|
1
|
VanDemark M: Acute bacterial meningitis:
Current review and treatment update. Crit Care Nurs Clin North Am.
25:351–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lynch JP III and Zhanel GG: Streptococcus
pneumoniae: Epidemiology and risk factors, evolution of
antimicrobial resistance, and impact of vaccines. Curr Opin Pulm
Med. 16:217–225. 2010.PubMed/NCBI
|
|
3
|
Schmidt H, Heimann B, Djukic M, Mazurek C,
Fels C, Wallesch CW and Nau R: Neuropsychological sequelae of
bacterial and viral meningitis. Brain. 129:333–345. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
van de Beek D, Schmand B, de Gans J,
Weisfelt M, Vaessen H, Dankert J and Vermeulen M: Cognitive
impairment in adults with good recovery after bacterial meningitis.
J Infect Dis. 186:1047–1052. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hicks LA, Harrison LH, Flannery B, Hadler
JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield
R, et al: Incidence of pneumococcal disease due to non-pneumococcal
conjugate vaccine (PCV7) serotypes in the United States during the
era of widespread PCV7 vaccination, 1998–2004. J Infect Dis.
196:1346–1354. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mook-Kanamori BB, Geldhoff M, van der Poll
T and van de Beek D: Pathogenesis and pathophysiology of
pneumococcal meningitis. Clin Microbiol Rev. 24:557–591. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brugger SD, Hathaway LJ and Mühlemann K:
Detection of Streptococcus pneumoniae strain cocolonization in the
nasopharynx. J Clin Microbiol. 47:1750–1766. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Aas JA, Paster BJ, Stokes LN, Olsen I and
Dewhirst FE: Defining the normal bacterial flora of the oral
cavity. J Clin Microbiol. 43:5721–5732. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Moschioni M, Donati C, Muzzi A, Masignani
V, Censini S, Hanage WP, Bishop CJ, Reis JN, Normark S,
Henriques-Normark B, et al: Streptococcus pneumoniae contains 3
rlrA pilus variants that are clonally related. J Infect Dis.
197:888–896. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bagnoli F, Moschioni M, Donati C,
Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo
C, Sinisi A, et al: A second pilus type in Streptococcus pneumoniae
is prevalent in emerging serotypes and mediates adhesion to host
cells. J Bacteriol. 190:5480–5492. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Burnaugh AM, Frantz LJ and King SJ: Growth
of Streptococcus pneumoniae on human glycoconjugates is dependent
upon the sequential activity of bacterial exoglycosidases. J
Bacteriol. 190:221–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Feldman C, Mitchell TJ, Andrew PW,
Boulnois GJ, Read RC, Todd HC, Cole PJ and Wilson R: The effect of
Streptococcus pneumoniae pneumolysin on human respiratory
epithelium in vitro. Microb Pathog. 9:275–284. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Davis KM, Akinbi HT, Standish AJ and
Weiser JN: Resistance to mucosal lysozyme compensates for the
fitness deficit of peptidoglycan modifications by Streptococcus
pneumoniae. PLoS Pathog. 4:e10002412008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Weiser JN, Bae D, Fasching C, Scamurra RW,
Ratner AJ and Janoff EN: Antibody-enhanced pneumococcal adherence
requires IgA1 protease. Proc Natl Acad Sci USA. 100:4215–4220.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shaper M, Hollingshead SK, Benjamin WH Jr
and Briles DE: PspA protects Streptococcus pneumoniae from killing
by apolactoferrin, and antibody to PspA enhances killing of
pneumococci by apolactoferrin [corrected]. Infect Immun.
72:5031–5040. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bogaert D, Thompson CM, Trzcinski K,
Malley R and Lipsitch M: The role of complement in innate and
adaptive immunity to pneumococcal colonization and sepsis in a
murine model. Vaccine. 28:681–685. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hammerschmidt S, Wolff S, Hocke A, Rosseau
S, Müller E and Rohde M: Illustration of pneumococcal
polysaccharide capsule during adherence and invasion of epithelial
cells. Infect Immun. 73:4653–4667. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ogunniyi AD, Mahdi LK, Jennings MP, McEwan
AG, McDevitt CA, Van der Hoek MB, Bagley CJ, Hoffmann P, Gould KA
and Paton JC: Central role of manganese in regulation of stress
responses, physiology, and metabolism in Streptococcus pneumoniae.
J Bacteriol. 192:4489–4497. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Anderton JM, Rajam G, Romero-Steiner S,
Summer S, Kowalczyk AP, Carlone GM, Sampson JS and Ades EW:
E-cadherin is a receptor for the common protein pneumococcal
surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb
Pathog. 42:225–236. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pracht D, Elm C, Gerber J, Bergmann S,
Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R and Hammerschmidt S:
PavA of Streptococcus pneumoniae modulates adherence, invasion, and
meningeal inflammation. Infect Immun. 73:2680–2689. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hammerschmidt S, Talay SR, Brandtzaeg P
and Chhatwal GS: SpsA, a novel pneumococcal surface protein with
specific binding to secretory immunoglobulin A and secretory
component. Mol Microbiol. 25:1113–1124. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ling E, Feldman G, Portnoi M, Dagan R,
Overweg K, Mulholland F, Chalifa-Caspi V, Wells J and
Mizrachi-Nebenzahl Y: Glycolytic enzymes associated with the cell
surface of Streptococcus pneumoniae are antigenic in humans and
elicit protective immune responses in the mouse. Clin Exp Immunol.
