|
1
|
Molaro A, Falciatori I, Hodges E, Aravin
AA, Marran K, Rafii S, McCombie WR, Smith AD and Hannon GJ: Two
waves of de novo methylation during mouse germ cell development.
Genes Dev. 28:1544–1549. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Verma A, Rajput S, De S, Kumar R,
Chakravarty AK and Datta TK: Genome-wide profiling of sperm DNA
methylation in relation to buffalo (Bubalus bubalis) bull
fertility. Theriogenology. 82:750–759, e751. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xu C and Song N: Epigenetic regulation in
spermatogenesis. Zhong Hua Nan Ke Xue. 20:387–391. 2014.(In
Chinese).
|
|
4
|
Dogra S, Sona C, Kumar A and Yadav PN:
Epigenetic regulation of G protein coupled receptor signaling and
its implications in psychiatric disorders. Int J Biochem Cell Biol.
16:S1357–S2725. 2016.
|
|
5
|
Wang P, Zhang H, Hou H, Wang Q, Li Y,
Huang Y, Xie L, Gao F, He S and Li L: Cell cycle arrest induced by
inhibitors of epigenetic modifications in maize (Zea mays) seedling
leaves: Characterization of the process and possible mechanisms
involved. New Phytol. Apr 4–2016.(Epub ahead of print). View Article : Google Scholar
|
|
6
|
Cheng P, Chen H, Zhang RP, Liu SR and
Zhou-Cun A: Polymorphism in DNMT1 may modify the susceptibility to
oligospermia. Reprod Biomed Online. 28:644–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Albertini DF: Relevant and irrelevant
translational discovery and male infertility: The case of the Y
chromosome and more! J Assist Reprod Genet. 31:1113–1114. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen J, Xiao HJ, Qi T, Chen DL, Long HM
and Liu SH: Rare earths exposure and male infertility: The injury
mechanism study of rare earths on male mice and human sperm.
Environ Sci Pollut Res Int. 22:2076–2086. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Komiya A, Kato T, Kawauchi Y, Watanabe A
and Fuse H: Clinical factors associated with sperm DNA
fragmentation in male patients with infertility. Scientific World
Journal. 2014:8683032014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cheng BW, Guo H, Li ZF, Ma L, Wang YL,
Yang LJ, Ye JJ and Zheng S: Identification of null and duplicated
alleles for forensic DYS549, DYS527 and DYS459 in male infertility
population. Yi Chuan. 36:786–792. 2014.(In Chinese). PubMed/NCBI
|
|
11
|
Katib AA, AlHawsawi K, Motair W and Bawa
AM: Secondary infertility and the aging male, overview. Cent
European J Urol. 67:184–188. 2014.PubMed/NCBI
|
|
12
|
Griseri P, Garrone O, Lo Sardo A,
Monteverde M, Rusmini M, Tonissi F, Merlano M, Bruzzi P, Lo Nigro C
and Ceccherini I: Genetic and epigenetic factors affect RET gene
expression in breast cancer cell lines and influence survival in
patients. Oncotarget. Mar 28–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
13
|
DeVries A and Vercelli D: Epigenetic
Mechanisms in Asthma. Ann Am Thorac Soc. 13(Suppl 1): S48–S50.
2016.PubMed/NCBI
|
|
14
|
Kim SY, Morales CR, Gillette TG and Hill
JA: Epigenetic regulation in heart failure. Curr Opin Cardiol.
