|
1
|
Davidson A and Diamond B: Autoimmune
diseases. N Engl J Med. 345:340–350. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hollan I, Meroni PL, Ahearn JM, Tervaert
JW Cohen, Curran S, Goodyear CS, Hestad KA, Kahaleh B, Riggio M,
Shields K and Wasko MC: Cardiovascular disease in autoimmune
rheumatic diseases. Autoimmun Rev. 12:1004–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cooper GS, Bynum ML and Somers EC: Recent
insights in the epidemiology of autoimmune diseases: Improved
prevalence estimates and understanding of clustering of diseases. J
Autoimmun. 33:197–207. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hayter SM and Cook MC: Updated assessment
of the prevalence, spectrum and case definition of autoimmune
disease. Autoimmun Rev. 11:754–765. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wahren-Herlenius M and Dörner T:
Immunopathogenic mechanisms of systemic autoimmune disease. Lancet.
382:819–831. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Somers EC, Thomas SL, Smeeth L and Hall
AJ: Autoimmune diseases co-occurring within individuals and within
families: A systematic review. Epidemiology. 17:202–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fina-Aviles F, Medina-Peralta M,
Mendez-Boo L, Hermosilla E, Elorza JM, Garcia-Gil M, Ramos R,
Bolibar B, Javaid MK, Edwards CJ, et al: The descriptive
epidemiology of rheumatoid arthritis in Catalonia: A retrospective
study using routinely collected data. Clin Rheumatol. 35:751–757.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cotsapas C, Voight BF, Rossin E, Lage K,
Neale BM, Wallace C, Abecasis GR, Barrett JC, Behrens T, Cho J, et
al: Pervasive sharing of genetic effects in autoimmune disease.
PLoS Genet. 7:e10022542011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maruotti N, d'Onofrio F and Cantatore FP:
Metabolic syndrome and chronic arthritis: Effects of anti-TNF-α
therapy. Clin Exp Med. 27:433–438. 2015. View Article : Google Scholar
|
|
10
|
Bilecik NA, Tuna S, Samanci N, Balci N and
Akbaş H: Prevalence of metabolic syndrome in women with rheumatoid
arthritis and effective factors. Int J Clin Exp Med. 7:2258–2256.
2014.PubMed/NCBI
|
|
11
|
Zhang J, Fu L, Shi J, Chen X, Li Y, Ma B
and Zhang Y: The risk of metabolic syndrome in patients with
rheumatoid arthritis: A meta-analysis of observational studies.
PLoS One. 8:e781512013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Johnston MJ, MacDonald JA and McKay DM:
Parasitic helminths: A pharmacopeia of anti-inflammatory molecules.
Parasitology. 136:125–147. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Richard-Miceli C and Criswell LA: Emerging
patterns of genetic overlap across autoimmune disorders. Genome
Med. 4:62012. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Im CH, Kim NR, Kang JW, Kim JH, Kang JY,
Bae GB, Nam EJ and Kang YM: Inflammatory burden interacts with
conventional cardiovascular risk factors for carotid plaque
formation in rheumatoid arthritis. Rheumatology (Oxford).
9:808–815. 2015. View Article : Google Scholar
|
|
15
|
Rubbert-Roth A: Assessing the safety of
biologic agents in patients with rheumatoid arthritis. Rheumatology
(Oxford). 51 Suppl 5:v38–v47. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Greenwood BM, Voller A and Herrick EM:
Suppression of adjuvant arthritis by infection with a strain of the
rodent malaria parasite Plasmodium berghei. Ann Rheum Dis.
29:321–333. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pearson DJ and Taylor G: The influence of
the nematode Syphacia oblevata on adjuvant arthritis in the rat.
Immunology. 29:391–396. 1975.PubMed/NCBI
|
|
18
|
Rocha FA, Leite AK, Pompeu MM, Cunha TM,
Verri WA Jr, Soares FM, Castro RR and Cunha FQ: Protective effect
of an extract from Ascaris suum in experimental arthritis models.