138:290–298. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Blau K, Portnoi M, Shagan M, Kaganovich A,
Rom S, Kafka D, Caspi V Chalifa, Porgador A, Givon-Lavi N, Gershoni
JM, et al: Flamingo cadherin: A putative host receptor for
Streptococcus pneumoniae. J Infect Dis. 195:1828–1837. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Muchnik L, Adawi A, Ohayon A, Dotan S,
Malka I, Azriel S, Shagan M, Portnoi M, Kafka D, Nahmani H, et al:
NADH oxidase functions as an adhesin in Streptococcus pneumoniae
and elicits a protective immune response in mice. PLoS One.
8:e611282013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Binsker U, Kohler TP, Krauel K, Kohler S,
Schwertz H and Hammerschmidt S: Pneumococcal adhesins PavB and PspC
are important for the interplay with human thrombospondin-1. J Biol
Chem. 290:14542–14555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rosenow C, Ryan P, Weiser JN, Johnson S,
Fontan P, Ortqvist A and Masure HR: Contribution of novel
choline-binding proteins to adherence, colonization and
immunogenicity of Streptococcus pneumoniae. Mol Microbiol.
25:819–829. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang JR, Mostov KE, Lamm ME, Nanno M,
Shimida S, Ohwaki M and Tuomanen E: The polymeric immunoglobulin
receptor translocates pneumococci across human nasopharyngeal
epithelial cells. Cell. 102:827–837. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kadioglu A, Weiser JN, Paton JC and Andrew
PW: The role of Streptococcus pneumoniae virulence factors in host
respiratory colonization and disease. Nat Rev Microbiol. 6:288–301.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Abeyta M, Hardy GG and Yother J: Genetic
alteration of capsule type but not PspA type affects accessibility
of surface-bound complement and surface antigens of Streptococcus
pneumoniae. Infect Immun. 71:218–225. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li J, Glover DT, Szalai AJ, Hollingshead
SK and Briles DE: PspA and PspC minimize immune adherence and
transfer of pneumococci from erythrocytes to macrophages through
their effects on complement activation. Infect Immun. 75:5877–5885.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jarva H, Jokiranta TS, Würzner R and Meri
S: Complement resistance mechanisms of streptococci. Mol Immunol.
40:95–107. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fassbender K, Schminke U, Ries S,
Ragoschke A, Kischka U, Fatar M and Hennerici M:
Endothelial-derived adhesion molecules in bacterial meningitis:
Association to cytokine release and intrathecal
leukocyte-recruitment. J Neuroimmunol. 74:130–134. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Levi M and van der Poll T: Inflammation
and coagulation. Crit Care Med. 38(2): Suppl. S26–S34. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Østerud B: Tissue factor expression in
blood cells. Thromb Res. 125:(Supp 1). S31–S34. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Schoknecht K, Prager O, Vazana U,
Kamintsky L, Harhausen D, Zille M, Figge L, Chassidim Y,
Schellenberger E, Kovács R, et al: Monitoring stroke progression:
In vivo imaging of cortical perfusion, blood-brain barrier
permeability and cellular damage in the rat photothrombosis model.
J Cereb Blood Flow Metab. 34:1791–1801. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Abbott NJ, Patabendige AA, Dolman DE,
Yusof SR and Begley DJ: Structure and function of the blood-brain
barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Goldman E: Vitalfarbung am
zentralnervensystem; Beitrag zur Physio-Pathologie des Plexus
chorioideus und der Hirnhäute. Abhandl Konigl Preuss Akad Wiss.
1:1–60. 1913.
|
|
38
|
Ohtsuki S and Terasaki T: Contribution of
carrier-mediated transport systems to the blood-brain barrier as a
supporting and protecting interface for the brain; importance for
CNS drug discovery and development. Pharm Res. 24:1745–1758. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dutheil F, Jacob A, Dauchy S, Beaune P,
Scherrmann JM, Declèves X and Loriot MA: ABC transporters and
cytochromes P450 in the human central nervous system: Influence on
brain pharmacokinetics and contribution to neurodegenerative
disorders. Expert Opin Drug Metab Toxicol. 6:1161–1174. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pardridge WM: Molecular biology of the
blood-brain barrier. Methods Mol Med. 89:385–399. 2003.PubMed/NCBI
|
|
41
|
Hervé F, Ghinea N and Scherrmann JM: CNS
delivery via adsorptive transcytosis. AAPS J. 10:455–72. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Mayor S and Pagano RE: Pathways of
clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 8:603–612.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vercauteren D, Vandenbroucke RE, Jones AT,
Rejman J, Demeester J, De Smedt SC, Sanders NN and Braeckmans K:
The use of inhibitors to study endocytic pathways of gene carriers:
Optimization and pitfalls. Mol Ther. 18:561–569. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bechmann I, Priller J, Kovac A, Böntert M,
Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U and Nitsch R:
Immune surveillance of mouse brain perivascular spaces by
blood-borne macrophages. Eur J Neurosci. 14:1651–1658. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Konsman JP, Drukarch B and Van Dam AM:
(Peri)vascular production and action of pro-inflammatory cytokines
in brain pathology. Clin Sci (Lond). 112:1–25. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Förster C: Tight junctions and the
modulation of barrier function in disease. Histochem Cell Biol.
