|
1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics. CA Cancer J Clin. 63:11–30. 2013.
|
|
2
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics. CA Cancer J Clin. 59:225–249. 2009.
|
|
3
|
Kroft SH and Oyasu R: Urinary bladder
cancer: mechanisms of development and progression. Lab Invest.
71:158–174. 1994.PubMed/NCBI
|
|
4
|
Knowles MA: What we could do now:
molecular pathology of bladder cancer. Mol Pathol. 54:215–221.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Williams SG and Stein JP: Molecular
pathways in bladder cancer. Urol Res. 32:373–385. 2004. View Article : Google Scholar
|
|
6
|
Spiess PE and Czerniak B: Dual-track
pathway of bladder carcinogenesis: practical implications. Arch
Pathol Lab Med. 130:844–852. 2006.PubMed/NCBI
|
|
7
|
Wu XR: Urothelial tumorigenesis: a tale of
divergent pathways. Nat Rev Cancer. 5:713–725. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hoffman RM: The three-dimensional
question: can clinically relevant tumor drug resistance be measured
in vitro? Cancer Metastasis Rev. 13:169–173. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yen WC, Schmittgen T and Au JL: Different
pH dependency of mitomycin C activity in monolayer and
three-dimensional cultures. Pharm Res. 13:1887–1891. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fujiyama C, Jones A, Fuggle S, et al:
Human bladder cancer invasion model using rat bladder in vitro and
its use to test mechanisms and therapeutic inhibitors of invasion.
Br J Cancer. 84:558–564. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Booth C, Harnden P, Trejdosiewicz LK,
Scriven S, Selby PJ and Southgate J: Stromal and vascular invasion
in an human in vitro bladder cancer model. Lab Invest. 76:843–857.
1997.PubMed/NCBI
|
|
12
|
Sabbagh W, Masters JR, Duffy PG, et al: In
vitro assessment of a collagen sponge for engineering urothelial
grafts. Br J Urol. 82:888–894. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Verbridge SS, Choi NW, Zheng Y, Brooks DJ,
Stroock AD and Fischbach C: Oxygen-controlled three-dimensional
cultures to analyze tumor angiogenesis. Tissue Eng Part A.
16:2133–2141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Oyasu R: Epithelial tumours of the lower
urinary tract in humans and rodents. Food Chem Toxicol. 33:747–755.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lindblad-Toh K: Genome sequencing: three’s
company. Nature. 428:475–476. 2004.
|
|
16
|
Russell PJ, Raghavan D, Gregory P, et al:
Bladder cancer xenografts: a model of tumor cell heterogeneity.
Cancer Res. 46:2035–2040. 1986.PubMed/NCBI
|
|
17
|
Flanagan SP: ‘Nude’, a new hairless gene
with pleiotropic effects in the mouse. Genet Res. 8:295–309.
1966.
|
|
18
|
Masters JR, Hepburn PJ, Walker L, et al:
Tissue culture model of transitional cell carcinoma:
characterization of twenty-two human urothelial cell lines. Cancer
Res. 46:3630–3636. 1986.PubMed/NCBI
|
|
19
|
Günther JH, Jurczok A, Wulf T, et al:
Optimizing syngeneic orthotopic murine bladder cancer (MB49).
Cancer Res. 59:2834–2837. 1999.
|
|
20
|
Hoffman RM: Orthotopic metastatic mouse
models for anticancer drug discovery and evaluation: a bridge to
the clinic. Invest New Drugs. 17:343–359. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Booth C, Harnden P, Selby PJ and Southgate
J: Towards defining roles and relationships for tenascin-C and
TGFbeta-1 in the normal and neoplastic urinary bladder. J Pathol.
198:359–368. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Reznikoff CA, Belair C, Savelieva E, et
al: Long-term genome stability and minimal genotypic and phenotypic
alterations in HPV16 E7-, but not E6-, immortalized human
uroepithelial cells. Genes Dev. 8:2227–2240. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kao C, Wu SQ, Bhatthacharya M, Meisner LF
and Reznikoff CA: Losses of 3p, 11p, and 13q in
EJ/ras-transformable simian virus 40-immortalized human
uroepithelial cells. Genes Chromosomes Cancer. 4:158–168. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Harding MA, Arden KC, Gildea JW, et al:
Functional genomic comparison of lineage-related human bladder
cancer cell lines with differing tumorigenic and metastatic
potentials by spectral karyotyping, comparative genomic
hybridization, and a novel method of positional expression
profiling. Cancer Res. 62:6981–6989. 2002.
|
|
25
|
Gildea JJ, Golden WL, Harding MA and
Theodorescu D: Genetic and phenotypic changes associated with the
acquisition of tumorigenicity in human bladder cancer. Genes
Chromosomes Cancer. 27:252–263. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cristofalo VJ, Lorenzini A, Allen RG,
Torres C and Tresini M: Replicative senescence: a critical review.
