJ, Cumpston JL, Chen BT, Frazer
D, Castranova V and Nurkiewicz TR: Nanoparticle inhalation impairs
endothelium-dependent vasodilation in subepicardial arterioles. J
Toxicol Environ Health A. 72:1576–1584. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Oberdörster G: Pulmonary effects of
inhaled ultrafine particles. Int Arch Occup Environ Health. 74:1–8.
2001.
|
|
10
|
Oberdörster G, Ferin J and Lehnert BE:
Correlation between particle size, in vivo particle persistence,
and lung injury. Environ Health Perspect. 102(Suppl 5): 173–179.
1994.PubMed/NCBI
|
|
11
|
Liang G, Pu Y, Yin L, et al: Influence of
different sizes of titanium dioxide nanoparticles on hepatic and
renal functions in rats with correlation to oxidative stress. J
Toxicol Environ Health A. 72:740–745. 2009. View Article : Google Scholar
|
|
12
|
Zhao J, Bowman L, Zhang X, et al: Titanium
dioxide (TiO2) nanoparticles induce JB6 cell apoptosis
through activation of the caspase-8/Bid and mitochondrial pathways.
J Toxicol Environ Health A. 72:1141–1149. 2009.
|
|
13
|
Gulumian M and Vallyathan V: Nanoparticles
and potential human health implications: past and future
directions. Preface J Toxicol Environ Health A. 73:339–340.
2010.PubMed/NCBI
|
|
14
|
Huang YC, Karoly ED, Dailey LA, et al:
Comparison of gene expression profiles induced by coarse, fine, and
ultrafine particulate matter. J Toxicol Environ Health A.
74:296–312. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ghio AJ, Carraway MS and Madden MC:
Composition of air pollution particles and oxidative stress in
cells, tissues, and living systems. J Toxicol Environ Health B Crit
Rev. 15:1–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shi X, Castranova V, Halliwell B and
Vallyathan V: Reactive oxygen species and silica-induced
carcinogenesis. J Toxicol Environ Health B Crit Rev. 1:181–197.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fahmy B and Cormier SA: Copper oxide
nanoparticles induce oxidative stress and cytotoxicity in airway
epithelial cells. Toxicol In Vitro. 23:1365–1371. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lin W, Stayton I, Huang Y, Zhou XD and Ma
Y: Cytotoxicity and cell membrane depolarization induced by
aluminum oxide nanoparticles in human lung epithelial cells A549.
Toxicol Environ Chem. 90:983–996. 2008. View Article : Google Scholar
|
|
20
|
Lin W, Xu Y, Huang CC, Ma Y, Shannon KB,
Chen DR and Huang YW: Toxicity of nano- and micro-sized ZnO
particles in human lung epithelial cells. J Nanoparticle Res.
11:25–39. 2009. View Article : Google Scholar
|
|
21
|
Lin W, Huang YW, Zhou XD and Ma Y: In
vitro toxicity of silica nanoparticles in human lung cancer cells.
Toxicol Appl Pharmacol. 217:252–259. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lin W, Huang YW, Zhou XD and Ma Y:
Toxicity of cerium oxide nanoparticles in human lung cancer cells.
Int J Toxicol. 25:451–457. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Limbach LK, Wick P, Manser P, Grass RN,
Bruinink A and Stark WJ: Exposure of engineered nanoparticles to
human lung epithelial cells: Influence of chemical composition and
catalytic activity on oxidative stress. Environ Sci Technol.
41:4158–4163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tabet L, Bussy C, Amara N, et al: Adverse
effects of industrial multiwalled carbon nanotubes on human
pulmonary cells. J Toxicol Environ Health A. 72:60–73. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sohaebuddin SK, Thevenot PT, Baker D,
Eaton JW and Tang L: Nanomaterial cytotoxicity is composition,
size, and cell type dependent. Part Fibre Toxicol. 7:222010.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhao J and Castranova V: Toxicology of
nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit
Rev. 14:593–632. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bhattacharya K, Cramer H, Albrecht C, et
al: Vanadium pentoxide-coated ultrafine titanium dioxide particles
induce cellular damage and micronucleus formation in V79 cells. J
Toxicol Environ Health A. 71:976–980. 2008. View Article : Google Scholar
|
|
28
|
Wang K, Xu JJ and Chen HY: A novel glucose
biosensor based on the nanoscaled cobalt phthalocyanine-glucose
oxidase biocomposite. Biosens Bioelectron. 20:1388–1396. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Martens JWD and Peeters WL: Anisotropy in
cobalt-ferrite thin films. J Magn Magn Mater. 61:21–23. 1986.