130:55–70. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Abbott NJ: Evidence for bulk flow of brain
interstitial fluid: Significance for physiology and pathology.
Neurochem Int. 45:545–552. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Dragunow M: Meningeal and choroid plexus
cells-Novel drug targets for CNS disorders. Brain Res. 1501:32–55.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Abbott NJ, Rönnbäck L and Hansson E:
Astrocyte-endothelial interactions at the blood-brain barrier. Nat
Rev Neurosci. 7:41–53. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kandel ER, Schwartz JH and Jessel TM:
Principles of Neural Science (4th). New York: McGraw-Hill.
2000.PubMed/NCBI
|
|
51
|
Swartz MN: Bacterial meningitis: More
involved than just the meninges. N Engl J Med. 311:912–914. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Prockop LD and Fishman RA: Experimental
pneumococcal meningitis. Permeability changes influencing the
concentration of sugars and macromolecules in cerebrospinal fluid.
Arch Neurol. 19:449–463. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cooper AJ, Beaty HN, Oppenheimer SI,
Goodner CJ and Petersdorf RG: Studies on the pathogenesis of
meningitis. VII. Glucose transport and spinal fluid production in
experimental pneumococcal meningitis. J Lab Clin Med. 71:473–483.
1968.PubMed/NCBI
|
|
54
|
Ring A, Weiser JN and Tuomanen EI:
Pneumococcal trafficking across the blood-brain barrier. Molecular
analysis of a novel bidirectional pathway. J Clin Invest.
102:347–360. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Orihuela CJ, Mahdavi J, Thornton J, Mann
B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala'Aldeen DA
and Tuomanen EI: Laminin receptor initiates bacterial contact with
the blood brain barrier in experimental meningitis models. J Clin
Invest. 119:1638–1646. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Quagliarello VJ, Long WJ and Scheld WM:
Morphologic alterations of the blood-brain barrier with
experimental meningitis in the rat. Temporal sequence and role of
encapsulation. J Clin Invest. 77:1084–1095. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zysk G, Schneider-Wald BK, Hwang JH, Bejo
L, Kim KS, Mitchell TJ, Hakenbeck R and Heinz HP: Pneumolysin is
the main inducer of cytotoxicity to brain microvascular endothelial
cells caused by Streptococcus pneumoniae. Infect Immun. 69:845–852.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sharief MK, Ciardi M and Thompson EJ:
Blood-brain barrier damage in patients with bacterial meningitis:
Association with tumor necrosis factor-alpha but not interleukin-1
beta. J Infect Dis. 166:350–358. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Freyer D, Manz R, Ziegenhorn A, Weih M,
Angstwurm K, Döcke WD, Meisel A, Schumann RR, Schönfelder G,
Dirnagl U and Weber JR: Cerebral endothelial cells release
TNF-alpha after stimulation with cell walls of Streptococcus
pneumoniae and regulate inducible nitric oxide synthase and ICAM-1
expression via autocrine loops. J Immunol. 163:4308–4314.
1999.PubMed/NCBI
|
|
60
|
Mathews VP and Smith RR: Choroid plexus
infections: Neuroimaging appearances of four cases. AJNR Am J
Neuroradiol. 13:374–378. 1992.PubMed/NCBI
|
|
61
|
Kim SY, Buckwalter M, Soreq H, Vezzani A
and Kaufer D: Blood-brain barrier dysfunction-induced inflammatory
signaling in brain pathology and epileptogenesis. Epilepsia.
53:(Suppl 6). 37–44. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dudda JC, Lembo A, Bachtanian E, Huehn J,
Siewert C, Hamann A, Kremmer E, Förster R and Martin SF: Dendritic
cells govern induction and reprogramming of polarized
tissue-selective homing receptor patterns of T cells: Important
roles for soluble factors and tissue microenvironments. Eur J
Immunol. 35:1056–1065. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Oyoshi MK, Elkhal A, Scott JE, Wurbel MA,
Hornick JL, Campbell JJ and Geha RS: Epicutaneous challenge of
orally immunized mice redirects antigen-specific gut-homing T cells
to the skin. J Clin Invest. 121:2210–2220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xanthos DN and Sandkühler J: Neurogenic
neuroinflammation: Inflammatory CNS reactions in response to
neuronal activity. Nat Rev Neurosci. 15:43–53. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Skaper SD, Giusti P and Facci L: Microglia
and mast cells: Two tracks on the road to neuroinflammation. FASEB
J. 26:3103–3117. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kettenmann H, Hanisch UK, Noda M and
Verkhratsky A: Physiology of microglia. Physiol Rev. 91:461–553.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sellner J, Täuber MG and Leib SL:
Pathogenesis and pathophysiology of bacterial CNS infections. Handb
Clin Neurol. 96:1–16. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schröder NW, Morath S, Alexander C, Hamann
L, Hartung T, Zähringer U, Göbel UB, Weber JR and Schumann RR:
Lipoteichoic acid (LTA) of Streptococcus pneumoniae and
Staphylococcus aureus activates immune cells via Toll-like receptor
(TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14,
whereas TLR-4 and MD-2 are not involved. J Biol Chem.
