|
1
|
Nichols AC, Palma DA, Chow W, et al: High
frequency of activating PIK3CA mutations in human
papillomavirus-positive orpharyngeal cancer. JAMA Otolaryngol Head
Neck Surg. 139:617–622. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yuan CH, Filippova M and Duerksen-Hughes
P: Modulation of apoptotic pathways by human papillomaviruses
(HPV): mechanisms and implications for therapy. Viruses.
4:3831–3850. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kaspersen MD, Larsen PB, Ingerslev HJ, et
al: Identification of multiple HPV types on spermatozoa from human
sperm donors. PLoS One. 6:e180952011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schlecht NF, Kulaga S, Robitaille J, et
al: Persistent human papillomavirus infection as a predictor of
cervical intraepithelial neoplasia. JAMA. 286:3106–3114. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Alam MS, Ali A, Mehdi SJ, et al: HPV
typing and its relation with apoptosis in cervical carcinoma from
Indian population. Tumor Biol. 33:17–22. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pisani P, Bray F and Parkin DM: Estimates
of the world-wide prevalence of cancer for 25 sites in the adult
population. Int J Cancer. 97:72–81. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
zur Hausen H: Papillomaviruses in the
causation of human cancers - a brief historical account. Virology.
384:260–265. 2009.PubMed/NCBI
|
|
8
|
Garnett TO and Duerksen-Hughes PJ:
Modulation of apoptosis by human papillomavirus (HPV) oncoproteins.
Arch Virol. 151:2321–2335. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mischo A, Ohlenschläger O, Hortschansky P,
Ramachandran R and Görlach M: Structural insights into a wildtype
domain of the oncoprotein E6 and its interaction with a PDZ domain.
PLoS One. 8:e625842013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cai Q, Lv L, Shao Q, Li X and Dian A:
Human papillomavirus early proteins and apoptosis. Arch Gynecol
Obstet. 287:541–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mantovani F and Banks L: The human
papillomavirus E6 protein and its contribution to malignant
progression. Oncogene. 20:7874–7887. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nominé Y, Masson M, Charbonnier S, et al:
Structural and functional analysis of E6 oncoprotein: insights in
the molecular pathways of human papillomavirus-mediated
pathogenesis. Mol Cell. 21:665–678. 2006.PubMed/NCBI
|
|
13
|
Ristriani T, Nominé Y, Masson M, Weiss E
and Travé G: Specific recognition of four-way DNA junctions by the
C-terminal zinc-binding domain of HPV oncoprotein E6. J Mol Biol.
305:729–739. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huibregtse JM, Scheffner M and Howley PM:
A cellular protein mediates association of p53 with the E6
oncoprotein of human papillomavirus type 16 or 18. EMBO J.
10:4129–4135. 1991.PubMed/NCBI
|
|
15
|
Scheffner M, Huibregtse JM, Vierstra RD
and Howley PM: The HPV-16 E6 and E6-AP complex functions as a
ubiquitin-protein ligase in the ubiquitination of p53. Cell.
75:495–505. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Murray-Zmijewski F, Slee EA and Lu X: A
complex barcode underlies the heterogeneous response of p53 to
stress. Nat Rev Mol Cell Biol. 9:702–712. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Howie HL, Katzenellenbogen RA and Galloway
DA: Papillomavirus E6 proteins. Virology. 384:324–334. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Blanchette P and Branton PE: Manipulation
of the ubiquitin-proteasome pathway by small DNA tumor virus.
Virology. 384:317–323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Khoronenkova SV and Dianov GL: The
emerging role of Mule and ARF in the regulation of base exicision
repair. FEBS Lett. 585:2831–2835. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kumar A, Zhao Y, Meng G, et al: Human
papillomovirus oncoperotein E6 inactivates the transcriptional
coactivator human ADA3. Mol Cell Biol. 22:5801–5812. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aylon Y and Oren M: p53: guardian of
ploidy. Mol Oncol. 5:315–323. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Contreras-Paredes A, De la Cruz-Hernández
E, Martínez-Ramírez I, Dueñas-González A and Lizano M: E6 variants
of human papillomavirus 18 differentially modulate the protein
kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling
pathway. Virology. 383:78–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Underbrink MP, Howie HL, Bedard KM, Koop
JI and Galloway DA: The E6 proteins from multiple human
betapapillomavirus types degrade Bak and protect keratinocytes from
apoptosis after UVB irradiation. J Virol. 82:10408–10417. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gewies A: Introduction to apoptosis.
