Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October 2012 Volume 4 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October 2012 Volume 4 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)

  • Authors:
    • Ruth Magaye
    • Jinshun Zhao
    • Linda Bowman
    • Min Ding
  • View Affiliations / Copyright

    Affiliations: Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211, P.R. China, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
  • Pages: 551-561
    |
    Published online on: August 7, 2012
       https://doi.org/10.3892/etm.2012.656
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The nanotechnology industry has matured and expanded at a rapid pace in the last decade, leading to the research and development of nanomaterials with enormous potential. The largest source of these nanomaterials is the transitional metals. It has been revealed that numerous properties of these nano-sized elements are not present in their bulk states. The nano size of these particles means they are easily transported into biological systems, thus, raising the question of their effects on the susceptible systems. Although advances have been made and insights have been gained on the effect of transitional metals on susceptible biological systems, there still is much ground to be covered, particularly with respect to our knowledge on the genotoxic and carcinogenic effects. Therefore, this review intends to summarize the current knowledge on the genotoxic and carcinogenic potential of cobalt-, nickel- and copper-based nanoparticles indicated in in vitro and in vivo mammalian studies. In the present review, we briefly state the sources, use and exposure routes of these nanoparticles and summarize the current literature findings on their in vivo and in vitro genotoxic and carcinogenic effects. Due to the increasing evidence of their role in carcinogenicity, we have also included studies that have reported epigenetic factors, such as abnormal apoptosis, enhanced oxidative stress and pro-inflammatory effects involving these nanoparticles.
View Figures
View References

1 

Klapper M, Nenov S, Haschick R, Müller K and Müllen K: Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res. 41:1190–1201. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Morimoto Y, Kobayashi N, Shinohara N, Myojo T, Tanaka I and Nakanishi J: Hazard assessments of manufactured nanomaterials. J Occup Health. 52:325–334. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Scuri M, Chen BT, Castranova V, et al: Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health A. 73:1353–1369. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Buffle J: The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem. 3:155–158. 2006. View Article : Google Scholar

5 

Ng C, Li JJ, Bay B and Yung LL: Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids. 2010:9478592010.PubMed/NCBI

6 

Rushton EK, Jiang J, Leonard SS, et al: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A. 73:445–461. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Buzea C, Pacheco II and Robbie K: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2:MR17–MR71. 2007.PubMed/NCBI

8 

LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V and Nurkiewicz TR: Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A. 72:1576–1584. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Oberdörster G: Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 74:1–8. 2001.

10 

Oberdörster G, Ferin J and Lehnert BE: Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 102(Suppl 5): 173–179. 1994.PubMed/NCBI

11 

Liang G, Pu Y, Yin L, et al: Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health A. 72:740–745. 2009. View Article : Google Scholar

12 

Zhao J, Bowman L, Zhang X, et al: Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 72:1141–1149. 2009.

13 

Gulumian M and Vallyathan V: Nanoparticles and potential human health implications: past and future directions. Preface J Toxicol Environ Health A. 73:339–340. 2010.PubMed/NCBI

14 

Huang YC, Karoly ED, Dailey LA, et al: Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter. J Toxicol Environ Health A. 74:296–312. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Valko M, Rhodes CJ, Moncol J, Izakovic M and Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160:1–40. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Ghio AJ, Carraway MS and Madden MC: Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 15:1–21. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Shi X, Castranova V, Halliwell B and Vallyathan V: Reactive oxygen species and silica-induced carcinogenesis. J Toxicol Environ Health B Crit Rev. 1:181–197. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Fahmy B and Cormier SA: Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 23:1365–1371. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Lin W, Stayton I, Huang Y, Zhou XD and Ma Y: Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol Environ Chem. 90:983–996. 2008. View Article : Google Scholar

20 

Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR and Huang YW: Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanoparticle Res. 11:25–39. 2009. View Article : Google Scholar

21 

Lin W, Huang YW, Zhou XD and Ma Y: In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 217:252–259. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Lin W, Huang YW, Zhou XD and Ma Y: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol. 25:451–457. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Limbach LK, Wick P, Manser P, Grass RN, Bruinink A and Stark WJ: Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol. 41:4158–4163. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Tabet L, Bussy C, Amara N, et al: Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A. 72:60–73. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW and Tang L: Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 7:222010. View Article : Google Scholar : PubMed/NCBI