Infect Immun. 76:2736–2745. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Osada Y, Shimizu S, Kumagai T, Yamada S
and Kanazawa T: Schistosoma mansoni infection reduces severity of
collagen-induced arthritis via down-regulation of pro-inflammatory
mediators. Int J Parasitol. 39:457–464. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zaccone P, Fehervari Z, Phillips JM, Dunne
DW and Cooke A: Parasitic worms and inflammatory diseases. Parasite
Immunol. 28:515–523. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Greenwood BM, Herrick EM and Voller A: Can
parasitic infection suppress autoimmune disease? Proc R Soc Med.
63:19–20. 1970.PubMed/NCBI
|
|
22
|
Espinoza-Jiménez A, Rivera-Montoya I,
Cárdenas-Arreola R, Morán Land and Terrazas LI: Taenia crassiceps
infection attenuates multiple low-dose streptozotocin-induced
diabetes. J Biomed Biotechnol. 2010:8505412010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Taylor G and Walker J: CharlesHarrison,
Blackley 1820-1900. Clin Allergy. 3:103–108. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Strachan DP: Hay fever, hygiene, and
household size. BMJ. 299:1259–1260. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rook GA: 99th Dahlem conference on
infection, inflammation and chronic inflammatory disorders:
Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis.
Clin Exp Immunol. 160:70–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Reyes JL, Espinoza-Jiménez AF, González
MI, Verdin L and Terrazas LI: Taenia crassiceps infection abrogates
experimental autoimmune encephalomyelitis. Cell Immunol. 267:77–87.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
La Flamme AC, Ruddenklau K and Bäckström
BT: Schistosomiasis decreases central nervous system inflammation
and alters the progression of experimental autoimmune
encephalomyelitis. Infect Immun. 71:4996–5004. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Somers EC, Thomas SL, Smeeth L and Hall
AJ: Autoimmune diseases co-occurring within individuals and within
families: A systematic review. Epidemiology. 17:202–227. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McKay DM: The beneficial helminth
parasite? Parasitology. 132:1–12. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Graepel R, Leung G, Wang A, Villemaire M,
Jirik FR, Sharkey KA, McDougall JJ and McKay DM: Murine autoimmune
arthritis is exaggerated by infection with the rat tapeworm,
Hymenolepis diminuta. Int J Parasitol. 43:593–601. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hunter MM, Wang A and McKay DM: Helminth
infection enhances disease in a murine TH2 model of colitis.
Gastroenterology. 132:1320–1330. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen CC, Louie S, McCormick B, Walker WA
and Shi HN: Concurrent infection with an intestinal helminth
parasite impairs host resistance to enteric Citrobacter rodentium
and enhances Citrobacter-induced colitis in mice. Infect Immun.
73:5468–5481. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shi M, Wang A, Prescott D, Waterhouse CC,
Zhang S, McDougall JJ, Sharkey KA and McKay DM: Infection with an
intestinal helminth parasite reduces Freund's complete
adjuvant-induced monoarthritis in mice. Arthritis Rheum.
63:434–444. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Balic A, Harcus Y, Holland MJ and Maizels
RM: Selective maturation of dendritic cells by Nippostrongylus
brasiliensis-secreted proteins drives Th2 immune responses. Eur J
Immunol. 34:3047–3059. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Smits HH, Everts B, Hartgers FC and
Yazdanbakhsh M: Chronic helminth infections protect against
allergic diseases by active regulatory processes. Curr Allergy
Asthma Rep. 10:3–12. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Harn DA, McDonald J, Atochina O and
Da'dara AA: Modulation of host immune responses by helminth
glycans. Immunol Rev. 230:247–257. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Daniłowicz-Luebert E, O'Regan NL,
Steinfelder S and Hartmann S: Modulation of specific and
allergy-related immune responses by helminths. J Biomed Biotechnol.
