Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2017 Volume 13 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2017 Volume 13 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review)

  • Authors:
    • Ofer Prager
    • Alon Friedman
    • Yaffa Mizrachi Nebenzahl
  • View Affiliations / Copyright

    Affiliations: Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer‑Sheva 84101, Israel, The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer‑Sheva 84101, Israel
    Copyright: © Prager et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 799-809
    |
    Published online on: January 24, 2017
       https://doi.org/10.3892/etm.2017.4082
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bacterial meningitis is an inflammatory disease of the meninges of the central nervous system (CNS). Streptococcus pneumoniae (S. pneumoniae), Neisseria meningitidis, and Haemophilus influenzae are the major bacterial pathogens causing meningitis with S. pneumoniae being responsible for two thirds of meningitis cases in the developed world. To reach the CNS following nasopharyngeal colonization and bacteraemia, the bacteria traverse from the circulation across the blood brain barrier (BBB) and choroid plexus. While the BBB has a protective role in healthy individuals by shielding the CNS from neurotoxic substances circulating in the blood and maintaining the homeostasis within the brain environment, dysfunction of the BBB is associated with the pathophysiology of numerous neurologic disorders, including bacterial meningitis. Inflammatory processes, including release of a broad range of cytokines and free radicals, further increase vascular permeability and contribute to the excessive neural damage observed. Injury to the cerebral microvasculature and loss of blood flow auto‑regulation promote increased intracranial pressure and may lead to vascular occlusion. Other common complications commonly associated with meningitis include abnormal neuronal hyper‑excitability (e.g., seizures) and loss of hearing. Despite the existence of antibiotic treatment and adjuvant therapy, the relatively high mortality rate and the severe outcomes among survivors of pneumococcal meningitis in developing and developed countries increase the urgency in the requirement of discovering novel biomarkers for the early diagnosis as well as novel treatment approaches. The present review aimed to explore the changes in the brain vascular barriers, which allow S. pneumoniae to invade the CNS, and describe the resultant brain injuries following bacterial meningitis.
View Figures
View References

1 

VanDemark M: Acute bacterial meningitis: Current review and treatment update. Crit Care Nurs Clin North Am. 25:351–361. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Lynch JP III and Zhanel GG: Streptococcus pneumoniae: Epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med. 16:217–225. 2010.PubMed/NCBI

3 

Schmidt H, Heimann B, Djukic M, Mazurek C, Fels C, Wallesch CW and Nau R: Neuropsychological sequelae of bacterial and viral meningitis. Brain. 129:333–345. 2006. View Article : Google Scholar : PubMed/NCBI

4 

van de Beek D, Schmand B, de Gans J, Weisfelt M, Vaessen H, Dankert J and Vermeulen M: Cognitive impairment in adults with good recovery after bacterial meningitis. J Infect Dis. 186:1047–1052. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, et al: Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis. 196:1346–1354. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Mook-Kanamori BB, Geldhoff M, van der Poll T and van de Beek D: Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev. 24:557–591. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Brugger SD, Hathaway LJ and Mühlemann K: Detection of Streptococcus pneumoniae strain cocolonization in the nasopharynx. J Clin Microbiol. 47:1750–1766. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Aas JA, Paster BJ, Stokes LN, Olsen I and Dewhirst FE: Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 43:5721–5732. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Moschioni M, Donati C, Muzzi A, Masignani V, Censini S, Hanage WP, Bishop CJ, Reis JN, Normark S, Henriques-Normark B, et al: Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. J Infect Dis. 197:888–896. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, et al: A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol. 190:5480–5492. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Burnaugh AM, Frantz LJ and King SJ: Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol. 190:221–230. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Feldman C, Mitchell TJ, Andrew PW, Boulnois GJ, Read RC, Todd HC, Cole PJ and Wilson R: The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro. Microb Pathog. 9:275–284. 1990. View Article : Google Scholar : PubMed/NCBI

13 

Davis KM, Akinbi HT, Standish AJ and Weiser JN: Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog. 4:e10002412008. View Article : Google Scholar : PubMed/NCBI