26 

Zhao J and Castranova V: Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev. 14:593–632. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Bhattacharya K, Cramer H, Albrecht C, et al: Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. J Toxicol Environ Health A. 71:976–980. 2008. View Article : Google Scholar

28 

Wang K, Xu JJ and Chen HY: A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens Bioelectron. 20:1388–1396. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Martens JWD and Peeters WL: Anisotropy in cobalt-ferrite thin films. J Magn Magn Mater. 61:21–23. 1986. View Article : Google Scholar

30 

Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X, Pines A and Chen FF: Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA. 106:4085–4089. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnel MV, Nishimura DG and Dai H: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater. 5:971–976. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Sadjadi MS, Pourahmad A, Sohrabnezhad Sh and Zare K: Formation of NiS and CoS semiconductor nanoparticles inside mordenite-type zeolite. Mater Lett. 61:2923–2926. 2006. View Article : Google Scholar

33 

Florencio L, Field JA and Lettinga G: Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium. Appl Environ Microbiol. 60:227–234. 1994.PubMed/NCBI

34 

Council INI: Wastewater treatment using semiconductor nanocomposites. http://www.nanowerk.com/news/newsid=11840.phpuri. 2011

35 

Lison D, Lauwerys R, Demedts M and Nemery B: Experimental research into the pathogenesis of cobalt/hard metal lung disease. Eur Respir J. 9:1024–1028. 1996. View Article : Google Scholar : PubMed/NCBI

36 

Lison D, De Boeck M, Verougstraete V and Kirsch-Volders M: Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med. 58:619–625. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Domingo JL: Metal-induced developmental toxicity in mammals: a review. J Toxicol Environ Health. 42:123–141. 1994. View Article : Google Scholar : PubMed/NCBI

38 

Kuo CY, Wong RH, Lin JY, Lai JC and Lee H: Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J Toxicol Environ Health A. 69:1337–1344. 2006. View Article : Google Scholar : PubMed/NCBI

39 

De Boeck M, Kirsch-Volders M and Lison D: Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res. 533:135–152. 2003.PubMed/NCBI

40 

Beyersmann D and Hartwig A: The genetic toxicology of cobalt. Toxicol Appl Pharmacol. 115:137–145. 1992. View Article : Google Scholar

41 

Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R and Rossi F: Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis. 24:439–445. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E and Migliore L: Comparative genotoxicity of cobalt nanoparticles and ions in human peripheral leukocytes in vitro. Mutagenesis. 23:377–382. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Kwon Y, Xia Z, Glyn-Jones S, Beard D, Gill HS and Murray D: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater. 4:0250182009. View Article : Google Scholar : PubMed/NCBI

44 

Peters K, Unger RE, Gatti AM, Sabbioni E, Tsaryk R and Kirkpatrick CJ: Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int J Immunopathol Pharmacol. 20:685–695. 2007.PubMed/NCBI

45 

Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E and Case CP: The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials. 28:2946–2958. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E and Case CP: The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res. 688:53–61. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Tsaousi A, Jones E and Case CP: The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res. 697:1–9. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, et al: Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 4:876–883. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Parry MC, Bhabra G, Sood A, Machado F, Cartwright L, Saunders M, Ingham E, Newson R, Blom AW and Case CP: Thresholds for indirect DNA damage across cellular barriers for orthoaedic biomaterials. Biomaterials. 31:4477–4483. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Grassian VH, Adamcakova-Dodd A, Pettibone JM, O’shaughnessy PT and Thorne PS: Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology. 1:211–226. 2007. View Article : Google Scholar

51 

Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B and Donaldson K: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 64:609–615. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Sayes CM, Reed KL and Warheit DB: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 97:163–180. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Park E and Park K: Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 184:18–25. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL and Schlager JJ: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 112:13608–13619. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Guildford AL, Poletti T, Osbourne LH, Di Cerbo A, Gatti AM and Santin M: Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response. J R Soc Interface. 6:1213–1221. 2009.PubMed/NCBI

56 

Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ and Doak SH: NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 30:3891–3894. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Wang H and Cho CH: Effect of NF-κB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets. 10:593–599. 2010.