Mech Ageing Dev. 125:827–848. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhao L, Zhang ZY and Tong TJ: Systemic
aging and replicative senescence: in vivo and in vitro. Sheng Li Ke
Xue Jin Zhan. 31:205–210. 2000.(In Chinese).
|
|
28
|
MacLeod RAF, Dirks WG, Matsuo Y, et al:
Widespread intraspecies cross-contamination of human tumor cell
lines arising at source. Int J Cancer. 83:555–563. 1999.PubMed/NCBI
|
|
29
|
Russell PJ, Raghavan D, Gregory P, et al:
Bladder cancer xenografts: a model of tumor cell heterogeneity.
Cancer Res. 46:2035–2040. 1986.PubMed/NCBI
|
|
30
|
Davis DW, Inoue K, Dinney CP, Hicklin DJ,
Abbruzzese JL and McConkey DJ: Regional effects of an antivascular
endothelial growth factor receptor monoclonal antibody on receptor
phosphorylation and apoptosis in human 253J B-V bladder cancer
xenografts. Cancer Res. 64:4601–4610. 2004. View Article : Google Scholar
|
|
31
|
Inoue K, Slaton JW, Davis DW, et al:
Treatment of human metastatic transitional cell carcinoma of the
bladder in a murine model with the anti-vascular endothelial growth
factor receptor monoclonal antibody DC101 and paclitaxel. Clin
Cancer Res. 6:2635–2643. 2000.
|
|
32
|
Pfost B, Seidl C, Autenrieth M, et al:
Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb
defeats human bladder carcinoma in xenografted nude mice. J Nucl
Med. 50:1700–1708. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Makhlin I, Zhang J, Long CJ, et al: The
mTOR pathway affects proliferation and chemosensitivity of
urothelial carcinoma cells and is upregulated in a subset of human
bladder cancers. BJU Int. 108:E84–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dinney CP, Fishbeck R, Singh RK, et al:
Isolation and characterization of metastatic variants from human
transitional cell carcinoma passaged by orthotopic implantation in
athymic nude mice. J Urol. 154:1532–1538. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Soloway MS, Martino C, Hyatt C and Marrone
JC: Immunogenicity of
N-[-4-(5-nitro-2-furyl)-2-thiazolyl]formamide-induced bladder
cancer. Natl Cancer Inst Monogr. 293–300. 1978.
|
|
36
|
Soloway MS: Intravesical and systemic
chemotherapy of murine bladder cancer. Cancer Res. 37:2918–2929.
1977.PubMed/NCBI
|
|
37
|
Summerhayes IC and Franks LM: Effects of
donor age on neoplastic transformation of adult mouse bladder
epithelium in vitro. J Natl Cancer Inst. 62:1017–1023.
1979.PubMed/NCBI
|
|
38
|
van Moorselaar RJ, Ichikawa T, Schaafsma
HE, et al: The rat bladder tumor model system RBT resembles
phenotypically and cytogenetically human superficial transitional
cell carcinoma. Urol Res. 21:413–421. 1993.PubMed/NCBI
|
|
39
|
Moltedo B, Faunes F, Haussmann D, et al:
Immunotherapeutic effect of Concholepas hemocyanin in the murine
bladder cancer model: evidence for conserved antitumor properties
among hemocyanins. J Urol. 176:2690–2695. 2006. View Article : Google Scholar
|
|
40
|
Bisson JF, Parache RM, Droulle P, Notter
D, Vigneron C and Guillemin F: A new method of implanting
orthotopic rat bladder tumor for experimental therapies. Int J
Cancer. 102:280–285. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hanel EG, Xiao Z, Wong KK, Lee PW, Britten
RA and Moore RB: A novel intravesical therapy for superficial
bladder cancer in an orthotopic model: oncolytic reovirus therapy.
J Urol. 172:2018–2022. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fodor I, Timiryasova T, Denes B, Yoshida
J, Ruckle H and Lilly M: Vaccinia virus mediated p53 gene therapy
for bladder cancer in an orthotopic murine model. J Urol.
