Open Access

Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen‑activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells

  • Authors:
    • Lihong Zhu
    • Wei Bi
    • Dan Lu
    • Chanjuan Zhang
    • Xiaoming Shu
    • Daxiang Lu
  • View Affiliations

  • Published online on: February 20, 2014     https://doi.org/10.3892/etm.2014.1564
  • Pages: 1065-1070
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Microglial activation is one of the causative factors for neuroinflammation, which is associated with the pathophysiology of neurodegenerative diseases. Our previous study showed that the flavonoid luteolin inhibited several pro-inflammatory enzymes and pro-inflammatory cytokines that are induced by activated microglia; however, its effect on signaling pathways is currently unknown. The present study examined the effects of luteolin on signaling pathways stimulated by lipopolysaccharide (LPS), including Toll-like receptor-4 (TLR-4), nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) family and protein kinase B (Akt) pathways in murine microglial BV2 cells. In addition, BV2 microglia and SH-SY5Y neuroblastoma cells were cocultured to observe the indirect neuroprotective effects of luteolin. Luteolin inhibited the LPS-stimulated expression of TLR-4. In addition, luteolin blocked LPS-induced NF-κB, p38, JNK and Akt activation, but had no effect on ERK. When SH-SY5Y cells were cocultured with LPS-stimulated BV2 microglia, pretreatment with luteolin increased neuronal viability and reduced the number of apoptotic cells. These data suggest that luteolin has a beneficial effect on neuroinflammatory events in neurodegenerative diseases via suppression of the NF-κB, MAPK and Akt pathways in activated microglial cells.
View Figures
View References

Related Articles

Journal Cover

May-2014
Volume 7 Issue 5

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhu L, Bi W, Lu D, Zhang C, Shu X and Lu D: Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen‑activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp Ther Med 7: 1065-1070, 2014
APA
Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., & Lu, D. (2014). Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen‑activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Experimental and Therapeutic Medicine, 7, 1065-1070. https://doi.org/10.3892/etm.2014.1564
MLA
Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., Lu, D."Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen‑activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells". Experimental and Therapeutic Medicine 7.5 (2014): 1065-1070.
Chicago
Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., Lu, D."Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen‑activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells". Experimental and Therapeutic Medicine 7, no. 5 (2014): 1065-1070. https://doi.org/10.3892/etm.2014.1564