|
1
|
Townsend DE, Sparkes RS, Baluda MC and
McClelland G: Unicellular histogenesis of uterine leiomyomas as
determined by electrophoresis by glucose-6-phosphate dehydrogenase.
Am J Obstet Gynecol. 107:1168–1173. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pandis N, Heim S, Bardi G, Flodérus UM,
Willén H, Mandahl N and Mitelman F: Chromosome analysis of 96
uterine leiomyomas. Cancer Genet Cytogenet. 55:11–18. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rein MS: Advances in uterine leiomyoma
research: The progesterone hypothesis. Environ Health Perspect. 108
Suppl 5:S791–S793. 2000. View Article : Google Scholar
|
|
4
|
Borahay MA, Al-Hendy A, Kilic GS and
Boehning D: Signaling pathways in leiomyoma: Understanding
pathobiology and implications for therapy. Mol Med. 21:242–256.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Levy BS: Modern management of uterine
fibroids. Acta Obstet Gynecol Scand. 87:812–823. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Maruo T, Ohara N, Wang J and Matsuo H: Sex
steroidal regulation of uterine leiomyoma growth and apoptosis. Hum
Reprod Update. 10:207–220. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Grigorieva V, Chen-Mok M, Tarasova M and
Mikhailov A: Use of a levonorgestrel-releasing intrauterine system
to treat bleeding related to uterine leiomyomas. Fertil Steril.
79:1194–1198. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Falcone T and Bedaiwy MA: Minimally
invasive management of uterine fibroids. Curr Opin Obstet Gynecol.
14:401–407. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lethaby A, Vollenhoven B and Sowter M:
Pre-operative GnRH analogue therapy before hysterectomy or
myomectomy for uterine fibroids. Cochrane Database Syst Rev:
CD000547. 2001. View Article : Google Scholar
|
|
10
|
Tristan M, Orozco LJ, Steed A,
Ramírez-Morera A and Stone P: Mifepristone for uterine fibroids.
Cochrane Database Syst Rev. doi:
10.1002/14651858.CD007687.pub2.
|
|
11
|
Lumsden MA: Modern management of fibroids.
Obstet Gynaecol Reprod Med. 20:82–86. 2010. View Article : Google Scholar
|
|
12
|
Walker CL and Stewart EA: Uterine
fibroids: The elephant in the room. Science. 308:1589–1592. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lethaby A, Vollenhoven B and Sowter M:
Efficacy of pre-operative gonadotrophin hormone releasing analogues
for women with uterine fibroids undergoing hysterectomy or
myomectomy: A systematic review. BJOG. 109:1097–1108. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sankaran S and Manyonda IT: Medical
management of fibroids. Best Pract Res Clin Obstet Gynaecol.
22:655–676. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yan J, Li CP and Liu SS: Study of disease
names treated by Guizhi Fuling pills based on data mining
technology. Chin J Mod Drug Appl. 6:85–86. 2012.(In Chinese).
|
|
16
|
Fan YS: Jin Gui Yao Lue. China Press of
Traditional Chinese Medicine; Beijing: 2007
|
|
17
|
National Commission of Chinese
Pharmacopoeia, . Pharmacopoeia of the People's Republic of China.
Beijing China Med Scie Technol Press; 1. pp. 9842010, (In
Chinese).
|
|
18
|
Chen NN, Han M, Yang H, Yang GY, Wang YY,
Wu XK and Liu JP: Chinese herbal medicine Guizhi Fuling Formula for
treatment of uterine fibroids: A systematic review of randomised
clinical trials. BMC Complement Altern Med. 14:22014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu AL and Du GH: Network pharmacology:
New guidelines for drug discovery. Yao Xue Xue Bao. 45:1472–1477.
2010.(In Chinese). PubMed/NCBI
|
|
20
|
Liang X, Li H and Li S: A novel network
pharmacology approach to analyse traditional herbal formulae: The
Liu-Wei-Di-Huang pill as a case study. Mol Biosyst. 10:1014–1022.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li S, Zhang B, Jiang D, Wei Y and Zhang N:
Herb network construction and co-module analysis for uncovering the
combination rule of traditional Chinese herbal formulae. BMC
Bioinformatics. 11 Suppl 11:S62010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zheng CS, Xu XJ, Ye HZ, Wu GW, Li XH, Xu
HF and Liu XX: Network pharmacology-based prediction of the
multi-target capabilities of the compounds in Taohong Siwu
decoction, and their application in osteoarthritis. Exp Ther Med.