58 

Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernadini G and Gornati R: Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett. 189:253–259. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Anard D, Kirsch-Volders M, Elhajouji A, Belpaeme K and Lison D: In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. Carcinogenesis. 18:177–184. 1997. View Article : Google Scholar : PubMed/NCBI

60 

Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murrray AR, et al: Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol. 241:260–268. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Busch W, Kühnel D, Schirmer K and Scholz S: Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics. 11:652010. View Article : Google Scholar : PubMed/NCBI

62 

Zhang XD, Zhao J, Bowman L, Shi X, Castranova V and Ding M: Tungsten carbide-cobalt particles activate Nrf2 and its downstream target genes in JB6 cells possibly by ROS generation. J Environ Pathol Toxicol Oncol. 29:31–40. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Pershina AG, Sazonov AE, Novikov DV, et al: Study of DNA interaction with cobalt ferrite nanoparticles. J Nanosci Nanotechnol. 11:2673–2677. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Hansen T, Clermont G, Alves A, Eloy R, Brochhausen C, Boutrand JP, Gatti AM and Kirkpatrick CJ: Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J R Soc Interface. 3:767–775. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Ban I, Stergar J, Drofenik M, Ferk G and Makovec D: Synthesis of copper-nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia. J Magn Magn Mater. 323:2254–2258. 2011. View Article : Google Scholar

66 

Chou KS, Chang CS and Huang KC: Study on the characteristics of nanosized nickel particles using sodium borohydride to promote conve. AZojomo. 3:2007. View Article : Google Scholar

67 

Zhu FQ, Chern GW, Tchernyshyov O, Zhu XC, Zhu JG and Chien CL: Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Phys Rev Lett. 96:0272052006. View Article : Google Scholar : PubMed/NCBI

68 

Zhao J, Shi X, Castranova V and Ding M: Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol. 28:177–208. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Cameron KS, Buchner V and Tchounwou PB: Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health. 26:81–92. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Kasprzak KS, Sunderman FW Jr and Salnikow K: Nickel carcinogenesis. Mutat Res. 533:67–97. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Kornick R and Zug KA: Nickel. Dermatitis. 19:3–8. 2008.

72 

Tang X, Li C and Wu W: Research progress on carcinogenicity of nickel and its compounds. Chinese Journal of Industrial Medicine. 4:276–279. 2010.(In Chinese).

73 

Oller AR: Respiratory carcinogenicity assessment of soluble nickel compounds. Environ Health Perspect. 110(Suppl 5): 841–844. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Seilkop SK and Oller AR: Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol. 37:173–190. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Grimsrud TK, Berge SR, Resmann F, Norseth T and Andersen A: Assessment of historical exposures in a nickel refinery in Norway. Scand J Work Environ Health. 26:338–345. 2000. View Article : Google Scholar : PubMed/NCBI

76 

Goodman JE, Prueitt RL, Thakali S and Oller AR: The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit Rev Toxicol. 41:142–174. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Costa M, Yan Y, Zhao D and Sainikow K: Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit. 5:222–223. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Zhang Q, Kusaka Y, Zhu X, et al: Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health. 45:23–30. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Kyono H, Kusaka Y, Homma K, Kubota H and Endo-Ichikawa Y: Reversible lung lesions in rats due to short-term exposure to ultrafine cobalt particles. Ind Health. 30:103–118. 1992. View Article : Google Scholar : PubMed/NCBI

80 

Maynard AD and Kuempel ED: Airborne nanostructured particles and occupational health. J Nanopart Res. 7:587–614. 2005. View Article : Google Scholar

81 

NIPERA: Safe Use of Nickel in the Workplace - Incorporating European Nickel Risk Assessment Outcomes. A guide for Health Maintenance of Workers Exposed to Nickel, Its Compounds and Alloys - Health guide. 3rd edition. Nickel Producers Environmental Research Association; Durham, NC, USA: 2008

82 

Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y and Lee KH: Cellular toxicity of various inhalable nanoparticles on human alveolar epithelial cells. Inhal Toxicol. 19(Suppl 1): 59–65. 2007. View Article : Google Scholar