278:15587–15594. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Malley R, Henneke P, Morse SC, Cieslewicz
MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR and
Golenbock DT: Recognition of pneumolysin by Toll-like receptor 4
confers resistance to pneumococcal infection. Proc Natl Acad Sci
USA. 100:1966–1971. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hemmi H, Takeuchi O, Kawai T, Kaisho T,
Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and
Akira S: A Toll-like receptor recognizes bacterial DNA. Nature.
408:740–745. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Klein M, Obermaier B, Angele B, Pfister
HW, Wagner H, Koedel U and Kirschning CJ: Innate immunity to
pneumococcal infection of the central nervous system depends on
toll-like receptor (TLR) 2 and TLR4. J Infect Dis. 198:1028–1036.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Opitz B, Eitel J, Meixenberger K and
Suttorp N: Role of Toll-like receptors, NOD-like receptors and
RIG-I-like receptors in endothelial cells and systemic infections.
Thromb Haemost. 102:1103–1109. 2009.PubMed/NCBI
|
|
73
|
Blamire AM, Anthony DC, Rajagopalan B,
Sibson NR, Perry VH and Styles P: Interleukin-1beta -induced
changes in blood-brain barrier permeability, apparent diffusion
coefficient, and cerebral blood volume in the rat brain: A magnetic
resonance study. J Neurosci. 20:8153–8159. 2000.PubMed/NCBI
|
|
74
|
Picard C, von Bernuth H, Ghandil P,
Chrabieh M, Levy O, Arkwright PD, McDonald D, Geha RS, Takada H,
Krause JC, et al: Clinical features and outcome of patients with
IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 89:403–425.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pérez-Cerdá F, Sánchez-Gómez MV and Matute
C: Pío del Río Hortega and the discovery of the oligodendrocytes.
Front Neuroanat. 9:922015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fu R, Shen Q, Xu P, Luo JJ and Tang Y:
Phagocytosis of Microglia in the central nervous system diseases.
Mol Neurobiol. 49:1422–1434. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kreutzberg GW: Microglia: A sensor for
pathological events in the CNS. Trends Neurosci. 19:312–328. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kim SU and de Vellis J: Microglia in
health and disease. J Neurosci Res. 81:302–313. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Alonso A, Reinz E, Fatar M, Hennerici MG
and Meairs S: Clearance of albumin following ultrasound-induced
blood-brain barrier opening is mediated by glial but not neuronal
cells. Brain Res. 1411:9–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Willis CL: Glia-induced reversible
disruption of blood-brain barrier integrity and neuropathological
response of the neurovascular unit. Toxicol Pathol. 39:172–185.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nishioku T, Matsumoto J, Dohgu S, Sumi N,
Miyao K, Takata F, Shuto H, Yamauchi A and Kataoka Y: Tumor
necrosis factor-alpha mediates the blood-brain barrier dysfunction
induced by activated microglia in mouse brain microvascular
endothelial cells. J Pharmacol Sci. 112:251–254. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tremblay MÈ, Stevens B, Sierra A, Wake H,
Bessis A and Nimmerjahn A: The role of microglia in the healthy
brain. J Neurosci. 31:16064–16069. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Attwell D, Buchan AM, Charpak S, Lauritzen
M, Macvicar BA and Newman EA: Glial and neuronal control of brain
blood flow. Nature. 468:232–243. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Simard M, Arcuino G, Takano T, Liu QS and
Nedergaard M: Signaling at the gliovascular interface. J Neurosci.
23:9254–9262. 2003.PubMed/NCBI
|
|
85
|
Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han
X, Kang J, Takano T and Nedergaard M: Astrocytic Ca2+ signaling
evoked by sensory stimulation in vivo. Nat Neurosci. 9:816–823.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
86
|
Harder DR, Zhang C and Gebremedhin D:
Astrocytes function in matching blood flow to metabolic activity.
News Physiol Sci. 17:27–31. 2002.PubMed/NCBI
|
|
87
|
Nash B, Thomson CE, Linington C, Arthur
AT, McClure JD, McBride MW and Barnett SC: Functional duality of
astrocytes in myelination. J Neurosci. 31:13028–13038. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim KS: Pathogenesis of bacterial
meningitis: From bacteraemia to neuronal injury. Nat Rev Neurosci.
4:376–385. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Merrill JE and Benveniste EN: Cytokines in
inflammatory brain lesions: Helpful and harmful. Trends Neurosci.