ApoReview. 1–26. 2003.
|
|
25
|
Gewin L and Galloway DA: E box-dependent
activation of telomerase by human papillomavirus type 16 E6 does
not require induction of c-Myc. J Virol. 75:7198–7201. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Venuti A, Paolini F, Nasir L, et al:
Papillomavirus E5: the smallest oncoprotein with many functions.
Mol Cancer. 10:1402011. View Article : Google Scholar
|
|
27
|
Chang JL, Tsao YP, Liu DW, Huang SJ, Lee
WH and Chen SL: The expression of HPV-16 E5 protein in squamous
neoplastic changes in the uterine cervix. J Biomed Sci. 8:206–213.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Conrad M, Bubb VJ and Schlegel R: The
human papillomavirus type 6 and 16 E5 proteins are
membrane-associated proteins which associated with the
16-kilodalton pore-forming protein. J Virol. 67:6170–6178.
1993.PubMed/NCBI
|
|
29
|
Borzacchiello G, Roperto F, Campo MS and
Venuti A: 1st international workshop on papillomavirus E5 oncogene
- a report. Virology. 408:135–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen SL and Mounts P: Transforming
activity of E5a protein of human papillomavirus type 6 in NIH 3T3
and C127 cells. J Virol. 64:3226–3233. 1990.PubMed/NCBI
|
|
31
|
Hu L, Potapova TA, Li S, et al: Expression
of HPV16 E5 produces enlarged nuclei and polyploidy through
endoreplication. Virology. 405:342–351. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kabsch K and Alonso A: The human
papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated
apoptosis in HaCaT cells by different mechanisms. J Virol.
76:12162–12172. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang X, Shi Q, Xu K, et al: Familial CJD
associated PrP mutants within transmembrane region induced Ctm-PrP
retention in ER and triggered apoptosis by ER stress in SH-SY5Y
cells. PLoS One. 6:e146022011. View Article : Google Scholar
|
|
34
|
Xu K, Wang X, Shi Q, et al: Human prion
protein mutants with deleted and inserted octarepeats undergo
different pathways to trigger cell apoptosis. J Mol Neurosci.
43:225–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sudarshan SR, Schlegel R and Liu XF: The
HPV-16 E5 protein represses expression of stress pathway genes
XBP-1 and COX-2 in genital keratinocytes. Biochem Biophys Res
Commun. 399:617–622. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Condjella R, Liu X, Suprynowicz F, et al:
The canine papillomavirus E5 protein signals from the endoplasmic
reticulum. J Virol. 83:12833–12841. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Oh JM, Kim SH, Lee YI, et al: Human
papillomavirus E5 protein induces expression of the EP4 subtype of
prostaglandin E2 receptor in cyclic AMP response element-dependent
pathways in cervical cancer cells. Carcinogenesis. 30:141–149.
2009.
|
|
38
|
McLaughlin-Drubin ME and Münger K: The
human papillomavirus E7 oncoprotein. Virology. 384:335–344. 2009.
View Article : Google Scholar
|
|
39
|
Toscano-Garibay JD, Benitez-Hess ML and
Alvarez-Salas LM: Isolation and characterization of an RNA aptamer
of the HPV-16 E7 oncoprotein. Arch Med Res. 42:88–96. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ohlenschläger O, Seiboth T, Zengerling H,
et al: Solution structure of the partially folded high-risk human
papillomavirus 45 oncoprotein E7. Oncogene. 25:5953–5959.
2006.PubMed/NCBI
|
|
41
|
Liu X, Clements A, Zhao K and Marmorstein
R: Structure of human Papillomavirus E7 oncoprotein and its
mechanism for inactivation of the retinoblastoma tumor suppressor.
J Biol Chem. 281:578–586. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ghim S, Jenson AB, Bubier JA, Silva KA,
Smith RS and Sundberg JP: Cataracts in transgenic mice caused by a
human papillomavirus type 18 E7 oncogene driven by KRT1–14. Exp Mol
Pathol. 85:77–82. 2008.PubMed/NCBI
|
|
43
|
Zimmermann M, Koreck A, Meyer N, et al:
TNF-like weak inducer of apoptosis (TWEAK) and TNF-alpha cooperate
in the induction of keratinocyte apoptosis. J Allergy Clin Immunol.
