|
1
|
Linden F, Domschke G, Erbel C, Akhavanpoor
M, Katus HA and Gleissner CA: Inflammatory therapeutic targets in
coronary atherosclerosis-from molecular biology to clinical
application. Front Physiol. 5:4552014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Scott J: The pathogenesis of
atherosclerosis and new opportunities for treatment and prevention.
J Neural Transm Suppl. 1–17. 2002.PubMed/NCBI
|
|
3
|
Tedgui A and Mallat Z: Cytokines in
atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev.
86:515–581. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Blanco-Colio LM, Martin-Ventura JL,
Carrero JJ, Yilmaz MI, Moreno JA, Gómez-Guerrero C, Ortiz A and
Egido J: Vascular proteomics and the discovery process of clinical
biomarkers: The case of TWEAK. Proteomics Clin Appl. 5:281–288.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jelic-Ivanović Z, Bujisić N, Spasić S,
Bogavac-Stanojević N, Spasojević-Kalimanovska V and
Kotur-Stevuljević J: Circulating sTWEAK improves the prediction of
coronary artery disease. Clin Biochem. 42:1381–1386. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kralisch S, Ziegelmeier M, Bachmann A,
Seeger J, Lössner U, Blüher M, Stumvoll M and Fasshauer M: Serum
levels of the atherosclerosis biomarker sTWEAK are decreased in
type 2 diabetes and end-stage renal disease. Atherosclerosis.
199:440–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Blanco-Colio LM, Martín-Ventura JL,
Muñóz-García B, Orbe J, Páramo JA, Michel JB, Ortiz A, Meilhac O
and Egido J: Identification of soluble tumor necrosis factor-like
weak inducer of apoptosis (sTWEAK) as a possible biomarker of
subclinical atherosclerosis. Arterioscler Thromb Vasc Biol.
27:916–922. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Munoz-García B, Moreno JA, López-Franco O,
Sanz AB, Martín-Ventura JL, Blanco J, Jakubowski A, Burkly LC,
Ortiz A, Egido J and Blanco-Colio LM: Tumor necrosis factor-like
weak inducer of apoptosis (TWEAK) enhances vascular and renal
damage induced by hyperlipidemic diet in ApoE-knockout mice.
Arterioscler Thromb Vasc Biol. 29:2061–2068. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chicheportiche Y, Bourdon PR, Xu H, Hsu
YM, Scott H, Hession C, Garcia I and Browning JL: TWEAK, a new
secreted ligand in the tumor necrosis factor family that weakly
induces apoptosis. J Biol Chem. 272:32401–32410. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bodmer JL, Schneider P and Tschopp J: The
molecular architecture of the TNF superfamily. Trends Biochem Sci.
27:19–26. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wiley SR, Cassiano L, Lofton T,
Davis-Smith T, Winkles JA, Lindner V, Liu H, Daniel TO, Smith CA
and Fanslow WC: A novel TNF receptor family member binds TWEAK and
is implicated in angiogenesis. Immunity. 15:837–846. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Madrigal-Matute J, Fernandez-Laso V,
Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G and
Blanco-Colio LM: TWEAK/Fn14 interaction promotes oxidative stress
through NADPH oxidase activation in macrophages. Cardiovasc Res.
108:139–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Moreno JA, Sastre C, Madrigal-Matute J,
Muñoz-García B, Ortega L, Burkly LC, Egido J, Martín-Ventura JL and
Blanco-Colio LM: HMGB1 expression and secretion are increased via
TWEAK-Fn14 interaction in atherosclerotic plaques and cultured
monocytes. Arterioscler Thromb Vasc Biol. 33:612–620. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Muñoz-Garcia B, Madrigal-Matute J, Moreno
JA, Martin-Ventura JL, López-Franco O, Sastre C, Ortega L, Burkly
LC, Egido J and Blanco-Colio LM: TWEAK-Fn14 interaction enhances
plasminogen activator inhibitor 1 and tissue factor expression in
atherosclerotic plaques and in cultured vascular smooth muscle
cells. Cardiovasc Res. 89:225–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Blanco-Colio LM, Martín-Ventura JL,
Munoz-Garcia B, Moreno JA, Meilhac O, Ortiz A and Egido J: TWEAK
and Fn14. New players in the pathogenesis of atherosclerosis. Front
Biosci. 12:3648–3655. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nakayama M, Harada N, Okumura K and Yagita
H: Characterization of murine TWEAK and its receptor (Fn14) by
monoclonal antibodies. Biochem Biophys Res Commun. 306:819–825.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wiley SR and Winkles JA: TWEAK, a member
of the TNF superfamily, is a multifunctional cytokine that binds
the TweakR/Fn14 receptor. Cytokine Growth Factor Rev. 14:241–249.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bover LC, Cardó-Vila M, Kuniyasu A, Sun J,
Rangel R, Takeya M, Aggarwal BB, Arap W and Pasqualini R: A
previously unrecognized protein-protein interaction between TWEAK
and CD163: Potential biological implications. J Immunol.