14 

Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ and Janoff EN: Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci USA. 100:4215–4220. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Shaper M, Hollingshead SK, Benjamin WH Jr and Briles DE: PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun. 72:5031–5040. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Bogaert D, Thompson CM, Trzcinski K, Malley R and Lipsitch M: The role of complement in innate and adaptive immunity to pneumococcal colonization and sepsis in a murine model. Vaccine. 28:681–685. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E and Rohde M: Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun. 73:4653–4667. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Ogunniyi AD, Mahdi LK, Jennings MP, McEwan AG, McDevitt CA, Van der Hoek MB, Bagley CJ, Hoffmann P, Gould KA and Paton JC: Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J Bacteriol. 192:4489–4497. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Anderton JM, Rajam G, Romero-Steiner S, Summer S, Kowalczyk AP, Carlone GM, Sampson JS and Ades EW: E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb Pathog. 42:225–236. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R and Hammerschmidt S: PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun. 73:2680–2689. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Hammerschmidt S, Talay SR, Brandtzaeg P and Chhatwal GS: SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol. 25:1113–1124. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J and Mizrachi-Nebenzahl Y: Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol. 138:290–298. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Blau K, Portnoi M, Shagan M, Kaganovich A, Rom S, Kafka D, Caspi V Chalifa, Porgador A, Givon-Lavi N, Gershoni JM, et al: Flamingo cadherin: A putative host receptor for Streptococcus pneumoniae. J Infect Dis. 195:1828–1837. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Muchnik L, Adawi A, Ohayon A, Dotan S, Malka I, Azriel S, Shagan M, Portnoi M, Kafka D, Nahmani H, et al: NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice. PLoS One. 8:e611282013. View Article : Google Scholar : PubMed/NCBI

25 

Binsker U, Kohler TP, Krauel K, Kohler S, Schwertz H and Hammerschmidt S: Pneumococcal adhesins PavB and PspC are important for the interplay with human thrombospondin-1. J Biol Chem. 290:14542–14555. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A and Masure HR: Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol. 25:819–829. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M and Tuomanen E: The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell. 102:827–837. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Kadioglu A, Weiser JN, Paton JC and Andrew PW: The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol. 6:288–301. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Abeyta M, Hardy GG and Yother J: Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun. 71:218–225. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Li J, Glover DT, Szalai AJ, Hollingshead SK and Briles DE: PspA and PspC minimize immune adherence and transfer of pneumococci from erythrocytes to macrophages through their effects on complement activation. Infect Immun. 75:5877–5885. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Jarva H, Jokiranta TS, Würzner R and Meri S: Complement resistance mechanisms of streptococci. Mol Immunol. 40:95–107. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Fassbender K, Schminke U, Ries S, Ragoschke A, Kischka U, Fatar M and Hennerici M: Endothelial-derived adhesion molecules in bacterial meningitis: Association to cytokine release and intrathecal leukocyte-recruitment. J Neuroimmunol. 74:130–134. 1997. View Article : Google Scholar : PubMed/NCBI

33 

Levi M and van der Poll T: Inflammation and coagulation. Crit Care Med. 38(2): Suppl. S26–S34. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Østerud B: Tissue factor expression in blood cells. Thromb Res. 125:(Supp 1). S31–S34. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Schoknecht K, Prager O, Vazana U, Kamintsky L, Harhausen D, Zille M, Figge L, Chassidim Y, Schellenberger E, Kovács R, et al: Monitoring stroke progression: In vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. J Cereb Blood Flow Metab. 34:1791–1801. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR and Begley DJ: Structure and function of the blood-brain barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Goldman E: Vitalfarbung am zentralnervensystem; Beitrag zur Physio-Pathologie des Plexus chorioideus und der Hirnhäute. Abhandl Konigl Preuss Akad Wiss. 1:1–60. 1913.

38 

Ohtsuki S and Terasaki T: Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 24:1745–1758. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Dutheil F, Jacob A, Dauchy S, Beaune P, Scherrmann JM, Declèves X and Loriot MA: ABC transporters and cytochromes P450 in the human central nervous system: Influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol. 6:1161–1174. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Pardridge WM: Molecular biology of the blood-brain barrier. Methods Mol Med. 89:385–399. 2003.PubMed/NCBI

41 

Hervé F, Ghinea N and Scherrmann JM: CNS delivery via adsorptive transcytosis. AAPS J. 10:455–72. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Mayor S and Pagano RE: Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 8:603–612. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN and Braeckmans K: The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol Ther. 18:561–569. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Bechmann I, Priller J, Kovac A, Böntert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U and Nitsch R: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci. 14:1651–1658. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Konsman JP, Drukarch B and Van Dam AM: (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond). 112:1–25. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Förster C: Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 130:55–70. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Abbott NJ: Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem Int. 45:545–552. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Dragunow M: Meningeal and choroid plexus cells-Novel drug targets for CNS disorders. Brain Res. 1501:32–55. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Abbott NJ, Rönnbäck L and Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7:41–53. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Kandel ER, Schwartz JH and Jessel TM: Principles of Neural Science (4th). New York: McGraw-Hill. 2000.PubMed/NCBI