31:255–265. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jena SC, Kumar S, Rajput S, Roy B, Verma
A, Kumaresan A, Mohanty TK, De S, Kumar R and Datta TK:
Differential methylation status of IGF2-H19 locus does not affect
the fertility of crossbred bulls but some of the CTCF binding sites
could be potentially important. Mol Reprod Dev. 81:350–362. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
KuramochiMiyagawa S, KitaKojima K,
Shiromoto Y, Ito D, Koshima H and Nakano T: DNA methylation in
mouse testes. Methods Mol Biol. 1093:97–109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Schütte B, El Hajj N, Kuhtz J, Nanda I,
Gromoll J, Hahn T, Dittrich M, Schorsch M, Müller T and Haaf T:
Broad DNA methylation changes of spermatogenesis, inflammation and
immune response-related genes in a subgroup of sperm samples for
assisted reproduction. Andrology. 1:822–829. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kläver R, Tüttelmann F, Bleiziffer A, Haaf
T, Kliesch S and Gromoll J: DNA methylation in spermatozoa as a
prospective marker in andrology. Andrology. 1:731–740. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Calicchio R, Doridot L, Miralles F, Méhats
C and Vaiman D: DNA methylation, an epigenetic mode of gene
expression regulation in reproductive science. Curr Pharm Des.
20:1726–1750. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gan H, Wen L, Liao S, Lin X, Ma T, Liu J,
Song CX, Wang M, He C, Han C, et al: Dynamics of
5-hydroxymethylcytosine during mouse spermatogenesis. Nat Commun.
4:19952013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Boissonnas CC, Jouannet P and Jammes H:
Epigenetic disorders and male subfertility. Fertil Steril.
99:624–631. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mychasiuk R, Harker A, Ilnytskyy S and
Gibb R: Paternal stress prior to conception alters DNA methylation
and behaviour of developing rat offspring. Neuroscience.
241:100–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Paluch BE, Naqash AR, Brumberger Z, Nemeth
MJ and Griffiths EA: Epigenetics: A primer for clinicians. Blood
Rev. Feb 26–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu X, Zhou P, Lu Y and Luo Y: Progresses
of DNA methylation in common ocular tumor. Zhonghua Yan Ke Za Zhi.
51:950–954. 2015.(In Chinese). PubMed/NCBI
|
|
25
|
Wijenayake S and Storey KB: The role of
DNA methylation during anoxia tolerance in a freshwater turtle
(Trachemys scripta elegans). J Comp Physiol B. 186:333–342. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ko YG, Yun J, Park HJ, Tanaka S, Shiota K
and Cho JH: Dynamic methylation pattern of the methyltransferase1o
(Dnmt1o) 5′-flanking region during mouse oogenesis and
spermatogenesis. Mol Reprod Dev. 80:212–222. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Okamura E, Matsuzaki H, Sakaguchi R,
Takahashi T, Fukamizu A and Tanimoto K: The H19 imprinting control
region mediates preimplantation imprinted methylation of nearby
sequences in yeast artificial chromosome transgenic mice. Mol Cell
Biol. 33:858–871. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Meikar O, Da Ros M and Kotaja N:
Epigenetic regulation of male germ cell differentiation. Subcell
Biochem. 61:119–138. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bose R, Adiga SK, D'Souza F, Salian SR,
Uppangala S, Kalthur G, Jain N, Radhakrishnan RA, Bhat N,
Krishnamurthy H, et al: Germ cell abnormalities in streptozotocin
induced diabetic mice do not correlate with blood glucose level. J
Assist Reprod Genet. 29:1405–1413. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Saferali A, Moussette S, Chan D, Trassler
J, Chen T, Rozen R and Nauvoma AK: DNA methyltransferase 1 (Dnmt1)
mutation affects Snrpn imprinting in the mouse male germ line.
Genome. 55:673–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kato Y and Nozaki M: Distinct DNA
methylation dynamics of spermatogenic cell-specific intronless
genes is associated with CpG content. PLoS One. 7:e436582012.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang GL, Zhang XF, Feng YM, Li L, Huynh
E, Sun XF, Sun ZY and Shen W: Exposure to bisphenol A results in a
decline in mouse spermatogenesis. Reprod Fertil Dev. 25:847–859.