173:604–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Loskog AS, Fransson ME and Totterman TT:
AdCD40L gene therapy counteracts T regulatory cells and cures
aggressive tumors in an orthotopic bladder cancer model. Clin
Cancer Res. 11:8816–8821. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kuromatsu I, Matsuo K, Takamura S, et al:
Induction of effective antitumor immune responses in a mouse
bladder tumor model by using DNA of an alpha antigen from
mycobacteria. Cancer Gene Ther. 8:483–490. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Miyazaki J, Nishiyama H, Yano I, et al:
The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat
urinary bladder carcinoma. Anticancer Res. 31:2065–2071.
2011.PubMed/NCBI
|
|
46
|
Smaldone MC, Gayed BA, Tomaszewski JJ and
Gingrich JR: Strategies to enhance the efficacy of intravescical
therapy for non-muscle invasive bladder cancer. Minerva Urol
Nefrol. 61:71–89. 2009.PubMed/NCBI
|
|
47
|
Smaldone MC, Gayed BA, Tomaszewski JJ and
Gingrich JR: Strategies to enhance the efficacy of intravescical
therapy for non-muscle invasive bladder cancer. Minerva Urol
Nefrol. 61:71–89. 2009.PubMed/NCBI
|
|
48
|
Shen ZJ, Wang Y, Ding GQ, Pan CW and Zheng
RM: Study on enhancement of fibronectin-mediated bacillus
Calmette-Guérin attachment to urinary bladder wall in rabbits.
World J Urol. 25:525–529. 2007.
|
|
49
|
Günther JH, Frambach M, Deinert I, Brandau
S, Jocham D and Böhle A: Effects of acetylic salicylic acid and
pentoxifylline on the efficacy of intravesical BCG therapy in
orthotopic murine bladder cancer (MB49). J Urol. 161:1702–1706.
1999.PubMed/NCBI
|
|
50
|
Reis LO, Ferreira U, Billis A, Cagnon VH
and Fávaro WJ: Anti-angiogenic effects of the superantigen
staphylococcal enterotoxin B and bacillus Calmette-Guérin
immunotherapy for nonmuscle invasive bladder cancer. J Urol.
187:438–445. 2012.PubMed/NCBI
|
|
51
|
Talmadge JE, Singh RK, Fidler IJ and Raz
A: Murine models to evaluate novel and conventional therapeutic
strategies for cancer. Am J Pathol. 170:793–804. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lodillinsky C, Rodriguez V, Vauthay L,
Sandes E, Casabé A and Eiján AM: Novel invasive orthotopic bladder
cancer model with high cathepsin B activity resembling human
bladder cancer. J Urol. 182:749–755. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Black PC and Dinney CP: Bladder cancer
angiogenesis and metastasis-translation from murine model to
clinical trial. Cancer Metastasis Rev. 26:623–634. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wilmanns C, Fan D, Obrian C, et al:
Modulation of Doxorubicin sensitivity and level of p-glycoprotein
expression in human colon-carcinoma cells by ectopic and orthotopic
environments in nude-mice. Int J Oncol. 3:413–422. 1993.PubMed/NCBI
|
|
55
|
Bibby MC: Orthotopic models of cancer for
preclinical drug evaluation: advantages and disadvantages. Eur J
Cancer. 40:852–857. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang Z, Xu X, Zhang X, et al: The
therapeutic potential of SA-sCD40L in the orthotopic model of
superficial bladder cancer. Acta Oncol. 50:1111–1118. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xiao Z, McCallum TJ, Brown KM, et al:
Characterization of a novel transplantable orthotopic rat bladder
transitional cell tumour model. Br J Cancer. 81:638–646. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chade DC, Andrade PM, Borra RC, et al:
Histopathological characterization of a syngeneic orthotopic murine
bladder cancer model. Int Braz J Urol. 34:220–226; discussion
226–229. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jiang F and Zhou XM: A model of orthotopic
murine bladder (MBT-2) tumor implants. Urol Res. 25:179–182. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Romih R, Jezernik K and Masera A:
Uroplakins and cytokeratins in the regenerating rat urothelium
after sodium saccharin treatment. Histochem Cell Biol. 109:263–269.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gabriel U, Bolenz C and Michel MS:
Experimental models for therapeutic studies of transitional cell
carcinoma. Anticancer Res. 27:3163–3171. 2007.PubMed/NCBI
|
|
62
|
Oshinsky GS, Chen Y, Jarrett T, Anderson
AE and Weiss GH: A model of bladder tumor xenografts in the nude
rat. J Urol. 154:1925–1929. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Watanabe T, Shinohara N, Sazawa A, et al:
An improved intravesical model using human bladder cancer cell
lines to optimize gene and other therapies. Cancer Gene Ther.