51 

Swartz MN: Bacterial meningitis: More involved than just the meninges. N Engl J Med. 311:912–914. 1984. View Article : Google Scholar : PubMed/NCBI

52 

Prockop LD and Fishman RA: Experimental pneumococcal meningitis. Permeability changes influencing the concentration of sugars and macromolecules in cerebrospinal fluid. Arch Neurol. 19:449–463. 1968. View Article : Google Scholar : PubMed/NCBI

53 

Cooper AJ, Beaty HN, Oppenheimer SI, Goodner CJ and Petersdorf RG: Studies on the pathogenesis of meningitis. VII. Glucose transport and spinal fluid production in experimental pneumococcal meningitis. J Lab Clin Med. 71:473–483. 1968.PubMed/NCBI

54 

Ring A, Weiser JN and Tuomanen EI: Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest. 102:347–360. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala'Aldeen DA and Tuomanen EI: Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest. 119:1638–1646. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Quagliarello VJ, Long WJ and Scheld WM: Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest. 77:1084–1095. 1986. View Article : Google Scholar : PubMed/NCBI

57 

Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R and Heinz HP: Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun. 69:845–852. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Sharief MK, Ciardi M and Thompson EJ: Blood-brain barrier damage in patients with bacterial meningitis: Association with tumor necrosis factor-alpha but not interleukin-1 beta. J Infect Dis. 166:350–358. 1992. View Article : Google Scholar : PubMed/NCBI

59 

Freyer D, Manz R, Ziegenhorn A, Weih M, Angstwurm K, Döcke WD, Meisel A, Schumann RR, Schönfelder G, Dirnagl U and Weber JR: Cerebral endothelial cells release TNF-alpha after stimulation with cell walls of Streptococcus pneumoniae and regulate inducible nitric oxide synthase and ICAM-1 expression via autocrine loops. J Immunol. 163:4308–4314. 1999.PubMed/NCBI

60 

Mathews VP and Smith RR: Choroid plexus infections: Neuroimaging appearances of four cases. AJNR Am J Neuroradiol. 13:374–378. 1992.PubMed/NCBI

61 

Kim SY, Buckwalter M, Soreq H, Vezzani A and Kaufer D: Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 53:(Suppl 6). 37–44. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Dudda JC, Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Förster R and Martin SF: Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: Important roles for soluble factors and tissue microenvironments. Eur J Immunol. 35:1056–1065. 2005. View Article : Google Scholar : PubMed/NCBI

63 

Oyoshi MK, Elkhal A, Scott JE, Wurbel MA, Hornick JL, Campbell JJ and Geha RS: Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin. J Clin Invest. 121:2210–2220. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Xanthos DN and Sandkühler J: Neurogenic neuroinflammation: Inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 15:43–53. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Skaper SD, Giusti P and Facci L: Microglia and mast cells: Two tracks on the road to neuroinflammation. FASEB J. 26:3103–3117. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Kettenmann H, Hanisch UK, Noda M and Verkhratsky A: Physiology of microglia. Physiol Rev. 91:461–553. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Sellner J, Täuber MG and Leib SL: Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol. 96:1–16. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Schröder NW, Morath S, Alexander C, Hamann L, Hartung T, Zähringer U, Göbel UB, Weber JR and Schumann RR: Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 278:15587–15594. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR and Golenbock DT: Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA. 100:1966–1971. 2003. View Article : Google Scholar : PubMed/NCBI

70 

Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and Akira S: A Toll-like receptor recognizes bacterial DNA. Nature. 408:740–745. 2000. View Article : Google Scholar : PubMed/NCBI

71 

Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U and Kirschning CJ: Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis. 198:1028–1036. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Opitz B, Eitel J, Meixenberger K and Suttorp N: Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost. 102:1103–1109. 2009.PubMed/NCBI

73 

Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH and Styles P: Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: A magnetic resonance study. J Neurosci. 20:8153–8159. 2000.PubMed/NCBI

74 

Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, Arkwright PD, McDonald D, Geha RS, Takada H, Krause JC, et al: Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 89:403–425. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Pérez-Cerdá F, Sánchez-Gómez MV and Matute C: Pío del Río Hortega and the discovery of the oligodendrocytes. Front Neuroanat. 9:922015. View Article : Google Scholar : PubMed/NCBI

76 

Fu R, Shen Q, Xu P, Luo JJ and Tang Y: Phagocytosis of Microglia in the central nervous system diseases. Mol Neurobiol. 49:1422–1434. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Kreutzberg GW: Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19:312–328. 1996. View Article : Google Scholar : PubMed/NCBI