2013. View
Article : Google Scholar : PubMed/NCBI
|
|
33
|
Coral S, Covre A, Nicolay HJ, Parisi G,
Rizzo A, Colizzi F, Dalla Santa S, Fonsatti E, Fratta E, Sigalotti
L, et al: Epigenetic remodelling of gene expression profiles of
neoplastic and normal tissues: Immunotherapeutic implications. Br J
Cancer. 107:1116–1124. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jenkins TG and Carrell DT: The sperm
epigenome and potential implications for the developing embryo.
Reproduction. 143:727–734. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Carrell DT: Epigenetics of the male
gamete. Fertil Steril. 97:267–274. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
vanMontfoort AP, Hanssen LL, de Sutter P,
Viville S, Geraedts JP and de Boer P: Assisted reproduction
treatment and epigenetic inheritance. Hum Reprod Update.
18:171–197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Marques CJ, Joao Pinho M, Carvalho F,
Bieche I, Barros A and Sousa M: DNA methylation imprinting marks
and DNA methyltransferase expression in human spermatogenic cell
stages. Epigenetics. 6:1354–1361. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Niles KM, Chan D, La Salle S, Oakes CC and
Trasler JM: Critical period of nonpromoter DNA methylation
acquisition during prenatal male germ cell development. PLoS One.
6:e241562011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rajender S, Avery K and Agarwal A:
Epigenetics, spermatogenesis and male infertility. Mutat Res.
727:62–71. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
LeBouc Y, Rossignol S, Azzi S, Brioude F,
Cabrol S, Gicquel C and Netchine I: Epigenetics, genomic imprinting
and developmental disorders. Bull Acad Natl Med. 194:287–297.
2010.(In French). PubMed/NCBI
|
|
41
|
NavarroCosta P, Nogueira P, Carvalho M,
Leal F, Cordeiro I, CalhazJorge C, Gonçalves J and Plancha CE:
Incorrect DNA methylation of the DAZL promoter CpG island
associates with defective human sperm. Hum Reprod. 25:2647–2654.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takashima S, Takehashi M, Lee J, Chuma S,
Okano M, Hata K, Suetake I, Nakatsuji N, Miyoshi H, Tajima S, et
al: Abnormal DNA methyltransferase expression in mouse germline
stem cells results in spermatogenic defects. Biol Reprod.
81:155–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yaman R and Grandjean V: Timing of entry
of meiosis depends on a mark generated by DNA methyltransferase 3a
in testis. Mol Reprod Dev. 73:390–397. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tucker KL, Beard C, Dausmann J,
JacksonGrusby L, Laird PW, Lei H, Li E and Jaenisch R: Germ-line
passage is required for establishment of methylation and expression
patterns of imprinted but not of nonimprinted genes. Genes Dev.
10:1008–1020. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gebert C, Kunkel D, Grinberg A and Pfeifer
K: H19 imprinting control region methylation requires an imprinted
environment only in the male germ line. Mol Cell Biol.
30:1108–1115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Colosimo A, Di Rocco G, Curini V, Russo V,
Capacchietti G, Berardinelli P, Mattioli M and Barboni B:
Characterization of the methylation status of five imprinted genes
in sheep gametes. Anim Genet. 40:900–908. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Boissonnas CC, Abdalaoui HE, Haelewyn V,
Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J and Jammes
H: Specific epigenetic alterations of IGF2-H19 locus in spermatozoa
from infertile men. Eur J Hum Genet. 18:73–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Trasler JM: Epigenetics in
spermatogenesis. Mol Cell Endocrinol. 306:33–36. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Feil R: Epigenetic asymmetry in the zygote
and mammalian development. Int J Dev Biol. 53:191–201. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schoenmakers S, Wassenaar E, Hoogerbrugge
JW, Laven JS, Grootegoed JA and Baarends WM: Female meiotic sex
chromosome inactivation in chicken. PLoS Genet. 5:e10004662009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Marques CJ, Francisco T, Sousa S, Carvalho