6:125–132. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen FP, Chang CM, Hwang SJ, Chen YC and
Chen FJ: Chinese herbal prescriptions for osteoarthritis in Taiwan:
Analysis of National Health Insurance dataset. BMC Complement
Altern Med. 14:912014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ru J, Li P, Wang J, Zhou W, Li B, Huang C,
Li P, Guo Z, Tao W, Yang Y, et al: TCMSP: A database of systems
pharmacology for drug discovery from herbal medicines. J
Cheminform. 6:132014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen L, Wang D, Wu J, Yu B and Zhu D:
Identification of multiple constituents in the traditional Chinese
medicine formula GuiZhiFuLing-Wan by HPLC-DAD-MS/MS. J Pharm Biomed
Anal. 49:267–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu X, Ouyang S, Yu B, Liu Y, Huang K,
Gong J, Zheng S, Li Z, Li H and Jiang H: PharmMapper server: A web
server for potential drug target identification using pharmacophore
mapping approach. Nucleic Acids Res. 38:(Web Server Issue).
W609–W614. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hamosh A, Scott AF, Amberger JS, Bocchini
CA and McKusick VA: Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic Acids
Res. 33(Database Issue): D514–D517. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43(Database Issue): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Orchard S, Ammari M, Aranda B, Breuza L,
Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C,
del-Toro N, et al: The MIntAct project-IntAct as a common curation
platform for 11 molecular interaction databases. Nucleic Acids Res.
42(Database Issue): D358–D363. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Franz M, Lopes CT, Huck G, Dong Y, Sumer O
and Bader GD: Cytoscape.js: A graph theory library for
visualisation and analysis. Bioinformatics. 32:309–311.
2016.PubMed/NCBI
|
|
31
|
Missiuro PV, Liu K, Zou L, Ross BC, Zhao
G, Liu JS and Ge H: Information flow analysis of interactome
networks. PLoS Comput Biol. 5:e10003502009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Raman K, Damaraju N and Joshi GK: The
organisational structure of protein networks: Revisiting the
centrality-lethality hypothesis. Syst Synth Biol. 8:73–81. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang Y, Bai M, Zhang B, Liu C, Guo Q, Sun
Y, Wang D, Wang C, Jiang Y, Lin N and Li S: Uncovering
pharmacological mechanisms of Wu-tou decoction acting on rheumatoid
arthritis through systems approaches: Drug-target prediction,
network analysis and experimental validation. Sci Rep. 5:94632015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI
|
|
35
|
Farber M, Conrad S, Heinrichs WL and
Herrmann WL: Estradiol binding by fibroid tumors and normal
myometrium. Obstet Gynecol. 40:479–486. 1972.PubMed/NCBI
|
|
36
|
Puukka MJ, Kontula KK, Kauppila AJ, Janne
OA and Vihko RK: Estrogen receptor in human myoma tissue. Mol Cell
Endocrinol. 6:35–44. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kim JJ, Sefton EC and Bulun SE:
Progesterone receptor action in leiomyoma and endometrial cancer.
Prog Mol Biol Transl Sci. 87:53–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim JJ, Kurita T and Bulun SE:
Progesterone action in endometrial cancer, endometriosis, uterine
fibroids, and breast cancer. Endocr Rev. 34:130–162. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Islam MS, Protic O, Stortoni P, Grechi G,
Lamanna P, Petraglia F, Castellucci M and Ciarmela P: Complex
networks of multiple factors in the pathogenesis of uterine
leiomyoma. Fertil Steril. 100:178–193. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ciarmela P, Islam MS, Reis FM, Gray PC,
Bloise E, Petraglia F, Vale W and Castellucci M: Growth factors and
myometrium: Biological effects in uterine fibroid and possible
clinical implications. Hum Reprod Update. 17:772–790. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Marsh EE and Bulun SE: Steroid hormones
and leiomyomas. Obstet Gynecol Clin North Am. 33:59–67. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sozen I and Arici A: Interactions of
cytokines, growth factors, and the extracellular matrix in the
cellular biology of uterine leiomyomata. Fertil Steril. 78:1–12.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nierth-Simpson EN, Martin MM, Chiang TC,
Melnik LI, Rhodes LV, Muir SE, Burow ME and McLachlan JA: Human
uterine smooth muscle and leiomyoma cells differ in their rapid
17beta-estradiol signaling: Implications for proliferation.