2011:8215782011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bouchery T, Kyle R, Ronchese F and Le Gros
G: The differentiation of CD4 (+) T-helper cell subsets in the
context of helminth parasite infection. Front Immunol. 5:4872014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vignali DA, Crocker P, Bickle QD, Cobbold
S, Waldmann H and Taylor MG: A role for CD4+ but not CD8+ T cells
in immunity to Schistosoma mansoni induced by 20 krad-irradiated
and Ro 11-3128-terminated infections. Immunology. 67:466–472.
1989.PubMed/NCBI
|
|
40
|
Katona IM, Urban JF Jr and Finkelman FD:
The role of L3T4+ and Lyt-2+ T cells in the IgE response and
immunity to Nippostrongylus brasiliensis. J Immunol. 140:3206–3211.
1988.PubMed/NCBI
|
|
41
|
Urban JF Jr, Noben-Trauth N, Donaldson DD,
Madden KB, Morris SC, Collins M and Finkelman FD: IL-13, IL-4Ralpha
and Stat6 are required for the expulsion of the gastrointestinal
nematode parasite Nippostrongylus brasiliensis. Immunity.
8:255–264. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Allen JE and Maizels RM: Diversity and
dialogue in immunity to helminths. Nat Rev Immunol. 11:375–358.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg
A, Wang Q, Killeen N, Urban JF Jr, Guo L and Paul WE: Conditional
deletion of Gata3 shows its essential function in T (H)1-T (H)2
responses. Nat Immunol. 5:1157–1165. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Chen L, Gao W, Hou X, Gu Y, Gui
L, Huang D, Liu M, Ren C, Wang S and Shen J: IL-17 neutralization
significantly ameliorates hepatic granulomatous inflammation and
liver damage in Schistosoma japonicum infected mice. Eur J Immunol.
42:1523–1535. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rutitzky LI, da Rosa JR Lopes and
Stadecker MJ: Severe CD4 T cell-mediated immunopathology in murine
schistosomiasis is dependent on IL-12p40 and correlates with high
levels of IL-17. J Immunol. 175:3920–3926. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Baumgart M, Tompkins F, Leng J and Hesse
M: Naturally occurring CD4+Foxp3+ regulatory T cells are an
essential, IL-10-independent part of the immunoregulatory network
in Schistosoma mansoni egg-induced inflammation. J Immunol.
176:5374–5387. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Taylor MD, LeGoff L, Harris A, Malone E,
Allen JE and Maizels RM: Removal of regulatory T cell activity
reverses hyporesponsiveness and leads to filarial parasite
clearance in vivo. J Immunol. 174:4924–4933. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Taylor JJ, Mohrs M and Pearce EJ:
Regulatory T cell responses develop in parallel to Th responses and
control the magnitude and phenotype of the Th effector population.
J Immunol. 176:5839–5847. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Faulkner H, Humphreys N, Renauld JC, Van
Snick J and Grencis R: Interleukin-9 is involved in host protective
immunity to intestinal nematode infection. Eur J Immunol.
27:2536–2540. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Harris ED Jr: Rheumatoid arthritis.
Pathophysiology and implications for therapy. N Engl J Med.
322:1277–2289. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Schulze-Koops H and Kalden JR: The balance
of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract Res Clin
Rheumatol. 15:677–691. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Choy EH and Panayi GS: Cytokine pathways
and joint inflammation in rheumatoid arthritis. N Engl J Med.
344:907–916. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kong YY, Feige U, Sarosi I, Bolon B,
Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, et al:
Activated T cells regulate bone loss and joint destruction in
adjuvant arthritis through osteoprotegerin ligand. Nature.