F, Barros A and Sousa M: Methylation defects of imprinted genes in
human testicular spermatozoa. Fertil Steril. 94:585–594. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Godmann M, Lambrot R and Kimmins S: The
dynamic epigenetic program in male germ cells: Its role in
spermatogenesis, testis cancer, and its response to the
environment. Microsc Res Tech. 72:603–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Henckel A and Feil R: Differential
epigenetic marking on imprinted genes and consequences in human
diseases. Med Sci (Paris). 24:747–752. 2008.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Houshdaran S, Cortessis VK, Siegmund K,
Yang A, Laird PW and Sokol RZ: Widespread epigenetic abnormalities
suggest a broad DNA methylation erasure defect in abnormal human
sperm. PLoS One. 2:e12892007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tanaka H: Regulation of gene expression in
spermatogenesis. Tanpakushitsu Kakusan Koso. 52(Suppl 1):
2116–2123. 2007.(In Japanese). PubMed/NCBI
|
|
56
|
Rijlaarsdam MA, Tax DM, Gillis AJ,
Dorssers LC, Koestler DC, de Ridder J and Looijenga LH: Genome wide
DNA methylation profiles provide clues to the origin and
pathogenesis of germ cell tumors. PLoS One. 10:e01221462015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Minor A, Chow V and Ma S: Aberrant DNA
methylation at imprinted genes in testicular sperm retrieved from
men with obstructive azoospermia and undergoing vasectomy reversal.
Reproduction. 141:749–757. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Peltomäki P: DNA methylation changes in
human testicular cancer. Biochim Biophys Acta. 1096:187–196. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kato Y, Kaneda M, Hata K, Kumaki K, Hisano
M, Kohara Y, Okano M, Li E, Nozaki M and Sasaki H: Role of the
Dnmt3 family in de novo methylation of imprinted and repetitive
sequences during male germ cell development in the mouse. Hum Mol
Genet. 16:2272–2280. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Oakes CC, La Salle S, Smiraglia DJ,
Robaire B and Trasler JM: Developmental acquisition of genome-wide
DNA methylation occurs prior to meiosis in male germ cells. Dev
Biol. 307:368–379. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Delaval K, Govin J, Cerqueira F, Rousseaux
S, Khochbin S and Feil R: Differential histone modifications mark
mouse imprinting control regions during spermatogenesis. EMBO J.
26:720–729. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
PaoloniGiacobino A, D'Aiuto L, Cirio MC,
Reinhart B and Chaillet JR: Conserved features of imprinted
differentially methylated domains. Gene. 399:33–45. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chong S, Vickaryous N, Ashe A, Zamudio N,
Youngson N, Hemley S, Stopka T, Skoultchi A, Matthews J, Scott HS,
et al: Modifiers of epigenetic reprogramming show paternal effects
in the mouse. Nat Genet. 39:614–622. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
PaoloniGiacobino A: Epigenetics in
reproductive medicine. Pediatr Res. 61:51R–57R. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Omisanjo OA, Biermann K, Hartmann S,
Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W and
Steger K: DNMT1 and HDAC1 gene expression in impaired
spermatogenesis and testicular cancer. Histochem Cell Biol.
127:175–181. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gunes S, Arslan MA, Hekim GN and Asci R:
The role of epigenetics in idiopathic male infertility. J Assist
Reprod Genet. Mar 3–2016.(Epub ahead of print). View Article : Google Scholar
|
|
67
|
Laurentino SS, Borgmann J and Gromoll J:
On the origin of sperm epigenetic heterogeneity. Reproduction
REP-15-0436. 2016.
|
|
68
|
Casas E and Vavouri T: Sperm epigenomics:
Challenges and opportunities. Front Genet. 5:3302014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rousseaux S, Faure AK, Thévenon J,
Escoffier E, Lestrat C, Govin J, Hennebicq S, Sèle B, Caron C and
Khochbin S: Epigenetics of the sperm cell. Gynecol Obstet Fertil.