19:331–338. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
van Furth AM, Roord JJ and van Furth R:
Roles of proinflammatory and anti-inflammatory cytokines in
pathophysiology of bacterial meningitis and effect of adjunctive
therapy. Infect Immun. 64:4883–4890. 1996.PubMed/NCBI
|
|
91
|
Barichello T, dos Santos I, Savi GD,
Simões LR, Silvestre T, Comim CM, Sachs D, Teixeira MM, Teixeira AL
and Quevedo J: TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat
brain after meningitis induced by Streptococcus pneumoniae. J
Neuroimmunol. 221:42–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Barichello T, Generoso JS, Collodel A,
Moreira AP and Almeida SM: Pathophysiology of acute meningitis
caused by Streptococcus pneumoniae and adjunctive therapy
approaches. Arq Neuropsiquiatr. 70:366–372. 2012.PubMed/NCBI
|
|
93
|
Ichiyama T, Isumi H, Yoshitomi T,
Nishikawa M, Matsubara T and Furukawa S: NF-kappaB activation in
cerebrospinal fluid cells from patients with meningitis. Neurol
Res. 24:709–712. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gerber J, Böttcher T, Hahn M, Siemer A,
Bunkowski S and Nau R: Increased mortality and spatial memory
deficits in TNF-alpha-deficient mice in ceftriaxone-treated
experimental pneumococcal meningitis. Neurobiol Dis. 16:133–138.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Koedel U, Winkler F, Angele B, Fontana A,
Flavell RA and Pfister HW: Role of Caspase-1 in experimental
pneumococcal meningitis: Evidence from pharmacologic Caspase
inhibition and Caspase-1-deficient mice. Ann Neurol. 51:319–329.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Saukkonen K, Sande S, Cioffe C, Wolpe S,
Sherry B, Cerami A and Tuomanen E: The role of cytokines in the
generation of inflammation and tissue damage in experimental
gram-positive meningitis. J Exp Med. 171:439–448. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zwijnenburg PJ, van der Poll T, Florquin
S, Roord JJ and van Furth AM: Interleukin-10 negatively regulates
local cytokine and chemokine production but does not influence
antibacterial host defense during murine pneumococcal meningitis.
Infect Immun. 71:2276–2279. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Barichello T, Fagundes GD, Generoso JS,
Moreira A Paula, Costa CS, Zanatta JR, Simões LR, Petronilho F,
Dal-Pizzol F, Vilela M Carvalho and Teixeira A Lucio: Brain-blood
barrier breakdown and pro-inflammatory mediators in neonate rats
submitted meningitis by Streptococcus pneumoniae. Brain Res.
1471:162–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gruol DL and Nelson TE: Physiological and
pathological roles of interleukin-6 in the central nervous system.
Mol Neurobiol. 15:307–339. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
van der Poll T, Keogh CV, Guirao X,
Buurman WA, Kopf M and Lowry SF: Interleukin-6 gene-deficient mice
show impaired defense against pneumococcal pneumonia. J Infect Dis.
176:439–444. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
101
|
Paul R, Koedel U, Winkler F, Kieseier BC,
Fontana A, Kopf M, Hartung HP and Pfister HW: Lack of IL-6 augments
inflammatory response but decreases vascular permeability in
bacterial meningitis. Brain. 126:1873–1882. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Glimåker M, Olcén P and Andersson B:
Interferon-gamma in cerebrospinal fluid from patients with viral
and bacterial meningitis. Scand J Infect Dis. 26:141–147. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
McNeela EA, Burke A, Neill DR, Baxter C,
Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM,
Mori A, et al: Pneumolysin activates the NLRP3 inflammasome and
promotes proinflammatory cytokines independently of TLR4. PLoS
Pathog. 6:e10011912010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mitchell AJ, Yau B, McQuillan JA, et al:
Inflammasome-dependent IFN-γ drives pathogenesis in Streptococcus
pneumoniae meningitis. J Immunol. 189:4970–4980. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Howard M, O'Garra A, Ishida H, de Waal
Malefyt R and de Vries J: Biological properties of interleukin 10.
J Clin Immunol. 12:239–247. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kornelisse RF, Savelkoul HF, Mulder PH,
Suur MH, van der Straaten PJ, van der Heijden AJ, Sukhai RN, Hählen
K, Neijens HJ and de Groot R: Interleukin-10 and soluble tumor
necrosis factor receptors in cerebrospinal fluid of children with
bacterial meningitis. J Infect Dis. 173:1498–1502. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Koedel U, Bernatowicz A, Frei K, Fontana A
and Pfister HW: Systemically (but not intrathecally) administered
IL-10 attenuates pathophysiologic alterations in experimental
pneumococcal meningitis. J Immunol. 157:5185–5191. 1996.PubMed/NCBI
|
|
108
|
Laichalk LL, Danforth JM and Standiford
TJ: Interleukin-10 inhibits neutrophil phagocytic and bactericidal
activity. FEMS Immunol Med Microbiol. 15:181–187. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sanjabi S, Zenewicz LA, Kamanaka M and
Flavell RA: Anti-inflammatory and pro-inflammatory roles of
TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin
Pharmacol. 9:447–453. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li MO and Flavell RA: Contextual
regulation of inflammation: A duet by transforming growth
factor-beta and interleukin-10. Immunity. 28:468–476. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Suzumura A, Sawada M, Yamamoto H and
Marunouchi T: Transforming growth factor-beta suppresses activation
and proliferation of microglia in vitro. J Immunol. 151:2150–2158.
1993.PubMed/NCBI
|
|
112
|
Ledeboer A, Brevé JJ, Poole S, Tilders FJ
and Van Dam AM: Interleukin-10, interleukin-4, and transforming
growth factor-beta differentially regulate
lipopolysaccharide-induced production of pro-inflammatory cytokines
and nitric oxide in co-cultures of rat astroglial and microglial
cells. Glia. 30:134–142. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Levy N, Milikovsky DZ, Baranauskas G,
Vinogradov E, David Y, Ketzef M, Abutbul S, Weissberg I, Kamintsky
L, Fleidervish I, et al: Differential TGF-β signaling in glial
subsets underlies IL-6-mediated epileptogenesis in mice. J Immunol.