402:304–309. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mitamura M, Nakano N, Yonekawa T, Shan L,
Kaise T, Kobayashi T, Yamashita K, Kikkawa H and Kinoshita M: T
cells are involved in the development of arthritis induced by
anti-type II collagen antibody. Int Immunopharmacol. 7:1360–1368.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Billingham ME: Models of arthritis and the
search for anti-arthritic drugs. Pharmacol Ther. 21:389–428. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cho YG, Cho ML, Min SY and Kim HY: Type II
collagen autoimmunity in a mouse model of human rheumatoid
arthritis. Autoimmun Rev. 7:65–70. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Balkwill FR and Burke F: The cytokine
network. Immunol Today. 10:299–304. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shingu M and Nagai Y, Isayama T, Naono T,
Nobunaga M and Nagai Y: The effects of cytokines on
metalloproteinase inhibitors (TIMP) and collagenase production by
human chondrocytes and TIMP production by synovial cells and
endothelial cells. Clin Exp Immunol. 94:145–149. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vermeire K, Heremans H, Vandeputte M,
Huang S, Billiau A and Matthys P: Accelerated collagen-induced
arthritis in IFN-gamma receptor-deficient mice. J Immunol.
158:5507–5513. 1997.PubMed/NCBI
|
|
60
|
Kelchtermans H, Billiau A and Matthys P:
How interferon-gamma keeps autoimmune diseases in check. Trends
Immunol. 29:479–486. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guedez YB, Whittington KB, Clayton JL,
Joosten LA, van de Loo FA, van den Berg WB and Rosloniec EF:
Genetic ablation of interferon-gamma up-regulates interleukin-1beta
expression and enables the elicitation of collagen-induced
arthritis in a nonsusceptible mouse strain. Arthritis Rheum.
44:2413–2424. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Manoury-Schwartz B, Chiocchia G, Bessis N,
Abehsira-Amar O, Batteux F, Muller S, Huang S, Boissier MC and
Fournier C: High susceptibility to collagen-induced arthritis in
mice lacking IFN-gamma receptors. J Immunol. 158:5501–5506.
1997.PubMed/NCBI
|
|
63
|
Remmers EF, Plenge RM, Lee AT, Graham RR,
Hom G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F, et
al: STAT4 and the risk of rheumatoid arthritis and systemic lupus
erythematosus. N Engl J Med. 357:977–986. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Trinchieri G: Interleukin-12 and the
regulation of innate resistance and adaptive immunity. Nat Rev
Immunol. 3:133–146. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Boissier MC: Cell and cytokine imbalances
in rheumatoid synovitis. Joint Bone Spine. 78:230–234. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen R, Tao Y, Qiu K, Huang W, Huang C and
Li J: Association of circulating Treg cells with disease activity
in patients with rheumatoid arthritis. Nan Fang Yi Ke Da Xue Xue
Bao. 32:886–889. 2012.(In Chinese). PubMed/NCBI
|
|
67
|
Groux H, O'Garra A, Bigler M, Rouleau M,
Antonenko S, de Vries JE and Roncarolo MG: A CD4+ T-cell subset
inhibits antigen-specific T-cell responses and prevents colitis.
Nature. 389:737–742. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
68
|
O'Garra A and Vieira P: Regulatory T cells
and mechanisms of immune system control. Nat Med. 10:801–805. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schopf LR, Hoffmann KF, Cheever AW, Urban
JF Jr and Wynn TA: IL-10 is critical for host resistance and
survival during gastrointestinal helminth infection. J Immunol.
168:2383–2392. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Harrington LE, Hatton RD, Mangan PR,
Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin
17-producing CD4+ effector T cells develop via a lineage distinct
from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–1132.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
71
|
Langrish CL, Chen Y, Blumenschein WM,
Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA and
Cua DJ: IL-23 drives a pathogenic T cell population that induces
autoimmune inflammation. J Exp Med. 201:233–240. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hirota K, Hashimoto M, Yoshitomi H, Tanaka
S, Nomura T, Yamaguchi T, Iwakura Y, Sakaguchi N and Sakaguchi S: T
cell self-reactivity forms a cytokine milieu for spontaneous
development of IL-17+ Th cells that cause autoimmune arthritis. J
Exp Med. 204:41–47. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Nakae S, Nambu A, Sudo K and Iwakura Y:
Suppression of immune induction of collagen-induced arthritis in
IL-17-deficient mice. J Immunol. 171:6173–6177. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lubberts E, van den Bersselaar L,
Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK,
Joosten LA and van den Berg WB: IL-17 promotes bone erosion in
murine collagen-induced arthritis through loss of the receptor
activator of NF-kappaB ligand/osteoprotegerin balance. J Immunol.