127:200–207. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pardali K and Moustakas A: Actions of
TGF-β as tumor suppressor and pro-metastatic factor in human
cancer. Biochim Biophys Acta. 1775:21–62. 2007.
|
|
45
|
DeMasi J, Huh KW, Nakatani Y, Münger K and
Howley PM: Bovine papillomavirus E7 transformation function
correlates with cellular p600 protein binding. Proc Natl Acad Sci
USA. 102:11486–11491. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
DeMasi J, Chao MC, Kumar AS and Howley PM:
Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol.
81:9419–9425. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Severino A, Abbruzzese C, Manente L, et
al: Human papillomavirus-16 E7 interacts with Siva-1 and modulates
apoptosis in HaCaT human immortalized keratinocytes. J Cell
Physiol. 212:118–125. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wells SI, Francis DA, Karpova AY,
Dowhanick JJ, Benson JD and Howley PM: Papillomavirus E2 induces
senescence in HPV-positive cells via pRB- and p21(CIP)-dependent
pathway. EMBO J. 19:5762–5771. 2000. View Article : Google Scholar
|
|
49
|
Mazumder Indra D, Singh RK, Mitra S, Dutta
S, et al: Genetic and epigenetic changes of HPV16 in cervical
cancer differentially regulate E6/E7 expression and associate with
disease progression. Gynecol Oncol. 123:597–604. 2011.PubMed/NCBI
|
|
50
|
Tang S, Tao M, McCoy JP Jr and Zheng ZM:
The E7 oncoprotein is translated from spliced E6*I transcripts in
high-risk human papillomavirus type 16-or type 18-positive cervical
cancer cell lines via translation reinitiation. J Virol.
80:4249–4263. 2006.
|
|
51
|
Dell G and Gaston K: Human papillomavirus
and their role in cervical. Cell Mol Life Sci. 58:1923–1942. 2001.
View Article : Google Scholar
|
|
52
|
Webster K, Parish J, Pandya M, Stern PL,
Clarke AR and Gaston K: The human papillomavirus (HPV) 16 E2
protein induces apoptosis in the absence of other HPV proteins and
via a p53-dependent pathway. J Biol Chem. 275:87–94. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu X and Levine AJ: p53 and E2F-1
cooperate to mediate apoptosis. Proc Natl Acad Sci USA.
91:3602–3606. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Frattini MG, Hurst SD, Lim HB, Swaminathan
S and Laimins LA: Abrogation of a mitotic checkpoint by E2 proteins
from oncogenic human papillomaviruses correlates with increased
turnover of the p53 tumor suppressor protein. EMBO J. 16:318–331.
1997. View Article : Google Scholar
|
|
55
|
Bouvard V, Storey A, Pim D and Banks L:
Characterization of the human papillomavirus E2 protein: evidence
of trans-activation and trans-repression in cervical keratinocytes.
EMBO J. 13:5451–5459. 1994.PubMed/NCBI
|
|
56
|
Kim K, Gamer-Hamrick PA, Fisher C, Lee D
and Lambert PF: Methylation patterns of papillomavirus DNA, its
influence on E2 function, and implications in viral infection. J
Virol. 77:12450–12459. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dong XP, Stubenrauch F, Beyer-Finkler E
and Pfister H: Prevalence of deletions of YY1-binding sites in
episomal HPV 16 DNA from cervical cancers. Int J Cancer.
58:803–808. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pett M and Coleman N: Integration of
high-risk human papillomavirus: a key event in cervical
carcinogenesis? J Pathol. 212:356–367. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Arisa-Pulido H, Peyton CL, Joste NE,
Vargas H and Wheeler CM: Human papillomavirus type 16 integration
in cervical carcinoma in situ and in invasive cervical cancer. J
Clin Microbiol. 44:1755–1762. 2006. View Article : Google Scholar
|
|
60
|
Bhattacharjee B and Sengupta S: CpG
methylation of HPV 16 LCR at E2 binding site proximal to P97 is
associated with cervical cancer in presence of intact E2. Virology.
354:280–285. 2006. View Article : Google Scholar : PubMed/NCBI
|