78 

Kim SU and de Vellis J: Microglia in health and disease. J Neurosci Res. 81:302–313. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Alonso A, Reinz E, Fatar M, Hennerici MG and Meairs S: Clearance of albumin following ultrasound-induced blood-brain barrier opening is mediated by glial but not neuronal cells. Brain Res. 1411:9–16. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Willis CL: Glia-induced reversible disruption of blood-brain barrier integrity and neuropathological response of the neurovascular unit. Toxicol Pathol. 39:172–185. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A and Kataoka Y: Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci. 112:251–254. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A and Nimmerjahn A: The role of microglia in the healthy brain. J Neurosci. 31:16064–16069. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA and Newman EA: Glial and neuronal control of brain blood flow. Nature. 468:232–243. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Simard M, Arcuino G, Takano T, Liu QS and Nedergaard M: Signaling at the gliovascular interface. J Neurosci. 23:9254–9262. 2003.PubMed/NCBI

85 

Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T and Nedergaard M: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci. 9:816–823. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Harder DR, Zhang C and Gebremedhin D: Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci. 17:27–31. 2002.PubMed/NCBI

87 

Nash B, Thomson CE, Linington C, Arthur AT, McClure JD, McBride MW and Barnett SC: Functional duality of astrocytes in myelination. J Neurosci. 31:13028–13038. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Kim KS: Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury. Nat Rev Neurosci. 4:376–385. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Merrill JE and Benveniste EN: Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci. 19:331–338. 1996. View Article : Google Scholar : PubMed/NCBI

90 

van Furth AM, Roord JJ and van Furth R: Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun. 64:4883–4890. 1996.PubMed/NCBI

91 

Barichello T, dos Santos I, Savi GD, Simões LR, Silvestre T, Comim CM, Sachs D, Teixeira MM, Teixeira AL and Quevedo J: TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol. 221:42–45. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Barichello T, Generoso JS, Collodel A, Moreira AP and Almeida SM: Pathophysiology of acute meningitis caused by Streptococcus pneumoniae and adjunctive therapy approaches. Arq Neuropsiquiatr. 70:366–372. 2012.PubMed/NCBI

93 

Ichiyama T, Isumi H, Yoshitomi T, Nishikawa M, Matsubara T and Furukawa S: NF-kappaB activation in cerebrospinal fluid cells from patients with meningitis. Neurol Res. 24:709–712. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Gerber J, Böttcher T, Hahn M, Siemer A, Bunkowski S and Nau R: Increased mortality and spatial memory deficits in TNF-alpha-deficient mice in ceftriaxone-treated experimental pneumococcal meningitis. Neurobiol Dis. 16:133–138. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Koedel U, Winkler F, Angele B, Fontana A, Flavell RA and Pfister HW: Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Ann Neurol. 51:319–329. 2002. View Article : Google Scholar : PubMed/NCBI

96 

Saukkonen K, Sande S, Cioffe C, Wolpe S, Sherry B, Cerami A and Tuomanen E: The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med. 171:439–448. 1990. View Article : Google Scholar : PubMed/NCBI

97 

Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ and van Furth AM: Interleukin-10 negatively regulates local cytokine and chemokine production but does not influence antibacterial host defense during murine pneumococcal meningitis. Infect Immun. 71:2276–2279. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Barichello T, Fagundes GD, Generoso JS, Moreira A Paula, Costa CS, Zanatta JR, Simões LR, Petronilho F, Dal-Pizzol F, Vilela M Carvalho and Teixeira A Lucio: Brain-blood barrier breakdown and pro-inflammatory mediators in neonate rats submitted meningitis by Streptococcus pneumoniae. Brain Res. 1471:162–168. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Gruol DL and Nelson TE: Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol. 15:307–339. 1997. View Article : Google Scholar : PubMed/NCBI

100 

van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M and Lowry SF: Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis. 176:439–444. 1997. View Article : Google Scholar : PubMed/NCBI

101 

Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, Hartung HP and Pfister HW: Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain. 126:1873–1882. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Glimåker M, Olcén P and Andersson B: Interferon-gamma in cerebrospinal fluid from patients with viral and bacterial meningitis. Scand J Infect Dis. 26:141–147. 1994. View Article : Google Scholar : PubMed/NCBI

103 

McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, et al: Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6:e10011912010. View Article : Google Scholar : PubMed/NCBI