83 

Nagata S: Apoptotic DNA fragmentation. Exp Cell Res. 256:12–18. 2000. View Article : Google Scholar

84 

Yang H, Liu C, Yang D, Zhang H and Xi Z: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 29:69–78. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Pujalté I, Passagne I, Daculsi R, Brouillaud B, Rémy M, Tréguer M, DePortal C, Ohayon-Courtès C and L’Azou B: Toxicity and oxidative stress induced by metallic nanoparticles in renal cells. Proceeding of the Annual Meeting of the French Society of Toxicology 2010. Paris, 2010 (Available at: http://www.sftox.com/congres/sft2010/posters/index.htmluri).

86 

Zhao J, Bowman L, Zhang X, Shi X, Jiang B, Castranova V and Ding M: Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnology. 7:22009. View Article : Google Scholar : PubMed/NCBI

87 

Ryter SW, Kim HP, Hoetzel A, et al: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 9:49–89. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Guo D, Wu C, Li X, Jiang H, Wang X and Chen B: In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol. 8:2301–2307. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, Hurt R and Kane AB: Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 124:138–148. 2011.PubMed/NCBI

90 

Ahamed M: Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro. 25:930–936. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Horie M, Fukui H, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Shichiri M, Ishida N, et al: Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro. J Occup Health. 53:64–74. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL and Donaldson K: Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 118:1699–1706. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Iannitti T, Capone S, Gatti A, Capitani F, Cetta F and Palmieri B: Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine. 5:955–960. 2010. View Article : Google Scholar

94 

Phillip JI, Green FY, Davis JCA and Murray J: Pulmonary and systemic toxicity following exposure to nickel nanoparticles. Am J Ind Med. 53:763–767. 2010.PubMed/NCBI

95 

Gillespie PA, Kang GS, Elder A, Gelein R, Chen L, Moreira AL, Koberstein J, Tchou-Wong KM, Gordon T and Chen LC: Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice. Nanotoxicology. 4:106–119. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi K, Kadoya C, et al: Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology. 4:161–176. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuquchi Y, Kambara T, Lee BW, Kuroda E and Tanaka I: Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J Occup Health. 53:293–295. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Nishi K, Morimoto Y, Ogami A, Murakami M, Myojo T, Oyabu T, Kadoya C, Yamamoto M, Todoroki M, Hirohashi M, et al: Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal Toxicol. 21:1030–1039. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Kang GS, Gillespie PA, Gunnison A, Rengifo H, Koberstein J and Chen LC: Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility. Inhal Toxicol. 23:95–103. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Brown TJ, Bide T, Walters AS, Idone NE, Shaw RA, Hannis SD, Lusty PAJ and Kendall R: World Mineral Production 2005–09. British Geological Survey; Nottingham, UK: 2011

101 

Olivares M and Uauy R: Copper as an essential nutrient. Am J Clin Nutr. 63:791S–796S. 1996.PubMed/NCBI

102 

Chambers A, Krewski D, Birkett N, et al: An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev. 13:546–578. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Stern BR, Solioz M, Krewski D, et al: Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health B Crit Rev. 10:157–222. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Failla ML: Trace elemnts and host defense: recent advances and continuing challenges. J Nutr. 133(5 Suppl 1): 1443S–1447S. 2003.PubMed/NCBI

105 

Tapiero H, Townsend DM and Tew KD: Trace elements in the human physiology and pathology. Copper Biomed Pharmacother. 57:386–398. 2003. View Article : Google Scholar

106 

Chen Z, Meng H, Xing GM, Chen CY, Zhao YL, Jia G, Wang T, Yuan H, Ye C, Zhao F, et al: Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 163:109–120. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Kempson IM, Skinner WM and Kirkbride KP: The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: a review. J Toxicol Environ Health B Crit Rev. 10:611–622. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T and Zambonin PG: Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem. 381:607–616. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Athanassiou EK, Grass RN and Stark WJ: Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology. 17:16682006. View Article : Google Scholar

110 

Hahn A, Günther S, Wagener P and Barcikowski S: Electro-chemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles. J Mater Chem. 21:10287–10289. 2011. View Article : Google Scholar

111 

De Oliveira JV, Boufleur LA, Dos Santos CE, et al: Occupational genotoxicity among copper smelters. Toxicol Ind Health. Oct 31–2011.(Epub ahead of print).