34:831–835. 2006.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
70
|
La Salle S and Trasler JM: Dynamic
expression of DNMT3a and DNMT3b isoforms during male germ cell
development in the mouse. Dev Biol. 296:71–82. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Riesewijk AM, Hu L, Schulz U, Tariverdian
G, Höglund P, Kere J, Ropers HH and Kalscheuer VM: Monoallelic
expression of human PEG1/MEST is paralleled by parent-specific
methylation in fetuses. Genomics. 42:236–244. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kerjean A, Dupont JM, Vasseur C, Le
Tessier D, Cuisset L, Pàldi A, Jouannet P and Jeanpierre M:
Establishment of the paternal methylation imprint of the human H19
and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet.
9:2183–2187. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li Z, Dai H, Martos SN, Xu B, Gao Y, Li T,
Zhu G, Schones DE and Wang Z: Distinct roles of DNMT1-dependent and
DNMT1-independent methylation patterns in the genome of mouse
embryonic stem cells. Genome Biol. 16:1152015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hartmann S, Bergmann M, Bohle RM, Weidner
W and Steger K: Genetic imprinting during impaired spermatogenesis.
Mol Hum Reprod. 12:407–411. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Roberts AR, Blewitt ME, Youngson NA,
Whitelaw E and Chong S: Reduced dosage of the modifiers of
epigenetic reprogramming Dnmt1, Dnmt3L, SmcHD1 and Foxo3a has no
detectable effect on mouse telomere length in vivo. Chromosoma.
120:377–385. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ray D, Wu A, Wilkinson JE, Murphy HS, Lu
Q, KluveBeckerman B, Liepnieks JJ, Benson M, Yung R and Richardson
B: Aging in heterozygous Dnmt1-deficient mice: Effects on survival,
the DNA methylation genes, and the development of amyloidosis. J
Gerontol A Biol Sci Med Sci. 61:115–124. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Matsuoka T, Kawai K, Ando S, Sugita S,
Kandori S, Kojima T, Miyazaki J and Nishiyama H: DNA
methyltransferase-3 like protein expression in various histological
types of testicular germ cell tumor. Jpn J Clin Oncol hyw012. 2016.
View Article : Google Scholar
|
|
78
|
Vlachogiannis G, Niederhuth CE, Tuna S,
Stathopoulou A, Viiri K, de Rooij DG, Jenner RG, Schmitz RJ and Ooi
SK: The Dnmt3L ADD Domain Controls Cytosine Methylation
Establishment during Spermatogenesis. Cell Rep. 15:S2211–S1247.
2015.
|
|
79
|
Liao HF, Chen WS, Chen YH, Kao TH, Tseng
YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, et al: DNMT3L
promotes quiescence in postnatal spermatogonial progenitor cells.
Development. 141:2402–2413. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yiran Z, Meiling Z, Zhichao Z, Yunjiao Z
and Xin M: Epigenetic regulation of genomic imprinting in germline
cells and preimplantation embryos. Yi Chuan. 38:103–108. 2016.(In
Chinese). PubMed/NCBI
|
|
81
|
von Meyenn F and Reik W: Forget the
Parents: Epigenetic Reprogramming in Human Germ Cells. Cell.
161:1248–1251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chaillet JR, Vogt TF, Beier DR and Leder
P: Parental-specific methylation of an imprinted transgene is
established during gametogenesis and progressively changes during
embryogenesis. Cell. 66:77–83. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hajder M, Hajder E and Husic A: The
Effects of Total Motile Sperm Count on Spontaneous Pregnancy Rate
and Pregnancy After IUI Treatment in Couples with Male Factor and
Unexplained Infertility. Medical archives. 70:39–43. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mintziori G, Kita M, Duntas L and Goulis
DG: Consequences of hyperthyroidism in male and female fertility:
Pathophysiology and current management. J Endocrinol Invest. Mar
8–2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dupree JM, Dickey RM and Lipshultz LI:
Inequity between male and female coverage in state infertility
laws. Fertil Steril. Mar 5–2016.(Epub ahead of print). View Article : Google Scholar
|
|
86
|
Bolduc S, Fischer MA, Deceuninck G and
Thabet M: Factors predicting overall success: A review of 747
microsurgical vasovasostomies. Can Urol Assoc J. 1:388–394.