View Article : Google Scholar
|
|
30
|
Bouchard LS, Anwar MS, Liu GL, Hann B, Xie
ZH, Gray JW, Wang X, Pines A and Chen FF: Picomolar sensitivity MRI
and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad
Sci USA. 106:4085–4089. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Seo WS, Lee JH, Sun X, Suzuki Y, Mann D,
Liu Z, Terashima M, Yang PC, McConnel MV, Nishimura DG and Dai H:
FeCo/graphitic-shell nanocrystals as advanced
magnetic-resonance-imaging and near-infrared agents. Nat Mater.
5:971–976. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sadjadi MS, Pourahmad A, Sohrabnezhad Sh
and Zare K: Formation of NiS and CoS semiconductor nanoparticles
inside mordenite-type zeolite. Mater Lett. 61:2923–2926. 2006.
View Article : Google Scholar
|
|
33
|
Florencio L, Field JA and Lettinga G:
Importance of cobalt for individual trophic groups in an anaerobic
methanol-degrading consortium. Appl Environ Microbiol. 60:227–234.
1994.PubMed/NCBI
|
|
34
|
Council INI: Wastewater treatment using
semiconductor nanocomposites. http://www.nanowerk.com/news/newsid=11840.phpuri.
2011
|
|
35
|
Lison D, Lauwerys R, Demedts M and Nemery
B: Experimental research into the pathogenesis of cobalt/hard metal
lung disease. Eur Respir J. 9:1024–1028. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lison D, De Boeck M, Verougstraete V and
Kirsch-Volders M: Update on the genotoxicity and carcinogenicity of
cobalt compounds. Occup Environ Med. 58:619–625. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Domingo JL: Metal-induced developmental
toxicity in mammals: a review. J Toxicol Environ Health.
42:123–141. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kuo CY, Wong RH, Lin JY, Lai JC and Lee H:
Accumulation of chromium and nickel metals in lung tumors from lung
cancer patients in Taiwan. J Toxicol Environ Health A.
69:1337–1344. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
De Boeck M, Kirsch-Volders M and Lison D:
Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res.
533:135–152. 2003.PubMed/NCBI
|
|
40
|
Beyersmann D and Hartwig A: The genetic
toxicology of cobalt. Toxicol Appl Pharmacol. 115:137–145. 1992.
View Article : Google Scholar
|
|
41
|
Ponti J, Sabbioni E, Munaro B, Broggi F,
Marmorato P, Franchini F, Colognato R and Rossi F: Genotoxicity and
morphological transformation induced by cobalt nanoparticles and
cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts.
Mutagenesis. 24:439–445. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Colognato R, Bonelli A, Ponti J, Farina M,
Bergamaschi E, Sabbioni E and Migliore L: Comparative genotoxicity
of cobalt nanoparticles and ions in human peripheral leukocytes in
vitro. Mutagenesis. 23:377–382. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kwon Y, Xia Z, Glyn-Jones S, Beard D, Gill
HS and Murray D: Dose-dependent cytotoxicity of clinically relevant
cobalt nanoparticles and ions on macrophages in vitro. Biomed
Mater. 4:0250182009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Peters K, Unger RE, Gatti AM, Sabbioni E,
Tsaryk R and Kirkpatrick CJ: Metallic nanoparticles exhibit
paradoxical effects on oxidative stress and pro-inflammatory
response in endothelial cells in vitro. Int J Immunopathol
Pharmacol. 20:685–695. 2007.PubMed/NCBI
|
|
45
|
Papageorgiou I, Brown C, Schins R, Singh
S, Newson R, Davis S, Fisher J, Ingham E and Case CP: The effect of
nano- and micron-sized particles of cobalt-chromium alloy on human
fibroblasts in vitro. Biomaterials. 28:2946–2958. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Figgitt M, Newson R, Leslie IJ, Fisher J,
Ingham E and Case CP: The genotoxicity of physiological
concentrations of chromium (Cr(III) and Cr(VI)) and cobalt
(Co(II)): an in vitro study. Mutat Res. 688:53–61. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tsaousi A, Jones E and Case CP: The in
vitro genotoxicity of orthopaedic ceramic
(Al2O3) and metal (CoCr alloy) particles.