112 

Bhunya SP and Jena GB: Clastogenic effects of copper sulphate in chick in vivo test system. Mutat Res. 367:57–63. 1996. View Article : Google Scholar : PubMed/NCBI

113 

Agarwal K, Sharma A and Talukder G: Clastogenic effects of copper sulphate on the bone marrow chromosomes of mice in vivo. Mutat Res. 243:1–6. 1990. View Article : Google Scholar : PubMed/NCBI

114 

Meng H, Chen Z, Xing GM, Yuan H, Chen CY, Zhao F, Zhang CC, Wang Y and Zhao YL: Ultra high reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry. 272:595–598. 2007. View Article : Google Scholar

115 

Jose GP, Santra S, Mandal SK and Sengupta TK: Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnology. 9:92011. View Article : Google Scholar : PubMed/NCBI

116 

Dolmans DE, Fukumura D and Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer. 3:380–387. 2003. View Article : Google Scholar

117 

Petersen EJ and Nelson BC: Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem. 398:613–650. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Yu M, Mo Y, Wan R, Chien S, Zhang X and Zhang Q: Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicol Lett. 195:82–89. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Karlsson HL, Cronholm P, Gustafsson J and Möller L: Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 21:1726–1732. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Karlsson HL, Gustafsson J, Cronholm P and Moller L: Size-dependent toxicity of metal oxide particles - a comparison between nano- and micrometer size. Toxicol Lett. 188:112–118. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Prabhu BM, Ali SF, Murdock RC, Hussain SM and Srivatsan M: Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology. 4:150–160. 2010. View Article : Google Scholar : PubMed/NCBI

122 

Pettibone JM, Adamcakova-Dodd A, Thorne PS, O’Shaughnessy PT, Weydert JA and Grassian VH: Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology. 2:189–204. 2008. View Article : Google Scholar

123 

Yang B, Wang Q, Lei R, Wu C, Shi C, Wang Q, Yaun Y, Wang Y, Luo Y, Hu Z, Ma H and Liao M: Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics. J Nanosci Nanotechnol. 10:8527–8537. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G and Chen C: Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 9:6335–6343. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Sharma HS, Ali SF, Hussain S, Schlager JJ and Sharma A: Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. 9:5055–5072. 2009. View Article : Google Scholar

126 

Martindale JL and Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and rvival. J Cell Physiol. 192:1–15. 2002. View Article : Google Scholar : PubMed/NCBI

127 

Huang YW, Wu CH and Aronstam RS: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials. 3:4842–4859. 2010. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Magaye R, Zhao J, Bowman L and Ding M: Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Exp Ther Med 4: 551-561, 2012.
APA
Magaye, R., Zhao, J., Bowman, L., & Ding, M. (2012). Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Experimental and Therapeutic Medicine, 4, 551-561. https://doi.org/10.3892/etm.2012.656
MLA
Magaye, R., Zhao, J., Bowman, L., Ding, M."Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)". Experimental and Therapeutic Medicine 4.4 (2012): 551-561.
Chicago
Magaye, R., Zhao, J., Bowman, L., Ding, M."Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)". Experimental and Therapeutic Medicine 4, no. 4 (2012): 551-561. https://doi.org/10.3892/etm.2012.656
Copy and paste a formatted citation
x
Spandidos Publications style
Magaye R, Zhao J, Bowman L and Ding M: Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Exp Ther Med 4: 551-561, 2012.
APA
Magaye, R., Zhao, J., Bowman, L., & Ding, M. (2012). Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Experimental and Therapeutic Medicine, 4, 551-561. https://doi.org/10.3892/etm.2012.656
MLA
Magaye, R., Zhao, J., Bowman, L., Ding, M."Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)". Experimental and Therapeutic Medicine 4.4 (2012): 551-561.
Chicago
Magaye, R., Zhao, J., Bowman, L., Ding, M."Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)". Experimental and Therapeutic Medicine 4, no. 4 (2012): 551-561. https://doi.org/10.3892/etm.2012.656
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team