178:8183–8194. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ilter A, Orem C, Yucesan F Balaban, Sahin
M, Hosoglu Y, Kurumahmutoglu E, Yaman S Ozer and Orem A: Evaluation
of serum sTWEAK and sCD163 levels in patients with acute and
chronic coronary artery disease. Int J Clin Exp Med. 8:9394–9402.
2015.PubMed/NCBI
|
|
20
|
Valdivielso JM, Coll B, Martin-Ventura JL,
Moreno JA, Egido J, Fernández E and Blanco-Colio LM: Soluble TWEAK
is associated with atherosclerotic burden in patients with chronic
kidney disease. J Nephrol Nephrol Nephrol. 26:1105–1113. 2013.
|
|
21
|
Moreno JA, Muñoz-García B, Martín-Ventura
JL, Madrigal-Matute J, Orbe J, Páramo JA, Ortega L, Egido J and
Blanco-Colio LM: The CD163-expressing macrophages recognize and
internalize TWEAK Potential consequences in atherosclerosis.
Atherosclerosis. 207:103–110. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Feng SL, Guo Y, Factor VM, Thorgeirsson
SS, Bell DW, Testa JR, Peifley KA and Winkles JA: The Fn14
immediate-early response gene is induced during liver regeneration
and highly expressed in both human and murine hepatocellular
carcinomas. Am J Pathol. 156:1253–1261. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Meighan-Mantha RL, Hsu DK, Guo Y, Brown
SA, Feng SL, Peifley KA, Alberts GF, Copeland NG, Gilbert DJ,
Jenkins NA, et al: The mitogen-inducible Fn14 gene encodes a type I
transmembrane protein that modulates fibroblast adhesion and
migration. J Biol Chem. 274:33166–33176. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Brown SA, Richards CM, Hanscom HN, Feng SL
and Winkles JA: The Fn14 cytoplasmic tail binds
tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5
and mediates nuclear factor-kappaB activation. Biochem J.
371:395–403. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saitoh T, Nakayama M, Nakano H, Yagita H,
Yamamoto N and Yamaoka S: TWEAK induces NF-kappaB2 p100 processing
and long lasting NF-kappaB activation. J Biol Chem.
278:36005–36012. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Blanco-Colio LM: TWEAK/Fn14 Axis: A
promising target for the treatment of cardiovascular diseases.
Front Immunol. 5:32014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Felli N, Pedini F, Zeuner A, Petrucci E,
Testa U, Conticello C, Biffoni M, Di Cataldo A, Winkles JA, Peschle
C and De Maria R: Multiple members of the TNF superfamily
contribute to IFN-gamma-mediated inhibition of erythropoiesis. J
Immunol. 175:1464–1472. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jakubowski A, Browning B, Lukashev M,
Sizing I, Thompson JS, Benjamin CD, Hsu YM, Ambrose C, Zheng TS and
Burkly LC: Dual role for TWEAK in angiogenic regulation. J Cell
Sci. 115:267–274. 2002.PubMed/NCBI
|
|
29
|
Justo P, Sanz AB, Sanchez-Niño MD, Winkles
JA, Lorz C, Egido J and Ortiz A: Cytokine cooperation in renal
tubular cell injury: The role of TWEAK. Kidney Int. 70:1750–1758.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Munoz-García B, Martin-Ventura JL,
Martínez E, Sánchez S, Hernández G, Ortega L, Ortiz A, Egido J and
Blanco-Colio LM: Fn14 is upregulated in cytokine-stimulated
vascular smooth muscle cells and is expressed in human carotid
atherosclerotic plaques: Modulation by atorvastatin. Stroke.