7:1575–1580. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Asanuma H, Arai T, Seguchi K, et al:
Successful diagnosis of orthotopic rat superficial bladder tumor
model by ultrathin cystoscopy. J Urol. 169:718–720. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hendricksen K, Molkenboer-Kuenen J,
Oosterwijk E, Hulsbergen-van de Kaa CA and Witjes JA: Evaluation of
an orthotopic rat bladder urothelial cell carcinoma model by
cystoscopy. BJU Int. 101:889–893. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nokes B, Apel M, Jones C, Brown G and Lang
JE: Aminolevulinic acid (ALA): photodynamic detection and potential
therapeutic applications. J Surg Res. 181:262–271. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Satoh H, Morimoto Y, Arai T, et al:
Intravesical ultrasonography for tumor staging in an orthotopically
implanted rat model of bladder cancer. J Urol. 177:1169–1173. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chin J, Kadhim S, Garcia B, Kim YS and
Karlik S: Magnetic resonance imaging for detecting and treatment
monitoring of orthotopic murine bladder tumor implants. J Urol.
145:1297–1301. 1991.PubMed/NCBI
|
|
69
|
Kikuchi E, Xu S, Ohori M, et al: Detection
and quantitative analysis of early stage orthotopic murine bladder
tumor using in vivo magnetic resonance imaging. J Urol.
170:1375–1378. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Becci PJ, Thompson HJ, Strum JM, Brown CC,
Sporn MB and Moon RC: N-butyl-N-(4-hydroxybutyl)nitrosamine-induced
urinary bladder cancer in C57BL/6 X DBA/2 F1 mice as a useful model
for study of chemoprevention of cancer with retinoids. Cancer Res.
41:927–932. 1981.PubMed/NCBI
|
|
71
|
Cohen SM and Johansson SL: Epidemiology
and etiology of bladder cancer. Urol Clin North Am. 19:421–428.
1992.PubMed/NCBI
|
|
72
|
Yamagiwa K and Ichikawa K: Experimental
study of the pathogenesis of carcinoma. CA Cancer J Clin.
27:174–181. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hueper WC, Wiley FH, Wolfe HD, et al:
Experimental production of bladder tumors in dogs by administration
of beta-naphthylamine. J Ind Hyg Toxicol. 20:46–84. 1938.
|
|
74
|
Armstrong EC and Bonser GM: Epithelial
tumours of the urinary bladder in mice induced by
2-acetylamino-fluorine. J Pathol. 6:506–512. 1944.
|
|
75
|
Schalken JA, van Moorselaar RJ, Bringuier
PP and Debruyne FM: Critical review of the models to study the
biologic progression of bladder cancer. Semin Surg Oncol.
8:274–278. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Oliveira PA, Colaco A, De la Cruz PLF and
Lopes C: Experimental bladder carcinogenesis-rodent models. Exp
Oncol. 28:2–11. 2006.PubMed/NCBI
|
|
77
|
Clayson DB and Cooper EH: Cancer of the
urinary tract. Adv Cancer Res. 13:271–381. 1970. View Article : Google Scholar
|
|
78
|
Fukushima S: Modification of tumor
development in the urinary bladder. Prog Exp Tumor Res. 33:154–174.
1991.PubMed/NCBI
|
|
79
|
Kunze E and Chowaniec J: Pathology of
tumours in laboratory animals Tumours of the rat Tumours of the
urinary bladder. IARC Sci Publ. 345–397. 1990.PubMed/NCBI
|
|
80
|
Oliveira PA, Palmeira C, Lourenço LM and
Lopes CA: Evaluation of DNA content in preneoplastic changes of
mouse urinary bladder induced by N-butyl-N-(4-hydroxybutyl)
nitrosamine. J Exp Clin Cancer Res. 24:609–616. 2005.PubMed/NCBI
|
|
81
|
Lu Y, Liu P, Wen W, et al: Cross-species
comparison of orthologous gene expression in human bladder cancer
and carcinogen-induced rodent models. Am J Transl Res. 3:8–27.