104 

Mitchell AJ, Yau B, McQuillan JA, et al: Inflammasome-dependent IFN-γ drives pathogenesis in Streptococcus pneumoniae meningitis. J Immunol. 189:4970–4980. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Howard M, O'Garra A, Ishida H, de Waal Malefyt R and de Vries J: Biological properties of interleukin 10. J Clin Immunol. 12:239–247. 1992. View Article : Google Scholar : PubMed/NCBI

106 

Kornelisse RF, Savelkoul HF, Mulder PH, Suur MH, van der Straaten PJ, van der Heijden AJ, Sukhai RN, Hählen K, Neijens HJ and de Groot R: Interleukin-10 and soluble tumor necrosis factor receptors in cerebrospinal fluid of children with bacterial meningitis. J Infect Dis. 173:1498–1502. 1996. View Article : Google Scholar : PubMed/NCBI

107 

Koedel U, Bernatowicz A, Frei K, Fontana A and Pfister HW: Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol. 157:5185–5191. 1996.PubMed/NCBI

108 

Laichalk LL, Danforth JM and Standiford TJ: Interleukin-10 inhibits neutrophil phagocytic and bactericidal activity. FEMS Immunol Med Microbiol. 15:181–187. 1996. View Article : Google Scholar : PubMed/NCBI

109 

Sanjabi S, Zenewicz LA, Kamanaka M and Flavell RA: Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 9:447–453. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Li MO and Flavell RA: Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10. Immunity. 28:468–476. 2008. View Article : Google Scholar : PubMed/NCBI

111 

Suzumura A, Sawada M, Yamamoto H and Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol. 151:2150–2158. 1993.PubMed/NCBI

112 

Ledeboer A, Brevé JJ, Poole S, Tilders FJ and Van Dam AM: Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia. 30:134–142. 2000. View Article : Google Scholar : PubMed/NCBI

113 

Levy N, Milikovsky DZ, Baranauskas G, Vinogradov E, David Y, Ketzef M, Abutbul S, Weissberg I, Kamintsky L, Fleidervish I, et al: Differential TGF-β signaling in glial subsets underlies IL-6-mediated epileptogenesis in mice. J Immunol. 195:1713–1722. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Malipiero U, Koedel U, Pfister HW, Levéen P, Bürki K, Reith W and Fontana A: TGFbeta receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 129:2404–2415. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Gerber J and Nau R: Mechanisms of injury in bacterial meningitis. Curr Opin Neurol. 23:312–318. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Ostergaard C, Yieng-Kow RV, Larsen CG, Mukaida N, Matsushima K, Benfield T, Frimodt-Møller N, Espersen F, Kharazmi A and Lundgren JD: Treatment with a monocolonal antibody to IL-8 attenuates the pleocytosis in experimental pneumococcal meningitis in rabbits when given intravenously, but not intracisternally. Clin Exp Immunol. 122:207–211. 2000. View Article : Google Scholar : PubMed/NCBI

117 

Spanaus KS, Nadal D, Pfister HW, Seebach J, Widmer U, Frei K, Gloor S and Fontana A: C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. J Immunol. 158:1956–1964. 1997.PubMed/NCBI

118 

Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR and Hanisch UK: Microglial activation by components of gram-positive and -negative bacteria: Distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol. 58:1078–1089. 1999. View Article : Google Scholar : PubMed/NCBI

119 

Hanisch UK, Prinz M, Angstwurm K, Häusler KG, Kann O, Kettenmann H and Weber JR: The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. Eur J Immunol. 31:2104–2115. 2001. View Article : Google Scholar : PubMed/NCBI

120 

Carlos TM and Harlan JM: Leukocyte-endothelial adhesion molecules. Blood. 84:2068–2101. 1994.PubMed/NCBI

121 

Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Döpp EA, de Lavalette C Renardel, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD and van den Berg TK: Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol. 167:4644–4650. 2001. View Article : Google Scholar : PubMed/NCBI

122 

Stanimirovic D and Satoh K: Inflammatory mediators of cerebral endothelium: A role in ischemic brain inflammation. Brain Pathol. 10:113–126. 2000. View Article : Google Scholar : PubMed/NCBI

123 

Winkler F, Kastenbauer S, Koedel U and Pfister HW: Role of the urokinase plasminogen activator system in patients with bacterial meningitis. Neurology. 59:1350–1355. 2002. View Article : Google Scholar : PubMed/NCBI

124 

Nagase H, Visse R and Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 69:562–573. 2006. View Article : Google Scholar : PubMed/NCBI

125 

Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB and Holländer GA: Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: Association with blood-brain barrier damage and neurological sequelae. Clin Infect Dis. 31:80–84. 2000. View Article : Google Scholar : PubMed/NCBI