37:2044–2053. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tuttolomondo A, Di Raimondo D, Pecoraro R,
Arnao V, Pinto A and Licata G: Atherosclerosis as an inflammatory
disease. Curr Pharm Des. 18:4266–4288. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Weissberg PL and Bennett MR:
Atherosclerosis-an inflammatory disease. N Engl J Med.
340:1928–1929. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gimbrone MA Jr and Garcia-Cardeña G:
Vascular endothelium, hemodynamics, and the pathobiology of
atherosclerosis. Cardiovasc Pathol. 22:9–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harada N, Nakayama M, Nakano H, Fukuchi Y,
Yagita H and Okumura K: Pro-inflammatory effect of TWEAK/Fn14
interaction on human umbilical vein endothelial cells. Biochem
Biophys Res Commun. 299:488–493. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shi N and Chen SY: Mechanisms
simultaneously regulate smooth muscle proliferation and
differentiation. J Biomed Res. 28:40–46. 2014.PubMed/NCBI
|
|
36
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: Vascular smooth muscle cell in atherosclerosis. Acta Physiol
(Oxf). 214:33–50. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lynch CN, Wang YC, Lund JK, Chen YW, Leal
JA and Wiley SR: TWEAK induces angiogenesis and proliferation of
endothelial cells. J Biol Chem. 274:8455–8459. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Han S, Yoon K, Lee K, Kim K, Jang H, Lee
NK, Hwang K and Lee S Young: TNF-related weak inducer of apoptosis
receptor, a TNF receptor superfamily member, activates NF-kappa B
through TNF receptor-associated factors. Biochem Biophys Res
Commun. 305:789–796. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mackman N: Role of tissue factor in
hemostasis and thrombosis. Blood Cells Mol Dis. 36:104–107. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Potempa J, Korzus E and Travis J: The
serpin superfamily of proteinase inhibitors: Structure, function,
and regulation. J Biol Chem. 269:15957–15960. 1994.PubMed/NCBI
|
|
41
|
Schecter AD, Spirn B, Rossikhina M, Giesen
PL, Bogdanov V, Fallon JT, Fisher EA, Schnapp LM, Nemerson Y and
Taubman MB: Release of active tissue factor by human arterial
smooth muscle cells. Circ Res. 87:126–132. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lupu F, Bergonzelli GE, Heim DA, Cousin E,
Genton CY, Bachmann F and Kruithof EK: Localization and production
of plasminogen activator inhibitor-1 in human healthy and
atherosclerotic arteries. Arterioscler Thromb. 13:1090–1100. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Taubman MB, Fallon JT, Schecter AD, Giesen
P, Mendlowitz M, Fyfe BS, Marmur JD and Nemerson Y: Tissue factor
in the pathogenesis of atherosclerosis. Thromb Haemost. 78:200–204.
1997.PubMed/NCBI
|
|
44
|
Agirbasli M: Pivotal role of
plasminogen-activator inhibitor 1 in vascular disease. Int J Clin
Pract. 59:102–106. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Spinas E, Kritas SK, Saggini A, Mobili A,
Caraffa A, Antinolfi P, Pantalone A, Tei M, Speziali A, Saggini R
and Conti P: Role of mast cells in atherosclerosis: A classical
inflammatory disease. Int J Immunopathol Pharmacol. 27:517–521.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hansson GK: Immune mechanisms in
atherosclerosis. Arterioscler Thromb Vasc Biol. 21:1876–1890. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schapira K, Burkly LC, Zheng TS, Wu P,
Groeneweg M, Rousch M, Kockx MM, Daemen MJ and Heeneman S: Fn14-Fc
fusion protein regulates atherosclerosis in ApoE-/-mice and
inhibits macrophage lipid uptake in vitro. Arterioscler Thromb Vasc
Biol. 29:2021–2027. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim SH, Kang YJ, Kim WJ, Woo DK, Lee Y,
Kim DI, Park YB, Kwon BS, Park JE and Lee WH: TWEAK can induce
pro-inflammatory cytokines and matrix metalloproteinase-9 in
macrophages. Circ J. 68:396–399. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sastre C, Fernández-Laso V,
Madrigal-Matute J, Muñoz-García B, Moreno JA, Pastor-Vargas C,
Llamas-Granda P, Burkly LC, Egido J, Martín-Ventura JL and
Blanco-Colio LM: Genetic deletion or TWEAK blocking antibody
administration reduce atherosclerosis and enhance plaque stability
in mice. J Cell Mol Med Med Cell Mol Med. 18:721–734. 2014.