2010.PubMed/NCBI
|
|
82
|
Cauvin JM, Goldfain D, Le Rhun M, et al:
Multicentre prospective controlled study of Barrett’s oesophagus
and colorectal adenomas. Groupe d’Etude de l’Oesophage de Barrett.
Lancet. 346:1391–1394. 1995.
|
|
83
|
Castelao JE, Yuan JM, Gago-Dominguez M, Yu
MC and Ross RK: Non-steroidal anti-inflammatory drugs and bladder
cancer prevention. Br J Cancer. 82:1364–1369. 2000.PubMed/NCBI
|
|
84
|
Grubbs CJ, Lubet RA, Koki AT, et al:
Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced
urinary bladder cancers in male B6D2F1 mice and female Fischer-344
rats. Cancer Res. 60:5599–5602. 2000.PubMed/NCBI
|
|
85
|
Steele VE, Rao CV, Zhang Y, et al:
Chemopreventive efficacy of naproxen and nitric oxide-naproxen in
rodent models of colon, urinary bladder, and mammary cancers.
Cancer Prev Res (Phila). 2:951–956. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lubet RA, Huebner K, Fong LY, et al:
4-Hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers in
mice: characterization of FHIT and survivin expression and
chemopreventive effects of indomethacin. Carcinogenesis.
26:571–578. 2005. View Article : Google Scholar
|
|
87
|
Okajima E, Denda A, Ozono S, et al:
Chemopreventive effects of nimesulide, a selective cyclooxygenase-2
inhibitor, on the development of rat urinary bladder carcinomas
initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Res.
58:3028–3031. 1998.PubMed/NCBI
|
|
88
|
Hattori K, Iida K, Joraku A, Tsukamoto S,
Akaza H and Oyasu R: Chemopreventive effects of cyclooxygenase-2
inhibitor and epidermal growth factor-receptor kinase inhibitor on
rat urinary bladder carcinogenesis. BJU Int. 97:640–643. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
D’Arca D, LeNoir J, Wildemore B, et al:
Prevention of urinary bladder cancer in the FHIT knock-out mouse
with Rofecoxib, a Cox-2 inhibitor. Urol Oncol. 28:189–194.
2010.PubMed/NCBI
|
|
90
|
Ozawa A, Tanji N, Kikugawa T, et al:
Inhibition of bladder tumour growth by histone deacetylase
inhibitor. BJU Int. 105:1181–1186. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ding Y, Paonessa JD, Randall KL, et al:
Sulforaphane inhibits 4-aminobiphenyl-induced DNA damage in bladder
cells and tissues. Carcinogenesis. 31:1999–2003. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Parada B, Reis F, Figueiredo A, et al:
Inhibition of bladder tumour growth by sirolimus in an experimental
carcinogenesis model. BJU Int. 107:135–143. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Parada B, Reis F, Pinto A, et al:
Chemopreventive efficacy of atorvastatin against
nitrosamine-induced rat bladder cancer: antioxidant,
anti-proliferative and anti-inflammatory properties. Int J Mol Sci.
13:8482–8499. 2012. View Article : Google Scholar
|
|
94
|
Sagara Y, Miyata Y, Nomata K, Hayashi T
and Kanetake H: Green tea polyphenol suppresses tumor invasion and
angiogenesis in N-butyl-(−4-hydroxybutyl) nitrosamine-induced
bladder cancer. Cancer Epidemiol. 34:350–354. 2010.PubMed/NCBI
|
|
95
|
Prasain JK, Jones K, Moore R, et al:
Effect of cranberry juice concentrate on chemically-induced urinary
bladder cancers. Oncol Rep. 19:1565–1570. 2008.PubMed/NCBI
|
|
96
|
Zhang G, Zeng X, Li C, et al: Inhibition
of urinary bladder carcinogenesis by aqueous extract of sclerotia
of Polyporus umbellatus fries and polyporus polysaccharide. Am J
Chin Med. 39:135–144. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Munday R, Mhawech-Fauceglia P, Munday CM,
et al: Inhibition of urinary bladder carcinogenesis by broccoli
sprouts. Cancer Res. 68:1593–1600. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kunze E, Schulz H, Adamek M and Gabius HJ:
Long-term administration of galactoside-specific mistletoe lectin
in an animal model: no protection against N-butyl-N-
(4-hydroxybutyl)-nitrosamine-induced urinary bladder carcinogenesis
in rats and no induction of a relevant local cellular immune
response. J Cancer Res Clin Oncol. 126:125–138. 2000. View Article : Google Scholar
|
|
99
|
Fukushima S, Hirose M, Tsuda H, Shirai T
and Hirao K: Histological classification of urinary bladder cancers
in rats induced by N-butyl-n-(4-hydroxybutyl)nitrosamine. Gann.