126 

Barichello T, Generoso JS, Simões LR, Elias SG and Quevedo J: Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxid Med Cell Longev. 2013:3714652013. View Article : Google Scholar : PubMed/NCBI

127 

Koedel U and Pfister HW: Oxidative stress in bacterial meningitis. Brain Pathol. 9:57–67. 1999. View Article : Google Scholar : PubMed/NCBI

128 

Nathan C and Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA. 97:8841–8848. 2000. View Article : Google Scholar : PubMed/NCBI

129 

Aycicek A, Iscan A, Erel O, Akcali M and Ocak AR: Oxidant and antioxidant parameters in the treatment of meningitis. Pediatr Neurol. 37:117–120. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI and Weber JR: Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest. 109:19–27. 2002. View Article : Google Scholar : PubMed/NCBI

131 

Beckman JS and Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol. 271:C1424–C1437. 1996.PubMed/NCBI

132 

Pacher P, Beckman JS and Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Halliwell B, Zhao K and Whiteman M: Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: A personal view of recent controversies. Free Radic Res. 31:651–669. 1999. View Article : Google Scholar : PubMed/NCBI

134 

Gutteridge JM: Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 41:1819–1828. 1995.PubMed/NCBI

135 

Maeda H, Okamoto T and Akaike T: Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. Biol Chem. 379:193–200. 1998. View Article : Google Scholar : PubMed/NCBI

136 

Filep JG, Beauchamp M, Baron C and Paquette Y: Peroxynitrite mediates IL-8 gene expression and production in lipopolysaccharide-stimulated human whole blood. J Immunol. 161:5656–5662. 1998.PubMed/NCBI

137 

Kastenbauer S, Koedel U, Becker BF and Pfister HW: Pneumococcal meningitis in the rat: Evaluation of peroxynitrite scavengers for adjunctive therapy. Eur J Pharmacol. 449:177–181. 2002. View Article : Google Scholar : PubMed/NCBI

138 

Klein M, Koedel U and Pfister HW: Oxidative stress in pneumococcal meningitis: A future target for adjunctive therapy? Prog Neurobiol. 80:269–280. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Kastenbauer S, Koedel U and Pfister HW: Role of peroxynitrite as a mediator of pathophysiological alterations in experimental pneumococcal meningitis. J Infect Dis. 180:1164–1170. 1999. View Article : Google Scholar : PubMed/NCBI

140 

Østergaard C, Leib SL, Rowland I and Brandt CT: Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis. BMC Infect Dis. 10:12010. View Article : Google Scholar : PubMed/NCBI

141 

Nau R, Soto A and Brück W: Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol. 58:265–274. 1999. View Article : Google Scholar : PubMed/NCBI

142 

Grandgirard D and Leib SL: Strategies to prevent neuronal damage in paediatric bacterial meningitis. Curr Opin Pediatr. 18:112–118. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schröder NW and Weber JR: Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest. 115:1607–1615. 2005. View Article : Google Scholar : PubMed/NCBI

144 

Mitchell L, Smith SH, Braun JS, Herzog KH, Weber JR and Tuomanen EI: Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis. 190:2039–2046. 2004. View Article : Google Scholar : PubMed/NCBI

145 

Malipiero U, Koedel U, Pfister HW, Levéen P, Bürki K, Reith W and Fontana A: TGFb receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 129:2404–2415. 2006. View Article : Google Scholar : PubMed/NCBI

146 

Koedel U, Scheld WM and Pfister HW: Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis. 2:721–736. 2002. View Article : Google Scholar : PubMed/NCBI

147 

Kastenbauer S and Pfister HW: Pneumococcal meningitis in adults: Spectrum of complications and prognostic factors in a series of 87 cases. Brain. 126:1015–1025. 2003. View Article : Google Scholar : PubMed/NCBI

148 

Weisfelt M, van de Beek D, Spanjaard L, Reitsma JB and de Gans J: Clinical features, complications, and outcome in adults with pneumococcal meningitis: A prospective case series. Lancet Neurol. 5:123–129. 2006. View Article : Google Scholar : PubMed/NCBI

149 

Müller M, Merkelbach S, Huss GP and Schimrigk K: Clinical relevance and frequency of transient stenoses of the middle and anterior cerebral arteries in bacterial meningitis. Stroke. 26:1399–1403. 1995. View Article : Google Scholar : PubMed/NCBI

150 

Weisfelt M, Determann RM, de Gans J, van der Ende A, Levi M, van de Beek D and Schultz MJ: Procoagulant and fibrinolytic activity in cerebrospinal fluid from adults with bacterial meningitis. J Infect. 54:545–550. 2007. View Article : Google Scholar : PubMed/NCBI