View Article : Google Scholar
|
|
50
|
Madamanchi NR and Runge MS: Mitochondrial
dysfunction in atherosclerosis. Circ Res. 100:460–473. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Munzel T, Gori T, Bruno RM and Taddei S:
Is oxidative stress a therapeutic target in cardiovascular disease?
Eur Heart J. 31:2741–2748. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Scaffidi P, Misteli T and Bianchi ME:
Release of chromatin protein HMGB1 by necrotic cells triggers
inflammation. Nature. 418:191–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kalinina N, Agrotis A, Antropova Y,
DiVitto G, Kanellakis P, Kostolias G, Ilyinskaya O, Tararak E and
Bobik A: Increased expression of the DNA-binding cytokine HMGB1 in
human atherosclerotic lesions: Role of activated macrophages and
cytokines. Arterioscler Thromb Vasc Biol. 24:2320–2325. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Andersson U, Erlandsson-Harris H, Yang H
and Tracey KJ: HMGB1 as a DNA-binding cytokine. J Leukoc Biol.
72:1084–1091. 2002.PubMed/NCBI
|
|
55
|
Inoue K, Kawahara K, Biswas KK, Ando K,
Mitsudo K, Nobuyoshi M and Maruyama I: HMGB1 expression by
activated vascular smooth muscle cells in advanced human
atherosclerosis plaques. Cardiovasc Patho. 16:136–143. 2007.
View Article : Google Scholar
|
|
56
|
Kristiansen M, Graversen JH, Jacobsen C,
Sonne O, Hoffman HJ, Law SK and Moestrup SK: Identification of the
haemoglobin scavenger receptor. Nature. 409:198–201. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jasiewicz M, Kowal K, Kowal-Bielecka O,
Knapp M, Skiepko R, Bodzenta-Lukaszyk A, Sobkowicz B, Musial WJ and
Kaminski KA: Serum levels of CD163 and TWEAK in patients with
pulmonary arterial hypertension. Cytokine. 66:40–45. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Urbonaviciene G, Martin-Ventura JL,
Lindholt JS, Urbonavicius S, Moreno JA, Egido J and Blanco-Colio
LM: Impact of soluble TWEAK and CD163/TWEAK ratio on long-term
cardiovascular mortality in patients with peripheral arterial
disease. Atherosclerosis. 219:892–899. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Beltran LM, Muñoz Hernández R, de Pablo
Bernal RS, García Morillo JS, Egido J, Noval ML, Ferrando-Martinez
S, Blanco-Colio LM, Genebat M, Villar JR, et al: Reduced sTWEAK and
increased sCD163 levels in HIV-infected patients: Modulation by
antiretroviral treatment, HIV replication and HCV co-infection.
PLoS One. 9:e905412014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Llauradó G, González-Clemente JM,
Maymó-Masip E, Subías D, Vendrell J and Chacón MR: Serum levels of
TWEAK and scavenger receptor CD163 in type 1 diabetes mellitus:
Relationship with cardiovascular risk factors. A case-control
study. PLoS One. 7:e439192012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Van Gorp H, Delputte PL and Nauwynck HJ:
Scavenger receptor CD163, a Jack-of-all-trades and potential target
for cell-directed therapy. Mol Immunol. 47:1650–1660. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kowal K, Silver R, Sławińska E, Bielecki
M, Chyczewski L and Kowal-Bielecka O: CD163 and its role in
inflammation. Folia Histochem Cytobiol. 49:365–374. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Moller HJ, Nielsen MJ, Maniecki MB, Madsen
M and Moestrup SK: Soluble macrophage-derived CD163: A homogenous
ectodomain protein with a dissociable haptoglobin-hemoglobin
binding. Immunobiology. 215:406–412. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Etzerodt A and Moestrup SK: CD163 and
inflammation: Biological, diagnostic, and therapeutic aspects.