Mutat Res. 697:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bhabra G, Sood A, Fisher B, Cartwright L,
Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis
SA, et al: Nanoparticles can cause DNA damage across a cellular
barrier. Nat Nanotechnol. 4:876–883. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Parry MC, Bhabra G, Sood A, Machado F,
Cartwright L, Saunders M, Ingham E, Newson R, Blom AW and Case CP:
Thresholds for indirect DNA damage across cellular barriers for
orthoaedic biomaterials. Biomaterials. 31:4477–4483. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Grassian VH, Adamcakova-Dodd A, Pettibone
JM, O’shaughnessy PT and Thorne PS: Inflammatory response of mice
to manufactured titanium dioxide nanoparticles: comparison of size
effects through different exposure routes. Nanotoxicology.
1:211–226. 2007. View Article : Google Scholar
|
|
51
|
Monteiller C, Tran L, MacNee W, Faux S,
Jones A, Miller B and Donaldson K: The pro-inflammatory effects of
low-toxicity low-solubility particles, nanoparticles and fine
particles, on epithelial cells in vitro: the role of surface area.
Occup Environ Med. 64:609–615. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sayes CM, Reed KL and Warheit DB:
Assessing toxicity of fine and nanoparticles: comparing in vitro
measurements to in vivo pulmonary toxicity profiles. Toxicol Sci.
97:163–180. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Park E and Park K: Oxidative stress and
pro-inflammatory responses induced by silica nanoparticles in vivo
and in vitro. Toxicol Lett. 184:18–25. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Carlson C, Hussain SM, Schrand AM,
Braydich-Stolle LK, Hess KL, Jones RL and Schlager JJ: Unique
cellular interaction of silver nanoparticles: size-dependent
generation of reactive oxygen species. J Phys Chem B.
112:13608–13619. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Guildford AL, Poletti T, Osbourne LH, Di
Cerbo A, Gatti AM and Santin M: Nanoparticles of a different source
induce different patterns of activation in key biochemical and
cellular components of the host response. J R Soc Interface.
6:1213–1221. 2009.PubMed/NCBI
|
|
56
|
Singh N, Manshian B, Jenkins GJ, Griffiths
SM, Williams PM, Maffeis TG, Wright CJ and Doak SH:
NanoGenotoxicology: the DNA damaging potential of engineered
nanomaterials. Biomaterials. 30:3891–3894. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang H and Cho CH: Effect of NF-κB
signaling on apoptosis in chronic inflammation-associated
carcinogenesis. Curr Cancer Drug Targets. 10:593–599. 2010.
|
|
58
|
Papis E, Rossi F, Raspanti M, Dalle-Donne
I, Colombo G, Milzani A, Bernadini G and Gornati R: Engineered
cobalt oxide nanoparticles readily enter cells. Toxicol Lett.
189:253–259. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Anard D, Kirsch-Volders M, Elhajouji A,
Belpaeme K and Lison D: In vitro genotoxic effects of hard metal
particles assessed by alkaline single cell gel and elution assays.
Carcinogenesis. 18:177–184. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ding M, Kisin ER, Zhao J, Bowman L, Lu Y,
Jiang B, Leonard S, Vallyathan V, Castranova V, Murrray AR, et al:
Size-dependent effects of tungsten carbide-cobalt particles on
oxygen radical production and activation of cell signaling pathways
in murine epidermal cells. Toxicol Appl Pharmacol. 241:260–268.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Busch W, Kühnel D, Schirmer K and Scholz
S: Tungsten carbide cobalt nanoparticles exert hypoxia-like effects
on the gene expression level in human keratinocytes. BMC Genomics.