Endocrinology. 150:2436–2445. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Benassayag C, Leroy MJ, Rigourd V, Robert
B, Honoré JC, Mignot TM, Vacher-Lavenu MC, Chapron C and Ferré F:
Estrogen receptors (ERalpha/ERbeta) in normal and pathological
growth of the human myometrium: Pregnancy and leiomyoma. Am J
Physiol. 276:E1112–E1118. 1999.PubMed/NCBI
|
|
45
|
Kovács KA, Oszter A, Göcze PM, Környei JL
and Szabó I: Comparative analysis of cyclin D1 and oestrogen
receptor (alpha and beta) levels in human leiomyoma and adjacent
myometrium. Mol Hum Reprod. 7:1085–1091. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Maekawa R, Sato S, Yamagata Y, Asada H,
Tamura I, Lee L, Okada M, Tamura H, Takaki E, Nakai A and Sugino N:
Genome-wide DNA methylation analysis reveals a potential mechanism
for the pathogenesis and development of uterine leiomyomas. PLoS
One. 8:e666322013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ishikawa H, Ishi K, Serna VA, Kakazu R,
Bulun SE and Kurita T: Progesterone is essential for maintenance
and growth of uterine leiomyoma. Endocrinology. 151:2433–2442.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lange CA: Integration of progesterone
receptor action with rapid signaling events in breast cancer
models. J Steroid Biochem Mol Biol. 108:203–212. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boonyaratanakornkit V, Scott MP, Ribon V,
Sherman L, Anderson SM, Maller JL, Miller WT and Edwards DP:
Progesterone receptor contains a proline-rich motif that directly
interacts with SH3 domains and activates c-Src family tyrosine
kinases. Mol Cell. 8:269–280. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Maruo T, Matsuo H, Samoto T, Shimomura Y,
Kurachi O, Gao Z, Wang Y, Spitz IM and Johansson E: Effects of
progesterone on uterine leiomyoma growth and apoptosis. Steroids.
65:585–592. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shimomura Y, Matsuo H, Samoto T and Maruo
T: Up-regulation by progesterone of proliferating cell nuclear
antigen and epidermal growth factor expression in human uterine
leiomyoma. J Clin Endocrinol Metab. 83:2192–2198. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Burroughs KD, Howe SR, Okubo Y,
Fuchs-Young R, LeRoith D and Walker CL: Dysregulation of IGF-I
signaling in uterine leiomyoma. J Endocrinol. 172:83–93. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Peng L, Wen Y, Han Y, Wei A, Shi G,
Mizuguchi M, Lee P, Hernando E, Mittal K and Wei JJ: Expression of
insulin-like growth factors (IGFs) and IGF signaling: Molecular
complexity in uterine leiomyomas. Fertil Steril. 91:2664–2675.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chang CC, Hsieh YY, Lin WH and Lin CS:
Leiomyoma and vascular endothelial growth factor gene
polymorphisms: A systematic review. Taiwan J Obstet Gynecol.
49:247–253. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rossi MJ, Chegini N and Masterson BJ:
Presence of epidermal growth factor, platelet-derived growth
factor, and their receptors in human myometrial tissue and smooth
muscle cells: Their action in smooth muscle cells in vitro.
Endocrinology. 130:1716–1727. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Helmke BM, Markowski DN, Müller MH, Sommer
A, Müller J, Möller C and Bullerdiek J: HMGA proteins regulate the
expression of FGF2 in uterine fibroids. Mol Hum Reprod. 17:135–142.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kolch W: Meaningful relationships: The
regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.