170:2655–2662. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
van den Berg WB and Miossec P: IL-17 as a
future therapeutic target for rheumatoid arthritis. Nat Rev
Rheumatol. 5:549–553. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hirota K, Yoshitomi H, Hashimoto M, Maeda
S, Teradaira S, Sugimoto N, Yamaguchi T, Nomura T, Ito H, Nakamura
T, et al: Preferential recruitment of CCR6-expressing Th17 cells to
inflamed joints via CCL20 in rheumatoid arthritis and its animal
model. J Exp Med. 204:2803–2812. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cua DJ, Sherlock J, Chen Y, Murphy CA,
Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, et al:
Interleukin-23 rather than interleukin-12 is the critical cytokine
for autoimmune inflammation of the brain. Nature. 421:744–748.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tallima H, Salah M, Guirguis FR and E Ridi
R: Transforming growth factor-beta and Th17 responses in resistance
to primary murine Schistosomiasis mansoni. Cytokine. 48:239–245.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen Z and O'Shea JJ: Regulation of IL-17
production in human lymphocytes. Cytokine. 41:71–78. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Azizi G, Jadidi-Niaragh F and Mirshafiey
A: Th17 cells in immunopathogenesis and treatment of rheumatoid
arthritis. Int J Rheum Dis. 16:243–253. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Roeleveld DM and Koenders MI: The role of
the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis
pathogenesis and developments in cytokine immunotherapy. Cytokine.
74:101–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Song X, Shen J, Wen H, Zhong Z, Luo Q, Chu
D, Qi Y, Xu Y and Wei W: Impact of Schistosoma japonicum infection
on collagen-induced arthritis in DBA/1 mice: A murine model of
human rheumatoid arthritis. PLoS One. 6:e234532011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mattsson L, Larsson P, Erlandsson-Harris
H, Klareskog L and Harris RA: Parasite-mediated down-regulation of
collagen-induced arthritis (CIA) in DA rats. Clin Exp Immunol.
122:477–483. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Brennan FM, Chantry D, Turner M, Foxwell
B, Maini R and Feldmann M: Detection of transforming growth
factor-beta in rheumatoid arthritis synovial tissue: Lack of effect
on spontaneous cytokine production in joint cell cultures. Clin Exp
Immunol. 81:278–285. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pohlers D, Beyer A, Koczan D, Wilhelm T,
Thiesen HJ and Kinne RW: Constitutive upregulation of the
transforming growth factor-beta pathway in rheumatoid arthritis
synovial fibroblasts. Arthritis Res Ther. 9:R592007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gonzalo-Gil E, do G, Santiago B, Dotor J,
Pablos JL and Galindo M: Transforming growth factor (TGF)-β
signalling is increased in rheumatoid synovium but TGF-β blockade
does not modify experimental arthritis. Clin Exp Immunol.
174:245–255. 2013.PubMed/NCBI
|
|
87
|
McGovern JL, Nguyen DX, Notley CA, Mauri
C, Isenberg DA and Ehrenstein MR: Th17 cells are restrained by Treg
cells via the inhibition of interleukin-6 in patients with
rheumatoid arthritis responding to anti-tumor necrosis factor
antibody therapy. Arthritis Rheum. 64:3129–3138. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Oh SJ and DH Chung DH: Invariant NKT cells
producing IL-4 or IL-10, but not IFN-gamma, inhibit the Th1
response in experimental autoimmune encephalomyelitis, whereas none
of these cells inhibits the Th17 response. J Immunol.