11:652010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang XD, Zhao J, Bowman L, Shi X,
Castranova V and Ding M: Tungsten carbide-cobalt particles activate
Nrf2 and its downstream target genes in JB6 cells possibly by ROS
generation. J Environ Pathol Toxicol Oncol. 29:31–40. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pershina AG, Sazonov AE, Novikov DV, et
al: Study of DNA interaction with cobalt ferrite nanoparticles. J
Nanosci Nanotechnol. 11:2673–2677. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hansen T, Clermont G, Alves A, Eloy R,
Brochhausen C, Boutrand JP, Gatti AM and Kirkpatrick CJ: Biological
tolerance of different materials in bulk and nanoparticulate form
in a rat model: sarcoma development by nanoparticles. J R Soc
Interface. 3:767–775. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ban I, Stergar J, Drofenik M, Ferk G and
Makovec D: Synthesis of copper-nickel nanoparticles prepared by
mechanical milling for use in magnetic hyperthermia. J Magn Magn
Mater. 323:2254–2258. 2011. View Article : Google Scholar
|
|
66
|
Chou KS, Chang CS and Huang KC: Study on
the characteristics of nanosized nickel particles using sodium
borohydride to promote conve. AZojomo. 3:2007. View Article : Google Scholar
|
|
67
|
Zhu FQ, Chern GW, Tchernyshyov O, Zhu XC,
Zhu JG and Chien CL: Magnetic bistability and controllable reversal
of asymmetric ferromagnetic nanorings. Phys Rev Lett.
96:0272052006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao J, Shi X, Castranova V and Ding M:
Occupational toxicology of nickel and nickel compounds. J Environ
Pathol Toxicol Oncol. 28:177–208. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cameron KS, Buchner V and Tchounwou PB:
Exploring the molecular mechanisms of nickel-induced genotoxicity
and carcinogenicity: a literature review. Rev Environ Health.
26:81–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kasprzak KS, Sunderman FW Jr and Salnikow
K: Nickel carcinogenesis. Mutat Res. 533:67–97. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kornick R and Zug KA: Nickel. Dermatitis.
19:3–8. 2008.
|
|
72
|
Tang X, Li C and Wu W: Research progress
on carcinogenicity of nickel and its compounds. Chinese Journal of
Industrial Medicine. 4:276–279. 2010.(In Chinese).
|
|
73
|
Oller AR: Respiratory carcinogenicity
assessment of soluble nickel compounds. Environ Health Perspect.
110(Suppl 5): 841–844. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Seilkop SK and Oller AR: Respiratory
cancer risks associated with low-level nickel exposure: an
integrated assessment based on animal, epidemiological, and
mechanistic data. Regul Toxicol Pharmacol. 37:173–190. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Grimsrud TK, Berge SR, Resmann F, Norseth
T and Andersen A: Assessment of historical exposures in a nickel
refinery in Norway. Scand J Work Environ Health. 26:338–345. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Goodman JE, Prueitt RL, Thakali S and
Oller AR: The nickel ion bioavailability model of the carcinogenic
potential of nickel-containing substances in the lung. Crit Rev
Toxicol. 41:142–174. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Costa M, Yan Y, Zhao D and Sainikow K:
Molecular mechanisms of nickel carcinogenesis: gene silencing by
nickel delivery to the nucleus and gene activation/inactivation by
nickel-induced cell signaling. J Environ Monit. 5:222–223. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang Q, Kusaka Y, Zhu X, et al:
Comparative toxicity of standard nickel and ultrafine nickel in
lung after intratracheal instillation. J Occup Health. 45:23–30.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kyono H, Kusaka Y, Homma K, Kubota H and
Endo-Ichikawa Y: Reversible lung lesions in rats due to short-term
exposure to ultrafine cobalt particles. Ind Health. 30:103–118.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Maynard AD and Kuempel ED: Airborne
nanostructured particles and occupational health. J Nanopart Res.