Antioxid Redox Signal. 18:2352–2363. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Backe E, Schwarting R, Gerdes J, Ernst M
and Stein H: Ber-MAC3: New monoclonal antibody that defines human
monocyte/macrophage differentiation antigen. J Clin Pathol.
44:936–945. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chamorro S, Revilla C, Alvarez B, Alonso
F, Ezquerra A and Domínguez J: Phenotypic and functional
heterogeneity of porcine blood monocytes and its relation with
maturation. Immunology. 114:63–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Baeten D, Møller HJ, Delanghe J, Veys EM,
Moestrup SK and De Keyser F: Association of CD163+ macrophages and
local production of soluble CD163 with decreased lymphocyte
activation in spondylarthropathy synovitis. Arthritis Rheum.
50:1611–1623. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bronkhorst IH, Ly LV, Jordanova ES,
Vrolijk J, Versluis M, Luyten GP and Jager MJ: Detection of
M2-macrophages in uveal melanoma and relation with survival. Invest
Ophthalmol Vis Sci. 52:643–650. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ratcliffe NR, Kennedy SM and Morganelli
PM: Immunocytochemical detection of Fcgamma receptors in human
atherosclerotic lesions. Immunol Lett. 77:169–174. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Högger P, Dreier J, Droste A, Buck F and
Sorg C: Identification of the integral membrane protein RM3/1 on
human monocytes as a glucocorticoid-inducible member of the
scavenger receptor cysteine-rich family (CD163). J Immunol.
161:1883–1890. 1998.PubMed/NCBI
|
|
71
|
Sulahian TH, Högger P, Wahner AE, Wardwell
K, Goulding NJ, Sorg C, Droste A, Stehling M, Wallace PK,
Morganelli PM and Guyre PM: Human monocytes express CD163, which is
upregulated by IL-10 and identical to p155. Cytokine. 12:1312–1321.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Timmermann M and Högger P: Oxidative
stress and 8-iso-prostaglandin F(2alpha) induce ectodomain shedding
of CD163 and release of tumor necrosis factor-alpha from human
monocytes. Free Radic Biol Med. 39:98–107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zwadlo G, Voegeli R, Osthoff K Schulze and
Sorg C: A monoclonal antibody to a novel differentiation antigen on
human macrophages associated with the down-regulatory phase of the
inflammatory process. Exp Cell Biol. 55:295–304. 1987.PubMed/NCBI
|
|
74
|
Buechler C, Ritter M, Orsó E, Langmann T,
Klucken J and Schmitz G: Regulation of scavenger receptor CD163
expression in human monocytes and macrophages by pro- and
antiinflammatory stimuli. J Leukoc Biol. 67:97–103. 2000.PubMed/NCBI
|
|
75
|
Van den Heuvel MM, Tensen CP, van As JH,
Van den Berg TK, Fluitsma DM, Dijkstra CD, Döpp EA, Droste A, Van
Gaalen FA, Sorg C, et al: Regulation of CD 163 on human
macrophages: Cross-linking of CD163 induces signaling and
activation. J Leukoc Biol. 66:858–866. 1999.PubMed/NCBI
|
|
76
|
Schaer DJ, Boretti FS, Schoedon G and
Schaffner A: Induction of the CD163-dependent haemoglobin uptake by
macrophages as a novel anti-inflammatory action of glucocorticoids.
Br J Haematol. 119:239–243. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Varga G, Ehrchen J, Tsianakas A, Tenbrock
K, Rattenholl A, Seeliger S, Mack M, Roth J and Sunderkoetter C:
Glucocorticoids induce an activated, anti-inflammatory monocyte
subset in mice that resembles myeloid-derived suppressor cells. J
Leukoc Biol. 84:644–650. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hogger P, Erpenstein U, Rohdewald P and
Sorg C: Biochemical characterization of a glucocorticoid-induced
membrane protein (RM3/1) in human monocytes and its application as
model system for ranking glucocorticoid potency. Pharm Res.