195:1713–1722. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Malipiero U, Koedel U, Pfister HW, Levéen
P, Bürki K, Reith W and Fontana A: TGFbeta receptor II gene
deletion in leucocytes prevents cerebral vasculitis in bacterial
meningitis. Brain. 129:2404–2415. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Gerber J and Nau R: Mechanisms of injury
in bacterial meningitis. Curr Opin Neurol. 23:312–318. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ostergaard C, Yieng-Kow RV, Larsen CG,
Mukaida N, Matsushima K, Benfield T, Frimodt-Møller N, Espersen F,
Kharazmi A and Lundgren JD: Treatment with a monocolonal antibody
to IL-8 attenuates the pleocytosis in experimental pneumococcal
meningitis in rabbits when given intravenously, but not
intracisternally. Clin Exp Immunol. 122:207–211. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Spanaus KS, Nadal D, Pfister HW, Seebach
J, Widmer U, Frei K, Gloor S and Fontana A: C-X-C and C-C
chemokines are expressed in the cerebrospinal fluid in bacterial
meningitis and mediate chemotactic activity on peripheral
blood-derived polymorphonuclear and mononuclear cells in vitro. J
Immunol. 158:1956–1964. 1997.PubMed/NCBI
|
|
118
|
Prinz M, Kann O, Draheim HJ, Schumann RR,
Kettenmann H, Weber JR and Hanisch UK: Microglial activation by
components of gram-positive and -negative bacteria: Distinct and
common routes to the induction of ion channels and cytokines. J
Neuropathol Exp Neurol. 58:1078–1089. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Hanisch UK, Prinz M, Angstwurm K, Häusler
KG, Kann O, Kettenmann H and Weber JR: The protein tyrosine kinase
inhibitor AG126 prevents the massive microglial cytokine induction
by pneumococcal cell walls. Eur J Immunol. 31:2104–2115. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Carlos TM and Harlan JM:
Leukocyte-endothelial adhesion molecules. Blood. 84:2068–2101.
1994.PubMed/NCBI
|
|
121
|
Polfliet MM, Zwijnenburg PJ, van Furth AM,
van der Poll T, Döpp EA, de Lavalette C Renardel, van
Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD and van den Berg
TK: Meningeal and perivascular macrophages of the central nervous
system play a protective role during bacterial meningitis. J
Immunol. 167:4644–4650. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Stanimirovic D and Satoh K: Inflammatory
mediators of cerebral endothelium: A role in ischemic brain
inflammation. Brain Pathol. 10:113–126. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Winkler F, Kastenbauer S, Koedel U and
Pfister HW: Role of the urokinase plasminogen activator system in
patients with bacterial meningitis. Neurology. 59:1350–1355. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Nagase H, Visse R and Murphy G: Structure
and function of matrix metalloproteinases and TIMPs. Cardiovasc
Res. 69:562–573. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Leppert D, Leib SL, Grygar C, Miller KM,
Schaad UB and Holländer GA: Matrix metalloproteinase (MMP)-8 and
MMP-9 in cerebrospinal fluid during bacterial meningitis:
Association with blood-brain barrier damage and neurological
sequelae. Clin Infect Dis. 31:80–84. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Barichello T, Generoso JS, Simões LR,
Elias SG and Quevedo J: Role of oxidative stress in the
pathophysiology of pneumococcal meningitis. Oxid Med Cell Longev.
2013:3714652013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Koedel U and Pfister HW: Oxidative stress
in bacterial meningitis. Brain Pathol. 9:57–67. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Nathan C and Shiloh MU: Reactive oxygen
and nitrogen intermediates in the relationship between mammalian
hosts and microbial pathogens. Proc Natl Acad Sci USA.
97:8841–8848. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Aycicek A, Iscan A, Erel O, Akcali M and
Ocak AR: Oxidant and antioxidant parameters in the treatment of
meningitis. Pediatr Neurol. 37:117–120. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Braun JS, Sublett JE, Freyer D, Mitchell
TJ, Cleveland JL, Tuomanen EI and Weber JR: Pneumococcal
pneumolysin and H(2)O(2) mediate brain cell apoptosis during
meningitis. J Clin Invest. 109:19–27. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Beckman JS and Koppenol WH: Nitric oxide,
superoxide, and peroxynitrite: The good, the bad, and ugly. Am J
Physiol. 271:C1424–C1437. 1996.PubMed/NCBI
|
|
132
|
Pacher P, Beckman JS and Liaudet L: Nitric
oxide and peroxynitrite in health and disease. Physiol Rev.
87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Halliwell B, Zhao K and Whiteman M: Nitric
oxide and peroxynitrite. The ugly, the uglier and the not so good:
A personal view of recent controversies. Free Radic Res.
31:651–669. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Gutteridge JM: Lipid peroxidation and
antioxidants as biomarkers of tissue damage. Clin Chem.
41:1819–1828. 1995.PubMed/NCBI
|
|
135
|
Maeda H, Okamoto T and Akaike T: Human
matrix metalloprotease activation by insults of bacterial infection
involving proteases and free radicals. Biol Chem. 379:193–200.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Filep JG, Beauchamp M, Baron C and
Paquette Y: Peroxynitrite mediates IL-8 gene expression and
production in lipopolysaccharide-stimulated human whole blood. J
Immunol. 161:5656–5662. 1998.PubMed/NCBI
|
|
137
|
Kastenbauer S, Koedel U, Becker BF and
Pfister HW: Pneumococcal meningitis in the rat: Evaluation of
peroxynitrite scavengers for adjunctive therapy. Eur J Pharmacol.