7:587–614. 2005. View Article : Google Scholar
|
|
81
|
NIPERA: Safe Use of Nickel in the
Workplace - Incorporating European Nickel Risk Assessment Outcomes.
A guide for Health Maintenance of Workers Exposed to Nickel, Its
Compounds and Alloys - Health guide. 3rd edition. Nickel Producers
Environmental Research Association; Durham, NC, USA: 2008
|
|
82
|
Park S, Lee YK, Jung M, Kim KH, Chung N,
Ahn EK, Lim Y and Lee KH: Cellular toxicity of various inhalable
nanoparticles on human alveolar epithelial cells. Inhal Toxicol.
19(Suppl 1): 59–65. 2007. View Article : Google Scholar
|
|
83
|
Nagata S: Apoptotic DNA fragmentation. Exp
Cell Res. 256:12–18. 2000. View Article : Google Scholar
|
|
84
|
Yang H, Liu C, Yang D, Zhang H and Xi Z:
Comparative study of cytotoxicity, oxidative stress and
genotoxicity induced by four typical nanomaterials: the role of
particle size, shape and composition. J Appl Toxicol. 29:69–78.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pujalté I, Passagne I, Daculsi R,
Brouillaud B, Rémy M, Tréguer M, DePortal C, Ohayon-Courtès C and
L’Azou B: Toxicity and oxidative stress induced by metallic
nanoparticles in renal cells. Proceeding of the Annual Meeting of
the French Society of Toxicology 2010. Paris, 2010 (Available at:
http://www.sftox.com/congres/sft2010/posters/index.htmluri).
|
|
86
|
Zhao J, Bowman L, Zhang X, Shi X, Jiang B,
Castranova V and Ding M: Metallic nickel nano- and fine particles
induce JB6 cell apoptosis through a caspase-8/AIF mediated
cytochrome c-independent pathway. J Nanobiotechnology. 7:22009.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ryter SW, Kim HP, Hoetzel A, et al:
Mechanisms of cell death in oxidative stress. Antioxid Redox
Signal. 9:49–89. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Guo D, Wu C, Li X, Jiang H, Wang X and
Chen B: In vitro cellular uptake and cytotoxic effect of
functionalized nickel nanoparticles on leukemia cancer cells. J
Nanosci Nanotechnol. 8:2301–2307. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Pietruska JR, Liu X, Smith A, McNeil K,
Weston P, Zhitkovich A, Hurt R and Kane AB: Bioavailability,
intracellular mobilization of nickel, and HIF-1α activation in
human lung epithelial cells exposed to metallic nickel and nickel
oxide nanoparticles. Toxicol Sci. 124:138–148. 2011.PubMed/NCBI
|
|
90
|
Ahamed M: Toxic response of nickel
nanoparticles in human lung epithelial A549 cells. Toxicol In
Vitro. 25:930–936. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Horie M, Fukui H, Nishio K, Endoh S, Kato
H, Fujita K, Miyauchi A, Nakamura A, Shichiri M, Ishida N, et al:
Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles
In Vivo and In Vitro. J Occup Health. 53:64–74. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cho WS, Duffin R, Poland CA, Howie SE,
MacNee W, Bradley M, Megson IL and Donaldson K: Metal oxide
nanoparticles induce unique inflammatory footprints in the lung:
important implications for nanoparticle testing. Environ Health
Perspect. 118:1699–1706. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Iannitti T, Capone S, Gatti A, Capitani F,
Cetta F and Palmieri B: Intracellular heavy metal nanoparticle
storage: progressive accumulation within lymph nodes with
transformation from chronic inflammation to malignancy. Int J
Nanomedicine. 5:955–960. 2010. View Article : Google Scholar
|
|
94
|
Phillip JI, Green FY, Davis JCA and Murray
J: Pulmonary and systemic toxicity following exposure to nickel
nanoparticles. Am J Ind Med. 53:763–767. 2010.PubMed/NCBI
|
|
95
|
Gillespie PA, Kang GS, Elder A, Gelein R,
Chen L, Moreira AL, Koberstein J, Tchou-Wong KM, Gordon T and Chen
LC: Pulmonary response after exposure to inhaled nickel hydroxide
nanoparticles: short and long-term studies in mice. Nanotoxicology.