151 

Vergouwen MD, Schut ES, Troost D and van de Beek D: Diffuse cerebral intravascular coagulation and cerebral infarction in pneumococcal meningitis. Neurocrit Care. 13:217–227. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Møller K, Qvist T, Tofteng F, Sahl C, Sønderkaer S, Dethloff T, Knudsen GM and Larsen FS: Cerebral blood flow and metabolism during infusion of norepinephrine and propofol in patients with bacterial meningitis. Stroke. 35:1333–1339. 2004. View Article : Google Scholar : PubMed/NCBI

153 

Møller K, Skinhøj P, Knudsen GM and Larsen FS: Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis. Stroke. 31:1116–1122. 2000. View Article : Google Scholar : PubMed/NCBI

154 

Barone FC and Feuerstein GZ: Inflammatory mediators and stroke: New opportunities for novel therapeutics. J Cereb Blood Flow Metab. 19:819–834. 1999. View Article : Google Scholar : PubMed/NCBI

155 

Nau R, Gerber J, Bunkowski S and Brück W: Axonal injury, a neglected cause of CNS damage in bacterial meningitis. Neurology. 62:509–511. 2004. View Article : Google Scholar : PubMed/NCBI

156 

Dénes Á, Pradillo JM, Drake C, Sharp A, Warn P, Murray KN, Rohit B, Dockrell DH, Chamberlain J, Casbolt H, et al: Streptococcus pneumoniae worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ib α. Ann Neurol. 75:670–683. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Prass K, Braun JS, Dirnagl U, Meisel C and Meisel A: Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke. 37:2607–2612. 2006. View Article : Google Scholar : PubMed/NCBI

158 

Xie W, Liu Q, Feng J and Fang S: A case of bacterial meningitis complicated by venous sinus thrombosis. Neurol Sci. 36:331. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Panicio MI, Foresto RD, Mateus L, Monzillo PH, Alves MB and Silva GS: Pneumococcal meningitis, cerebral venous thrombosis, and cervical arterial dissection: A run of bad luck? Neurohospitalist. 3:20–23. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Srivastava AK, Kalita J, Haris M, Gupta RK and Misra UK: Radiological and histological changes following cerebral venous sinus thrombosis in a rat model. Neurosci Res. 65:343–346. 2009. View Article : Google Scholar : PubMed/NCBI

161 

Coutinho JM, Gerritsma JJ, Zuurbier SM and Stam J: Isolated cortical vein thrombosis: Systematic review of case reports and case series. Stroke. 45:1836–1838. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Pomeroy SL, Holmes SJ, Dodge PR and Feigin RD: Seizures and other neurologic sequelae of bacterial meningitis in children. N Engl J Med. 323:1651–1657. 1990. View Article : Google Scholar : PubMed/NCBI

163 

Murthy JM and Prabhakar S: Bacterial meningitis and epilepsy. Epilepsia. 49:(Suppl 6). S8–S12. 2008. View Article : Google Scholar

164 

Zoons E, Weisfelt M, de Gans J, Spanjaard L, Koelman JH, Reitsma JB and van de Beek D: Seizures in adults with bacterial meningitis. Neurology. 70:2109–2115. 2008. View Article : Google Scholar : PubMed/NCBI

165 

Lu CH, Huang CR, Chang WN, Chang CJ, Cheng BC, Lee PY, Lin MW and Chang HW: Community-acquired bacterial meningitis in adults: The epidemiology, timing of appropriate antimicrobial therapy, and prognostic factors. Clin Neurol Neurosurg. 104:352–358. 2002. View Article : Google Scholar : PubMed/NCBI

166 

Chin RF, Neville BG, Peckham C, Bedford H, Wade A and Scott RC: NLSTEPSS Collaborative Group: Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: Prospective population-based study. Lancet. 368:222–229. 2006. View Article : Google Scholar : PubMed/NCBI

167 

Chin RF, Neville BG and Scott RC: Meningitis is a common cause of convulsive status epilepticus with fever. Arch Dis Child. 90:66–69. 2005. View Article : Google Scholar : PubMed/NCBI

168 

Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, et al: Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol. 75:864–875. 2014. View Article : Google Scholar : PubMed/NCBI

169 

Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A and Kaufer D: Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci. 29:8927–8935. 2009. View Article : Google Scholar : PubMed/NCBI

170 

Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U and Friedman A: TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 130:535–547. 2007. View Article : Google Scholar : PubMed/NCBI

171 

Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U and Friedman A: Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 24:7829–7836. 2004. View Article : Google Scholar : PubMed/NCBI