15:296–302. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Weaver LK, Pioli PA, Wardwell K, Vogel SN
and Guyre PM: Up-regulation of human monocyte CD163 upon activation
of cell-surface Toll-like receptors. J Leukoc Biol. 81:663–671.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hintz KA, Rassias AJ, Wardwell K, Moss ML,
Morganelli PM, Pioli PA, Givan AL, Wallace PK, Yeager MP and Guyre
PM: Endotoxin induces rapid metalloproteinase-mediated shedding
followed by up-regulation of the monocyte hemoglobin scavenger
receptor CD163. J Leukoc Biol. 72:711–717. 2002.PubMed/NCBI
|
|
81
|
Gleissner CA, Shaked I, Erbel C, Böckler
D, Katus HA and Ley K: CXCL4 downregulates the atheroprotective
hemoglobin receptor CD163 in human macrophages. Circ Res.
106:203–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Levy AP and Moreno PR: Intraplaque
hemorrhage. Curr Mol Med. 6:479–488. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Virmani R, Kolodgie FD, Burke AP, Finn AV,
Gold HK, Tulenko TN, Wrenn SP and Narula J: Atherosclerotic plaque
progression and vulnerability to rupture: Angiogenesis as a source
of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol.
25:2054–2061. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Schaer DJ and Buehler PW: Cell-free
hemoglobin and its scavenger proteins: New disease models leading
the way to targeted therapies. Cold Spring Harb Perspect Med.
3(pii): a0134332013.PubMed/NCBI
|
|
85
|
Madsen M, Møller HJ, Nielsen MJ, Jacobsen
C, Graversen JH, van den Berg T and Moestrup SK: Molecular
characterization of the haptoglobin.hemoglobin receptor CD163.
Ligand binding properties of the scavenger receptor cysteine-rich
domain region. J Biol Chem. 279:51561–51567. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Schaer CA, Schoedon G, Imhof A, Kurrer MO
and Schaer DJ: Constitutive endocytosis of CD163 mediates
hemoglobin-heme uptake and determines the noninflammatory and
protective transcriptional response of macrophages to hemoglobin.
Circ Res. 99:943–950. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Philippidis P, Mason JC, Evans BJ, Nadra
I, Taylor KM, Haskard DO and Landis RC: Hemoglobin scavenger
receptor CD163 mediates interleukin-10 release and heme oxygenase-1
synthesis: Antiinflammatory monocyte-macrophage responses in vitro,
in resolving skin blisters in vivo, and after cardiopulmonary
bypass surgery. Circ Res. 94:119–126. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nielsen MJ, Møller HJ and Moestrup SK:
Hemoglobin and heme scavenger receptors. Antioxid Redox Signal.
12:261–273. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Polek TC, Talpaz M, Darnay BG and
Spivak-Kroizman T: TWEAK mediates signal transduction and
differentiation of RAW264.7 cells in the absence of Fn14/TweakR.
Evidence for a second TWEAK receptor. J Biol Chem. 278:32317–32323.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Burkly LC, Michaelson JS, Hahm K,
Jakubowski A and Zheng TS: TWEAKing tissue remodeling by a
multifunctional cytokine: Role of TWEAK/Fn14 pathway in health and
disease. Cytokine. 40:1–16. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Moreno JA, Dejouvencel T, Labreuche J,
Smadja DM, Dussiot M, Martin-Ventura JL, Egido J, Gaussem P,
Emmerich J, Michel JB, et al: Peripheral artery disease is
associated with a high CD163/TWEAK plasma ratio. Arterioscler
Thromb Vasc Biol. 30:1253–1262. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kowal-Bielecka O, Bielecki M, Guiducci S,
Trzcinska-Butkiewicz B, Michalska-Jakubus M, Matucci-Cerinic M,
Brzosko M, Krasowska D, Chyczewski L and Kowal K: High serum
sCD163/sTWEAK ratio is associated with lower risk of digital ulcers
but more severe skin disease in patients with systemic sclerosis.
Arthritis Res Ther. 15:R692013. View
Article : Google Scholar : PubMed/NCBI
|
|
93
|
Møller HJ: Soluble CD163. Scand J Clin Lab
Invest. 72:1–13. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Goldstein JL and Brown MS: Regulation of
the mevalonate pathway. Nature. 343:425–430. 1990. View Article : Google Scholar : PubMed/NCBI
|