4:106–119. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Morimoto Y, Ogami A, Todoroki M, Yamamoto
M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi K, Kadoya C, et
al: Expression of inflammation-related cytokines following
intratracheal instillation of nickel oxide nanoparticles.
Nanotoxicology. 4:161–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Morimoto Y, Hirohashi M, Ogami A, Oyabu T,
Myojo T, Hashiba M, Mizuquchi Y, Kambara T, Lee BW, Kuroda E and
Tanaka I: Pulmonary toxicity following an intratracheal
instillation of nickel oxide nanoparticle agglomerates. J Occup
Health. 53:293–295. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nishi K, Morimoto Y, Ogami A, Murakami M,
Myojo T, Oyabu T, Kadoya C, Yamamoto M, Todoroki M, Hirohashi M, et
al: Expression of cytokine-induced neutrophil chemoattractant in
rat lungs by intratracheal instillation of nickel oxide
nanoparticles. Inhal Toxicol. 21:1030–1039. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kang GS, Gillespie PA, Gunnison A, Rengifo
H, Koberstein J and Chen LC: Comparative pulmonary toxicity of
inhaled nickel nanoparticles; role of deposited dose and
solubility. Inhal Toxicol. 23:95–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Brown TJ, Bide T, Walters AS, Idone NE,
Shaw RA, Hannis SD, Lusty PAJ and Kendall R: World Mineral
Production 2005–09. British Geological Survey; Nottingham, UK:
2011
|
|
101
|
Olivares M and Uauy R: Copper as an
essential nutrient. Am J Clin Nutr. 63:791S–796S. 1996.PubMed/NCBI
|
|
102
|
Chambers A, Krewski D, Birkett N, et al:
An exposure-response curve for copper excess and deficiency. J
Toxicol Environ Health B Crit Rev. 13:546–578. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Stern BR, Solioz M, Krewski D, et al:
Copper and human health: biochemistry, genetics, and strategies for
modeling dose-response relationships. J Toxicol Environ Health B
Crit Rev. 10:157–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Failla ML: Trace elemnts and host defense:
recent advances and continuing challenges. J Nutr. 133(5 Suppl 1):
1443S–1447S. 2003.PubMed/NCBI
|
|
105
|
Tapiero H, Townsend DM and Tew KD: Trace
elements in the human physiology and pathology. Copper Biomed
Pharmacother. 57:386–398. 2003. View Article : Google Scholar
|
|
106
|
Chen Z, Meng H, Xing GM, Chen CY, Zhao YL,
Jia G, Wang T, Yuan H, Ye C, Zhao F, et al: Acute toxicological
effects of copper nanoparticles in vivo. Toxicol Lett. 163:109–120.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kempson IM, Skinner WM and Kirkbride KP:
The occurrence and incorporation of copper and zinc in hair and
their potential role as bioindicators: a review. J Toxicol Environ
Health B Crit Rev. 10:611–622. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Cioffi N, Ditaranto N, Torsi L, Picca RA,
Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T and
Zambonin PG: Analytical characterization of bioactive fluoropolymer
ultra-thin coatings modified by copper nanoparticles. Anal Bioanal
Chem. 381:607–616. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Athanassiou EK, Grass RN and Stark WJ:
Large-scale production of carbon-coated copper nanoparticles for
sensor applications. Nanotechnology. 17:16682006. View Article : Google Scholar
|
|
110
|
Hahn A, Günther S, Wagener P and
Barcikowski S: Electro-chemistry-controlled metal ion release from
silicone elastomer nanocomposites through combination of different
metal nanoparticles. J Mater Chem. 21:10287–10289. 2011. View Article : Google Scholar
|
|
111
|
De Oliveira JV, Boufleur LA, Dos Santos
CE, et al: Occupational genotoxicity among copper smelters. Toxicol
Ind Health. Oct 31–2011.(Epub ahead of print).
|
|
112
|
Bhunya SP and Jena GB: Clastogenic effects
of copper sulphate in chick in vivo test system. Mutat Res.