67:81–90. 1976.PubMed/NCBI
|
|
100
|
Becci PJ, Thompson HJ, Strum JM, et al:
N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder
cancer in C57BL/6 X DBA/2 F1 mice as a useful model for study of
chemoprevention of cancer with retinoids. Cancer Res. 41:927–932.
1981.PubMed/NCBI
|
|
101
|
Herman CJ, Vegt PD, Debruyne FM, Vooijs GP
and Ramaekers FC: Squamous and transitional elements in rat bladder
carcinomas induced by N-butyl-N-4-hydroxybutyl-nitrosamine (BBN). A
study of cytokeratin expression. Am J Pathol. 120:419–426.
1985.PubMed/NCBI
|
|
102
|
Hicks RM and Wakefield JS: Rapid induction
of bladder cancer in rats with N-methyl-N-nitrosourea. I.
Histology. Chem Biol Interact. 5:139–152. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Steinberg GD, Brendler CB, Ichikawa T,
Squire RA and Isaacs JT: Characterization of an
N-methyl-N-nitrosourea-induced autochthonous rat bladder cancer
model. Cancer Res. 50:6668–6674. 1990.PubMed/NCBI
|
|
104
|
Russo J, Russo IH, Rogers AE, van Zwieten
MJ and Gusterson B: Pathology of tumours in laboratory animals
Tumours of the rat Tumours of the mammary gland. IARC Sci Publ.
47–78. 1990.PubMed/NCBI
|
|
105
|
Wu JT, Han BM, Yu SQ, Wang HP and Xia SJ:
Androgen receptor is a potential therapeutic target for bladder
cancer. Urology. 75:820–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li Y, Zheng Y, Izumi K, et al: Androgen
activates beta-catenin signaling in bladder cancer cells. Endocr
Relat Cancer. 20:293–304. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kunze E, Graewe T, Scherber S, Weber J and
Gellhar P: Cell cycle dependence of N-methyl-N-nitrosourea-induced
tumour development in the proliferating, partially resected rat
urinary bladder. Br J Exp Pathol. 70:125–142. 1989.PubMed/NCBI
|
|
108
|
Tian B, Wang Z, Zhao Y, et al: Effects of
curcumin on bladder cancer cells and development of urothelial
tumors in a rat bladder carcinogenesis model. Cancer Lett.
264:299–308. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fragoso MF, Prado MG, Barbosa L, Rocha NS
and Barbisan LF: Inhibition of mouse urinary bladder carcinogenesis
by açai fruit (Euterpe oleraceae Martius) intake. Plant Foods Hum
Nutr. 67:235–241. 2012.
|
|
110
|
Bidinotto LT, Spinardi-Barbisan AL, Rocha
NS, Salvadori DM and Barbisan LF: Effects of ginger (Zingiber
officinale Roscoe) on DNA damage and development of urothelial
tumors in a mouse bladder carcinogenesis model. Environ Mol
Mutagen. 47:624–630. 2006. View Article : Google Scholar
|
|
111
|
Jaenisch R and Mintz B: Simian virus 40
DNA sequences in DNA of healthy adult mice derived from
preimplantation blastocysts injected with viral DNA. Proc Natl Acad
Sci USA. 71:1250–1254. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hanahan D, Wagner EF and Palmiter RD: The
origins of oncomice: a history of the first transgenic mice
genetically engineered to develop cancer. Genes Dev. 21:2258–2270.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lin JH, Zhao H and Sun TT: A
tissue-specific promoter that can drive a foreign gene to express
in the suprabasal urothelial cells of transgenic mice. Proc Natl
Acad Sci USA. 92:679–683. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang ZT, Pak J, Shapiro E, Sun TT and Wu
XR: Urothelium- specific expression of an oncogene in transgenic
mice induced the formation of carcinoma in situ and invasive
transitional cell carcinoma. Cancer Res. 59:3512–3517.