172 

Vezzani A, French J, Bartfai T and Baram TZ: The role of inflammation in epilepsy. Nat Rev Neurol. 7:31–40. 2011. View Article : Google Scholar : PubMed/NCBI

173 

Igarashi M, Saito R, Alford BR, Filippone MV and Smith JA: Temporal bone findings in pneumococcal meningitis. Arch Otolaryngol. 99:79–83. 1974. View Article : Google Scholar : PubMed/NCBI

174 

Külahli I, Oztürk M, Bilen C, Cüreoglu S, Merhametsiz A and Cağil N: Evaluation of hearing loss with auditory brainstem responses in the early and late period of bacterial meningitis in children. J Laryngol Otol. 111:223–227. 1997. View Article : Google Scholar : PubMed/NCBI

175 

Klein M, Koedel U, Kastenbauer S and Pfister HW: Nitrogen and oxygen molecules in meningitis-associated labyrinthitis and hearing impairment. Infection. 36:2–14. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Klein M, Schmidt C, Kastenbauer S, Paul R, Kirschning CJ, Wagner H, Popp B, Pfister HW and Koedel U: MyD88-dependent immune response contributes to hearing loss in experimental pneumococcal meningitis. J Infect Dis. 195:1189–1193. 2007. View Article : Google Scholar : PubMed/NCBI

177 

Aminpour S, Tinling SP and Brodie HA: Role of tumor necrosis factor-alpha in sensorineural hearing loss after bacterial meningitis. Otol Neurotol. 26:602–609. 2005. View Article : Google Scholar : PubMed/NCBI

178 

Berg S, Trollfors B, Hugosson S, Fernell E and Svensson E: Long-term follow-up of children with bacterial meningitis with emphasis on behavioural characteristics. Eur J Pediatr. 161:330–336. 2002. View Article : Google Scholar : PubMed/NCBI

179 

Grimwood K, Anderson VA, Bond L, Catroppa C, Hore RL, Keir EH, Nolan T and Roberton DM: Adverse outcomes of bacterial meningitis in school-age survivors. Pediatrics. 95:646–656. 1995.PubMed/NCBI

180 

Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, Gottfries CG and Blennow K: A population study on blood-brain barrier function in 85-year-olds: Relation to Alzheimer's disease and vascular dementia. Neurology. 50:966–971. 1998. View Article : Google Scholar : PubMed/NCBI

181 

Schroeter ML, Abdul-Khaliq H, Krebs M, Diefenbacher A and Blasig IE: Serum markers support disease-specific glial pathology in major depression. J Affect Disord. 111:271–280. 2008. View Article : Google Scholar : PubMed/NCBI

182 

Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, Ayala AR, Licinio J, Gold HK, Kling MA, et al: Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: Clinical implications. J Clin Endocrinol Metab. 90:2522–2530. 2005. View Article : Google Scholar : PubMed/NCBI

183 

Thomas AJ, Davis S, Morris C, Jackson E, Harrison R and O'Brien JT: Increase in interleukin-1beta in late-life depression. Am J Psychiatry. 162:175–177. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Prager O, Friedman A and Nebenzahl YM: Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review). Exp Ther Med 13: 799-809, 2017.
APA
Prager, O., Friedman, A., & Nebenzahl, Y.M. (2017). Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review). Experimental and Therapeutic Medicine, 13, 799-809. https://doi.org/10.3892/etm.2017.4082
MLA
Prager, O., Friedman, A., Nebenzahl, Y. M."Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review)". Experimental and Therapeutic Medicine 13.3 (2017): 799-809.
Chicago
Prager, O., Friedman, A., Nebenzahl, Y. M."Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review)". Experimental and Therapeutic Medicine 13, no. 3 (2017): 799-809. https://doi.org/10.3892/etm.2017.4082
Copy and paste a formatted citation
x
Spandidos Publications style
Prager O, Friedman A and Nebenzahl YM: Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review). Exp Ther Med 13: 799-809, 2017.
APA
Prager, O., Friedman, A., & Nebenzahl, Y.M. (2017). Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review). Experimental and Therapeutic Medicine, 13, 799-809. https://doi.org/10.3892/etm.2017.4082
MLA
Prager, O., Friedman, A., Nebenzahl, Y. M."Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review)". Experimental and Therapeutic Medicine 13.3 (2017): 799-809.
Chicago
Prager, O., Friedman, A., Nebenzahl, Y. M."Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis (Review)". Experimental and Therapeutic Medicine 13, no. 3 (2017): 799-809. https://doi.org/10.3892/etm.2017.4082
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team