367:57–63. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Agarwal K, Sharma A and Talukder G:
Clastogenic effects of copper sulphate on the bone marrow
chromosomes of mice in vivo. Mutat Res. 243:1–6. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Meng H, Chen Z, Xing GM, Yuan H, Chen CY,
Zhao F, Zhang CC, Wang Y and Zhao YL: Ultra high reactivity and
grave nanotoxicity of copper nanoparticles. Journal of
Radioanalytical and Nuclear Chemistry. 272:595–598. 2007.
View Article : Google Scholar
|
|
115
|
Jose GP, Santra S, Mandal SK and Sengupta
TK: Singlet oxygen mediated DNA degradation by copper
nanoparticles: potential towards cytotoxic effect on cancer cells.
J Nanobiotechnology. 9:92011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Dolmans DE, Fukumura D and Jain RK:
Photodynamic therapy for cancer. Nat Rev Cancer. 3:380–387. 2003.
View Article : Google Scholar
|
|
117
|
Petersen EJ and Nelson BC: Mechanisms and
measurements of nanomaterial-induced oxidative damage to DNA. Anal
Bioanal Chem. 398:613–650. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu M, Mo Y, Wan R, Chien S, Zhang X and
Zhang Q: Regulation of plasminogen activator inhibitor-1 expression
in endothelial cells with exposure to metal nanoparticles. Toxicol
Lett. 195:82–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Karlsson HL, Cronholm P, Gustafsson J and
Möller L: Copper oxide nanoparticles are highly toxic: a comparison
between metal oxide nanoparticles and carbon nanotubes. Chem Res
Toxicol. 21:1726–1732. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Karlsson HL, Gustafsson J, Cronholm P and
Moller L: Size-dependent toxicity of metal oxide particles - a
comparison between nano- and micrometer size. Toxicol Lett.
188:112–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Prabhu BM, Ali SF, Murdock RC, Hussain SM
and Srivatsan M: Copper nanoparticles exert size and concentration
dependent toxicity on somatosensory neurons of rat. Nanotoxicology.
4:150–160. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Pettibone JM, Adamcakova-Dodd A, Thorne
PS, O’Shaughnessy PT, Weydert JA and Grassian VH: Inflammatory
response of mice following inhalation exposure to iron and copper
nanoparticles. Nanotoxicology. 2:189–204. 2008. View Article : Google Scholar
|
|
123
|
Yang B, Wang Q, Lei R, Wu C, Shi C, Wang
Q, Yaun Y, Wang Y, Luo Y, Hu Z, Ma H and Liao M: Systems toxicology
used in nanotoxicology: mechanistic insights into the
hepatotoxicity of nano-copper particles from toxicogenomics. J
Nanosci Nanotechnol. 10:8527–8537. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Liu Y, Gao Y, Zhang L, Wang T, Wang J,
Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G and Chen C: Potential
health impact on mice after nasal instillation of nano-sized copper
particles and their translocation in mice. J Nanosci Nanotechnol.
9:6335–6343. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sharma HS, Ali SF, Hussain S, Schlager JJ
and Sharma A: Influence of engineered nanoparticles from metals on
the blood-brain barrier permeability, cerebral blood flow, brain
edema and neurotoxicity. An experimental study in the rat and mice
using biochemical and morphological approaches. J Nanosci
Nanotechnol. 9:5055–5072. 2009. View Article : Google Scholar
|
|
126
|
Martindale JL and Holbrook NJ: Cellular
response to oxidative stress: signaling for suicide and rvival. J
Cell Physiol. 192:1–15. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Huang YW, Wu CH and Aronstam RS: Toxicity
of transition metal oxide nanoparticles: recent insights from in
vitro studies. Materials. 3:4842–4859. 2010. View Article : Google Scholar
|