2007.PubMed/NCBI
|
|
87
|
Liang J, Zhang Y, Yu Y, Sun W, Jing J and
Liu R: Effect of chromosomal polymorphisms of different genders on
fertilization rate of fresh IVF-ICSI embryo transfer cycles. Reprod
Biomed Online. 29:436–444. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Oldereid NB, Hanevik HI, Bakkevig I,
Romundstad LB, Magnus Ø, Hazekamp J, Hentemann M, Eikeland SN,
Skrede S, Reitan IR, et al: Pregnancy outcome according to male
diagnosis after ICSI with non-ejaculated sperm compared with
ejaculated sperm controls. Reprod Biomed Online. 29:417–423. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wosnitzer M, Goldstein M and Hardy MP:
Review of Azoospermia. Spermatogenesis. 4:e282182014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
GuerreroBosagna C and Skinner MK:
Environmentally induced epigenetic transgenerational inheritance of
male infertility. Curr Opin Genet Dev. 26:79–88. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Komiya A, Kawauchi Y, Kato T, Watanabe A,
Tanii I and Fuse H: Sperm nuclear vacuoles in relation to acrosome
reactions and sperm motility. Scientific World Journal.
2014:1789702014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Xu AM, Liu BJ and Wang ZJ: DAZL and male
infertility: an update. Zhonghua Nan Ke Xue. 20:647–650. 2014.(In
Chinese). PubMed/NCBI
|
|
93
|
Khazaie Y and Nasr Esfahani MH: MicroRNA
and Male Infertility: A Potential for Diagnosis. Int J Fertil
Steril. 8:113–118. 2014.PubMed/NCBI
|
|
94
|
Barazani Y, Agarwal A and Sabanegh ES Jr:
Functional sperm testing and the role of proteomics in the
evaluation of male infertility. Urology. 84:255–261. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Komori K, Tsujimura A, Okamoto Y, Matsuoka
Y, Takao T, Miyagawa Y, Takada S, Nonomura N and Okuyama A:
Relationship between substances in seminal plasma and Acrobeads
Test results. Fertil Steril. 91:179–184. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dada R, Kumar M, Jesudasan R, Fernández
JL, Gosálvez J and Agarwal A: Epigenetics and its role in male
infertility. J Assist Reprod Genet. 29:213–223. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bhattacharyya T, Gregorova S, Mihola O,
Anger M, Sebestova J, Denny P, Simecek P and Forejt J: Mechanistic
basis of infertility of mouse intersubspecific hybrids. Proc Natl
Acad Sci USA. 110:E468–E477. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Pacheco SE, Houseman EA, Christensen BC,
Marsit CJ, Kelsey KT, Sigman M and Boekelheide K: Integrative DNA
methylation and gene expression analyses identify DNA packaging and
epigenetic regulatory genes associated with low motility sperm.
PLoS One. 6:e202802011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Soubry A, Hoyo C, Jirtle RL and Murphy SK:
A paternal environmental legacy: Evidence for epigenetic
inheritance through the male germ line. BioEssays. 36:359–371.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Owen CM and Segars JH Jr: Imprinting
disorders and assisted reproductive technology. Semin Reprod Med.
27:417–428. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Childs AJ, Saunders PT and Anderson RA:
Modelling germ cell development in vitro. Mol Hum Reprod.
14:501–511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cortessis VK, Thomas DC, Levine AJ, Breton
CV, Mack TM, Siegmund KD, Haile RW and Laird PW: Environmental
epigenetics: Prospects for studying epigenetic mediation of
exposure-response relationships. Hum Genet. 131:1565–1589. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Berthaut I, Montjean D, Dessolle L, Morcel
K, Deluen F, Poirot C, Bashamboo A, McElreavey K and Ravel C:
Effect of temozolomide on male gametes: An epigenetic risk to the
offspring? J Assist Reprod Genet. 30:827–833. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Crews D: Epigenetics and its implications
for behavioral neuroendocrinology. Front Neuroendocrinol.