449:177–181. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Klein M, Koedel U and Pfister HW:
Oxidative stress in pneumococcal meningitis: A future target for
adjunctive therapy? Prog Neurobiol. 80:269–280. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Kastenbauer S, Koedel U and Pfister HW:
Role of peroxynitrite as a mediator of pathophysiological
alterations in experimental pneumococcal meningitis. J Infect Dis.
180:1164–1170. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
140
|
Østergaard C, Leib SL, Rowland I and
Brandt CT: Bacteremia causes hippocampal apoptosis in experimental
pneumococcal meningitis. BMC Infect Dis. 10:12010. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Nau R, Soto A and Brück W: Apoptosis of
neurons in the dentate gyrus in humans suffering from bacterial
meningitis. J Neuropathol Exp Neurol. 58:265–274. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Grandgirard D and Leib SL: Strategies to
prevent neuronal damage in paediatric bacterial meningitis. Curr
Opin Pediatr. 18:112–118. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Bermpohl D, Halle A, Freyer D, Dagand E,
Braun JS, Bechmann I, Schröder NW and Weber JR: Bacterial
programmed cell death of cerebral endothelial cells involves dual
death pathways. J Clin Invest. 115:1607–1615. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Mitchell L, Smith SH, Braun JS, Herzog KH,
Weber JR and Tuomanen EI: Dual phases of apoptosis in pneumococcal
meningitis. J Infect Dis. 190:2039–2046. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Malipiero U, Koedel U, Pfister HW, Levéen
P, Bürki K, Reith W and Fontana A: TGFb receptor II gene deletion
in leucocytes prevents cerebral vasculitis in bacterial meningitis.
Brain. 129:2404–2415. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Koedel U, Scheld WM and Pfister HW:
Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet
Infect Dis. 2:721–736. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Kastenbauer S and Pfister HW: Pneumococcal
meningitis in adults: Spectrum of complications and prognostic
factors in a series of 87 cases. Brain. 126:1015–1025. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Weisfelt M, van de Beek D, Spanjaard L,
Reitsma JB and de Gans J: Clinical features, complications, and
outcome in adults with pneumococcal meningitis: A prospective case
series. Lancet Neurol. 5:123–129. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Müller M, Merkelbach S, Huss GP and
Schimrigk K: Clinical relevance and frequency of transient stenoses
of the middle and anterior cerebral arteries in bacterial
meningitis. Stroke. 26:1399–1403. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Weisfelt M, Determann RM, de Gans J, van
der Ende A, Levi M, van de Beek D and Schultz MJ: Procoagulant and
fibrinolytic activity in cerebrospinal fluid from adults with
bacterial meningitis. J Infect. 54:545–550. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Vergouwen MD, Schut ES, Troost D and van
de Beek D: Diffuse cerebral intravascular coagulation and cerebral
infarction in pneumococcal meningitis. Neurocrit Care. 13:217–227.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Møller K, Qvist T, Tofteng F, Sahl C,
Sønderkaer S, Dethloff T, Knudsen GM and Larsen FS: Cerebral blood
flow and metabolism during infusion of norepinephrine and propofol
in patients with bacterial meningitis. Stroke. 35:1333–1339. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Møller K, Skinhøj P, Knudsen GM and Larsen
FS: Effect of short-term hyperventilation on cerebral blood flow
autoregulation in patients with acute bacterial meningitis. Stroke.
31:1116–1122. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Barone FC and Feuerstein GZ: Inflammatory
mediators and stroke: New opportunities for novel therapeutics. J
Cereb Blood Flow Metab. 19:819–834. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Nau R, Gerber J, Bunkowski S and Brück W:
Axonal injury, a neglected cause of CNS damage in bacterial
meningitis. Neurology. 62:509–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Dénes Á, Pradillo JM, Drake C, Sharp A,
Warn P, Murray KN, Rohit B, Dockrell DH, Chamberlain J, Casbolt H,
et al: Streptococcus pneumoniae worsens cerebral ischemia via
interleukin 1 and platelet glycoprotein Ib α. Ann Neurol.
75:670–683. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Prass K, Braun JS, Dirnagl U, Meisel C and
Meisel A: Stroke propagates bacterial aspiration to pneumonia in a
model of cerebral ischemia. Stroke. 37:2607–2612. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Xie W, Liu Q, Feng J and Fang S: A case of
bacterial meningitis complicated by venous sinus thrombosis. Neurol
Sci. 36:331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Panicio MI, Foresto RD, Mateus L, Monzillo
PH, Alves MB and Silva GS: Pneumococcal meningitis, cerebral venous
thrombosis, and cervical arterial dissection: A run of bad luck?
Neurohospitalist. 3:20–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Srivastava AK, Kalita J, Haris M, Gupta RK
and Misra UK: Radiological and histological changes following
cerebral venous sinus thrombosis in a rat model. Neurosci Res.
65:343–346. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Coutinho JM, Gerritsma JJ, Zuurbier SM and
Stam J: Isolated cortical vein thrombosis: Systematic review of
case reports and case series. Stroke. 45:1836–1838. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Pomeroy SL, Holmes SJ, Dodge PR and Feigin
RD: Seizures and other neurologic sequelae of bacterial meningitis
in children. N Engl J Med. 323:1651–1657. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Murthy JM and Prabhakar S: Bacterial
meningitis and epilepsy. Epilepsia. 49:(Suppl 6). S8–S12. 2008.