186:6815–6821. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Song GG, Bae SC, Kim JH and Lee YH:
Interleukin-4, interleukin-4 receptor, and interleukin-18
polymorphisms and rheumatoid arthritis: A meta-analysis. Immunol
Invest. 42:455–469. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Finnegan A, Grusby MJ, Kaplan CD, O'Neill
SK, Eibel H, Koreny T, Czipri M, Mikecz K and Zhang J: IL-4 and
IL-12 regulate proteoglycan-induced arthritis through
Stat-dependent mechanisms. J Immunol. 169:3345–3352. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cao Y, Brombacher F, Tunyogi-Csapo M,
Glant TT and Finnegan A: Interleukin-4 regulates
proteoglycan-induced arthritis by specifically suppressing the
innate immune response. Arthritis Rheum. 56:861–870. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kageyama Y, Koide Y, Yoshida A, Uchijima
M, Arai T, Miyamoto S, Ozeki T, Hiyoshi M, Kushida K and Inoue T:
Reduced susceptibility to collagen-induced arthritis in mice
deficient in IFN-gamma receptor. J Immunol. 161:1542–1548.
1998.PubMed/NCBI
|
|
93
|
De Klerck B, Carpentier I, Lories RJ,
Habraken Y, Piette J, Carmeliet G, Beyaert R, Billiau A and Matthys
P: Enhanced osteoclast development in collagen-induced arthritis in
interferon-gamma receptor knock-out mice as related to increased
splenic CD11b+ myelopoiesis. Arthritis Res Ther. 6:R220–R231. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Joosten LA, Lubberts E, Helsen MM, Saxne
T, Coenen-de Roo CJ, Heinegård D and van den Berg WB: Protection
against cartilage and bone destruction by systemic interleukin-4
treatment in established murine type II collagen-induced arthritis.
Arthritis Res. 1:81–91. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
95
|
Heo YJ, Joo YB, Oh HJ, Park MK, Heo YM,
Cho ML, Kwok SK, Ju JH, Park KS, Cho SG, et al: IL-10 suppresses
Th17 cells and promotes regulatory T cells in the CD4+ T cell
population of rheumatoid arthritis patients. Immunol Lett.
127:150–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Gu Y, Yang J, Ouyang X, Liu W, Li H, Yang
J, Bromberg J, Chen SH, Mayer L, Unkeless JC and Xiong H:
Interleukin 10 suppresses Th17 cytokines secreted by macrophages
and T cells. Eur J Immunol. 38:1807–1813. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang J, Lin R, Zhang W, Li L, Gottstein B,
Blagosklonov O, Lü G, Zhang C, Lu X, Vuitton DA and Wen H:
Transcriptional profiles of cytokine/chemokine factors of immune
cell-homing to the parasitic lesions: A comprehensive one-year
course study in the liver of E. PLoS One. 9:e916382014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Anthony RM, Rutitzky LI, Urban JF Jr,
Stadecker MJ and Gause WC: Protective immune mechanisms in helminth
infection. Nat Rev Immunol. 7:975–987. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Layland LE, Mages J, Loddenkemper C,
Hoerauf A, Wagner H, Lang R and da Costa CU: Pronounced phenotype
in activated regulatory T cells during a chronic helminth
infection. J Immunol. 184:713–724. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tuxun T, Wang JH, Lin RY, Shan JY, Tai QW,
Li T, Zhang JH, Zhao JM and Wen H: Th17/Treg imbalance in patients
with liver cystic echinococcosis. Parasite Immunol. 34:520–527.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lee DM and Weinblatt ME: Rheumatoid
arthritis. Lancet. 358:903–911. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Carranza F, Falcón CR, Nuñez N, Knubel C,
Correa SG, Bianco I, Maccioni M, Fretes R, Triquell MF, Motrán CC
and Cervi L: Helminth antigens enable CpG-activated dendritic cells
to inhibit the symptoms of collagen-induced arthritis through
Foxp3+ regulatory T cells. PLoS One. 7:e403562012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
van Amelsfort JM, van Roon JA, Noordegraaf
M, Jacobs KM, Bijlsma JW, Lafeber FP and Taams LS: Proinflammatory
mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated
suppression in rheumatoid arthritis. Arthritis Rheum. 56:732–742.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Morgan ME, Flierman R, van Duivenvoorde
LM, Witteveen HJ, van Ewijk W, van Laar JM, de Vries RR and Toes
RE: Effective treatment of collagen-induced arthritis by adoptive
transfer of CD25+ regulatory T cells. Arthritis Rheum.