1999.PubMed/NCBI
|
|
115
|
Grippo PJ and Sandgren EP: Highly invasive
transitional cell carcinoma of the bladder in a simian virus 40
T-antigen transgenic mouse model. Am J Pathol. 157:805–813. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Koss LG: Bladder cancer from a perspective
of 40 years. J Cell Biochem Suppl. 16I:23–29. 1992.PubMed/NCBI
|
|
117
|
Zhang ZT, Pak J, Huang HY, et al: Role of
Ha-ras activation in superficial papillary pathway of urothelial
tumor formation. Oncogene. 20:1973–1980. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jebar AH, Hurst CD, Tomlinson DC, Johnston
C, Taylor CF and Knowles MA: FGFR3 and Ras gene mutations are
mutually exclusive genetic events in urothelial cell carcinoma.
Oncogene. 24:5218–5225. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kompier LC, Lurkin I, van der Aa MN, van
Rhijn BW, van der Kwast TH and Zwarthoff EC: FGFR3, HRAS, KRAS,
NRAS and PIK3CA mutations in bladder cancer and their potential as
biomarkers for surveillance and therapy. PLoS One. 5:e138212010.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Cheng J, Huang H, Zhang ZT, et al:
Overexpression of epidermal growth factor receptor in urothelium
elicits urothelial hyperplasia and promotes bladder tumor growth.
Cancer Res. 62:4157–4163. 2002.PubMed/NCBI
|
|
121
|
Lindgren D, Liedberg F, Andersson A, et
al: Molecular characterization of early-stage bladder carcinomas by
expression profiles, FGFR3 mutation status, and loss of 9q.
Oncogene. 25:2685–2696. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Puzio-Kuter AM, Castillo-Martin M, Kinkade
CW, et al: Inactivation of p53 and Pten promotes invasive bladder
cancer. Genes Dev. 23:675–680. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ayala de la Peña F, Kanasaki K, Kanasaki
M, Tangirala N, Maeda G and Kalluri R: Loss of p53 and acquisition
of angiogenic microRNA profile are insufficient to facilitate
progression of bladder urothelial carcinoma in situ to invasive
carcinoma. J Biol Chem. 286:20778–20787. 2011.PubMed/NCBI
|
|
124
|
Ho PL, Lay EJ, Jian W, Parra D and Chan
KS: Stat3 activation in urothelial stem cells leads to direct
progression to invasive bladder cancer. Cancer Res. 72:3135–3142.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ogawa K, Murasaki T, Sugiura S, Nakanishi
M and Shirai T: Organ differences in the impact of p27(kip1)
deficiency on carcinogenesis induced by N-methyl-N-nitrosourea. J
Appl Toxicol. 33:471–479. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Baffa R, Fassan M, Sevignani C, et al:
Fez1/Lzts1-deficient mice are more susceptible to
N-butyl-N-(4-hydroxybutil) nitrosamine (BBN) carcinogenesis.
Carcinogenesis. 29:846–848. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Slocum SL and Kensler TW: Nrf2: control of
sensitivity to carcinogens. Arch Toxicol. 85:273–284. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Fukushima S, Friedell GH, Jacobs JB and
Cohen SM: Effect of L-tryptophan and sodium saccharin on urinary
tract carcinogenesis initiated by
N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide. Cancer Res.
41:3100–3103. 1981.
|
|
129
|
Gibbs RA, Weinstock GM, Metzker ML, et al;
Rat Genome Sequencing Project Consortium. Genome sequence of the
Brown Norway rat yields insights into mammalian evolution. Nature.
428:493–521. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Mouse Genome Sequencing Consortium.
Waterston RH, Lindblad-Toh K, et al: Initial sequencing and
comparative analysis of the mouse genome. Nature. 420:520–562.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Kitada K, Ishishita S, Tosaka K, et al:
Transposon-tagged mutagenesis in the rat. Nat Methods. 4:131–133.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Geurts AM, Cost GJ, Freyvert Y, et al:
Knockout rats via embryo microinjection of zinc-finger nucleases.
Science. 325:4332009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Corpet DE and Pierre F: How good are
rodent models of carcinogenesis in predicting efficacy in humans? A
systematic review and meta-analysis of colon chemoprevention in
rats, mice and men. Eur J Cancer. 41:1911–1922. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zeng J, Sun Y, Wu K, et al:
Chemopreventive and chemotherapeutic effects of intravesical
silibinin against bladder cancer by acting on mitochondria. Mol
Cancer Ther. 10:104–116. 2011. View Article : Google Scholar : PubMed/NCBI
|