View Article : Google Scholar
|
|
164
|
Zoons E, Weisfelt M, de Gans J, Spanjaard
L, Koelman JH, Reitsma JB and van de Beek D: Seizures in adults
with bacterial meningitis. Neurology. 70:2109–2115. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Lu CH, Huang CR, Chang WN, Chang CJ, Cheng
BC, Lee PY, Lin MW and Chang HW: Community-acquired bacterial
meningitis in adults: The epidemiology, timing of appropriate
antimicrobial therapy, and prognostic factors. Clin Neurol
Neurosurg. 104:352–358. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Chin RF, Neville BG, Peckham C, Bedford H,
Wade A and Scott RC: NLSTEPSS Collaborative Group: Incidence,
cause, and short-term outcome of convulsive status epilepticus in
childhood: Prospective population-based study. Lancet. 368:222–229.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Chin RF, Neville BG and Scott RC:
Meningitis is a common cause of convulsive status epilepticus with
fever. Arch Dis Child. 90:66–69. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Bar-Klein G, Cacheaux LP, Kamintsky L,
Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L,
Heinemann U, et al: Losartan prevents acquired epilepsy via TGF-β
signaling suppression. Ann Neurol. 75:864–875. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Cacheaux LP, Ivens S, David Y, Lakhter AJ,
Bar-Klein G, Shapira M, Heinemann U, Friedman A and Kaufer D:
Transcriptome profiling reveals TGF-beta signaling involvement in
epileptogenesis. J Neurosci. 29:8927–8935. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Ivens S, Kaufer D, Flores LP, Bechmann I,
Zumsteg D, Tomkins O, Seiffert E, Heinemann U and Friedman A:
TGF-beta receptor-mediated albumin uptake into astrocytes is
involved in neocortical epileptogenesis. Brain. 130:535–547. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Seiffert E, Dreier JP, Ivens S, Bechmann
I, Tomkins O, Heinemann U and Friedman A: Lasting blood-brain
barrier disruption induces epileptic focus in the rat somatosensory
cortex. J Neurosci. 24:7829–7836. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Vezzani A, French J, Bartfai T and Baram
TZ: The role of inflammation in epilepsy. Nat Rev Neurol. 7:31–40.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Igarashi M, Saito R, Alford BR, Filippone
MV and Smith JA: Temporal bone findings in pneumococcal meningitis.
Arch Otolaryngol. 99:79–83. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Külahli I, Oztürk M, Bilen C, Cüreoglu S,
Merhametsiz A and Cağil N: Evaluation of hearing loss with auditory
brainstem responses in the early and late period of bacterial
meningitis in children. J Laryngol Otol. 111:223–227. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Klein M, Koedel U, Kastenbauer S and
Pfister HW: Nitrogen and oxygen molecules in meningitis-associated
labyrinthitis and hearing impairment. Infection. 36:2–14. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Klein M, Schmidt C, Kastenbauer S, Paul R,
Kirschning CJ, Wagner H, Popp B, Pfister HW and Koedel U:
MyD88-dependent immune response contributes to hearing loss in
experimental pneumococcal meningitis. J Infect Dis. 195:1189–1193.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
177
|
Aminpour S, Tinling SP and Brodie HA: Role
of tumor necrosis factor-alpha in sensorineural hearing loss after
bacterial meningitis. Otol Neurotol. 26:602–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
178
|
Berg S, Trollfors B, Hugosson S, Fernell E
and Svensson E: Long-term follow-up of children with bacterial
meningitis with emphasis on behavioural characteristics. Eur J
Pediatr. 161:330–336. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
179
|
Grimwood K, Anderson VA, Bond L, Catroppa
C, Hore RL, Keir EH, Nolan T and Roberton DM: Adverse outcomes of
bacterial meningitis in school-age survivors. Pediatrics.
95:646–656. 1995.PubMed/NCBI
|
|
180
|
Skoog I, Wallin A, Fredman P, Hesse C,
Aevarsson O, Karlsson I, Gottfries CG and Blennow K: A population
study on blood-brain barrier function in 85-year-olds: Relation to
Alzheimer's disease and vascular dementia. Neurology. 50:966–971.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
181
|
Schroeter ML, Abdul-Khaliq H, Krebs M,
Diefenbacher A and Blasig IE: Serum markers support
disease-specific glial pathology in major depression. J Affect
Disord. 111:271–280. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
182
|
Alesci S, Martinez PE, Kelkar S, Ilias I,
Ronsaville DS, Listwak SJ, Ayala AR, Licinio J, Gold HK, Kling MA,
et al: Major depression is associated with significant diurnal
elevations in plasma interleukin-6 levels, a shift of its circadian
rhythm, and loss of physiological complexity in its secretion:
Clinical implications. J Clin Endocrinol Metab. 90:2522–2530. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
183
|
Thomas AJ, Davis S, Morris C, Jackson E,
Harrison R and O'Brien JT: Increase in interleukin-1beta in
late-life depression. Am J Psychiatry. 162:175–177. 2005.
View Article : Google Scholar : PubMed/NCBI
|