52:2212–2221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Esensten JH, Wofsy D and Bluestone JA:
Regulatory T cells as therapeutic targets in rheumatoid arthritis.
Nat Rev Rheumatol. 5:560–565. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yang J, Zhao J, Yang Y, Zhang L, Yang X,
Zhu X, Ji M, Sun N and Su C: Schistosoma japonicum egg antigens
stimulate CD4 CD25 T cells and modulate airway inflammation in a
murine model of asthma. Immunology. 120:8–18. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Mo HM, Liu WQ, Lei JH, Cheng YL, Wang CZ
and Li YL: Schistosoma japonicum eggs modulate the activity of CD4+
CD25+ Tregs and prevent development of colitis in mice. Exp
Parasitol. 116:385–389. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jankovic D, Kullberg MC, Caspar P and Sher
A: Parasite-induced Th2 polarization is associated with
down-regulated dendritic cell responsiveness to Th1 stimuli and a
transient delay in T lymphocyte cycling. J Immunol. 173:2419–2427.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cervi L, MacDonald AS, Kane C,
Dzierszinski F and Pearce EJ: Cutting edge: Dendritic cells
copulsed with microbial and helminth antigens undergo modified
maturation, segregate the antigens to distinct intracellular
compartments and concurrently induce microbe-specific Th1 and
helminth-specific Th2 responses. J Immunol. 172:2016–1020. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang L, Fu J, Sheng K, Li Y, Song S, Li
P, Song S, Wang Q, Chen J, Yu J and Wei W: Bone marrow CD11b
(+)F4/80 (+) dendritic cells ameliorate collagen-induced arthritis
through modulating the balance between Treg and Th17. Int
Immunopharmacol. 25:96–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Saei A and Hadjati J: Tolerogenic
dendritic cells: Key regulators of peripheral tolerance in health
and disease. Int Arch Allergy Immunol. 161:293–303. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Stoop JN, Harry RA, von Delwig A, Isaacs
JD, Robinson JH and Hilkens CM: Therapeutic effect of tolerogenic
dendritic cells in established collagen-induced arthritis is
associated with a reduction in Th17 responses. Arthritis Rheum.
62:3656–3665. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Torres-Aguilar H, Aguilar-Ruiz SR,
González-Pérez G, Munguía R, Bajaña S, Meraz-Ríos MA and
Sánchez-Torres C: Tolerogenic dendritic cells generated with
different immunosuppressive cytokines induce antigen-specific
anergy and regulatory properties in memory CD4+ T cells. J Immunol.
184:1765–1775. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Falcón C, Carranza F, Martínez FF, Knubel
CP, Masih DT, Motrán CC and Cervi L: Excretory-secretory products
(ESP) from Fasciola hepatica induce tolerogenic properties in
myeloid dendritic cells. Vet Immunol Immunopathol. 137:36–46. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Falcón CR, Carranza FA, Aoki P, Motrán CC
and Cervi L: Adoptive transfer of dendritic cells pulsed with
Fasciola hepatica antigens and lipopolysaccharides confers
protection against fasciolosis in mice. J Infect Dis. 205:506–514.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Harnett W and Harnett MM: Helminth-derived
immunomodulators: Can understanding the worm produce the pill? Nat
Rev Immunol. 10:278–284. 2010. View Article : Google Scholar : PubMed/NCBI
|