29:344–357. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gabory A, Attig L and Junien C: Epigenetic
mechanisms involved in developmental nutritional programming. World
J Diabetes. 2:164–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Katari S, Turan N, Bibikova M, Erinle O,
Chalian R, Foster M, Gaughan JP, Coutifaris C and Sapienza C: DNA
methylation and gene expression differences in children conceived
in vitro or in vivo. Hum Mol Genet. 18:3769–3778. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Feuer SK, Camarano L and Rinaudo PF: ART
and health: Clinical outcomes and insights on molecular mechanisms
from rodent studies. Mol Hum Reprod. 19:189–204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zama AM and Uzumcu M: Epigenetic effects
of endocrine-disrupting chemicals on female reproduction: An
ovarian perspective. Front Neuroendocrinol. 31:420–439. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Niemitz EL and Feinberg AP: Epigenetics
and assisted reproductive technology: A call for investigation. Am
J Hum Genet. 74:599–609. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lee J and Shinohara T: Epigenetic
modifications and self-renewal regulation of mouse germline stem
cells. Cell Res. 21:1164–1171. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li L, Le F, Wang LY, Xu XR, Lou HY, Zheng
YM, Sheng JZ, Huang HF and Jin F: Normal epigenetic inheritance in
mice conceived by in vitro fertilization and embryo transfer. J
Zhejiang Univ Sci B. 12:796–804. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wasson JA, Ruppersburg CC and Katz DJ:
Restoring totipotency through epigenetic reprogramming. Brief Funct
Genomics. 12:118–128. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Daxinger L and Whitelaw E:
Transgenerational epigenetic inheritance: More questions than
answers. Genome Res. 20:1623–1628. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Skinner MK: Environmental epigenomics and
disease susceptibility. EMBO Rep. 12:620–622. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kitamura A, Miyauchi N, Hamada H, Hiura H,
Chiba H, Okae H, Sato A, John RM and Arima T: Epigenetic
alterations in sperm associated with male infertility. Congenit
Anom (Kyoto). 55:133–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Marques CJ, Costa P, Vaz B, Carvalho F,
Fernandes S, Barros A and Sousa M: Abnormal methylation of
imprinted genes in human sperm is associated with oligozoospermia.
Mol Hum Reprod. 14:67–74. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Montjean D, Ravel C, Benkhalifa M,
CohenBacrie P, Berthaut I, Bashamboo A and McElreavey K:
Methylation changes in mature sperm deoxyribonucleic acid from
oligozoospermic men: Assessment of genetic variants and assisted
reproductive technology outcome. Fertil Steril. 100:1241–1247.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kobayashi H, Hiura H, John RM, Sato A,
Otsu E, Kobayashi N, Suzuki R, Suzuki F, Hayashi C, Utsunomiya T,
et al: DNA methylation errors at imprinted loci after assisted
conception originate in the parental sperm. Eur J Hum Genet.
17:1582–1591. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Pliushch G, Schneider E, Schneider T, El
Hajj N, Rösner S, Strowski T and Haaf T: In vitro maturation of
oocytes is not associated with altered deoxyribonucleic acid
methylation patterns in children from in vitro fertilization or
intracytoplasmic sperm injection. Fertil Steril. 103:720–727. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zheng HY, Shi XY, Wang LL, Wu YQ, Chen SL
and Zhang L: Study of DNA methylation patterns of imprinted genes
in children born after assisted reproductive technologies reveals
no imprinting errors: A pilot study. Exp Ther Med. 2:751–755.
2011.PubMed/NCBI
|
|
121
|
Xu J, Zhang A, Zhang Z, Wang P, Qian Y, He
L, Shi H, Xing Q and Du J: DNA methylation levels of imprinted and
nonimprinted genes DMRs associated with defective human
spermatozoa. Andrologia. Jan 25–2016.(Epub ahead of print).
View Article : Google Scholar
|