Biochem J. 351:289–305. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Crabtree JS, Jelinsky SA, Harris HA, Choe
SE, Cotreau MM, Kimberland ML, Wilson E, Saraf KA, Liu W,
McCampbell AS, et al: Comparison of human and rat uterine
leiomyomata: Identification of a dysregulated mammalian target of
rapamycin pathway. Cancer Res. 69:6171–6178. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Swartz CD, Afshari CA, Yu L, Hall KE and
Dixon D: Estrogen-induced changes in IGF-I, Myb family and MAP
kinase pathway genes in human uterine leiomyoma and normal uterine
smooth muscle cell lines. Mol Hum Reprod. 11:441–450. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yu L, Saile K, Swartz CD, He H, Zheng X,
Kissling GE, Di X, Lucas S, Robboy SJ and Dixon D: Differential
expression of receptor tyrosine kinases (RTKs) and IGF-I pathway
activation in human uterine leiomyomas. Mol Med. 14:264–275. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Karra L, Shushan A, Ben-Meir A, Rojansky
N, Klein BY, Shveiky D, Levitzki R and Ben-Bassat H: Changes
related to phosphatidylinositol 3-kinase/Akt signaling in
leiomyomas: Possible involvement of glycogen synthase kinase 3alpha
and cyclin D2 in the pathophysiology. Fertil Steril. 93:2646–2651.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jeong YJ, Noh EM, Lee YR, Yu HN, Jang KY,
Lee SJ, Kim J and Kim JS: 17β-estradiol induces up-regulation of
PTEN and PPARγ in leiomyoma cells, but not in normal cells. Int J
Oncol. 36:921–927. 2010.PubMed/NCBI
|
|
63
|
Chegini N, Luo X, Ding L and Ripley D: The
expression of Smads and transforming growth factor beta receptors
in leiomyoma and myometrium and the effect of gonadotropin
releasing hormone analogue therapy. Mol Cell Endocrinol. 209:9–16.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fayed YM, Tsibris JC, Langenberg PW and
Robertson AL Jr: Human uterine leiomyoma cells: Binding and growth
responses to epidermal growth factor, platelet-derived growth
factor, and insulin. Lab Invest. 60:30–37. 1989.PubMed/NCBI
|
|
65
|
Ren Y, Yin H, Tian R, Cui L, Zhu Y, Lin W,
Tang XD, Gui Y and Zheng XL: Different effects of epidermal growth
factor on smooth muscle cells derived from human myometrium and
from leiomyoma. Fertil Steril. 96:1015–1020. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Brown LF, Detmar M, Tognazzi K, Abu-Jawdeh
G and Iruela-Arispe ML: Uterine smooth muscle cells express
functional receptors (flt-1 and KDR) for vascular permeability
factor/vascular endothelial growth factor. Lab Invest. 76:245–255.
1997.PubMed/NCBI
|
|
67
|
Sanci M, Dikis C, Inan S, Turkoz E, Dicle
N and Ispahi C: Immunolocalization of VEGF VEGF receptors, EGF-R
and Ki-67 in leiomyoma, cellular leiomyoma and leiomyosarcoma. Acta
Histochem. 113:317–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gentry CC, Okolo SO, Fong LF, Crow JC,
Maclean AB and Perrett CW: Quantification of vascular endothelial
growth factor-A in leiomyomas and adjacent myometrium. Clin Sci
(Lond). 101:691–695. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ono M, Yin P, Navarro A, Moravek MB, JS V
Coon, Druschitz SA, Serna VA, Qiang W, Brooks DC, Malpani SS, et
al: Paracrine activation of WNT/β-catenin pathway in uterine
leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci USA.
110:pp. 17053–17058. 2013; View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Catherino WH and Malik M: Uterine
leiomyomas express a molecular pattern that lowers retinoic acid
exposure. Fertil Steril. 87:1388–1398. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Olive DL, Lindheim SR and Pritts EA:
Non-surgical management of leiomyoma: Impact on fertility. Curr
Opin Obstet Gynecol. 16:239–243. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fiscella K, Eisinger SH, Meldrum S, Feng
C, Fisher SG and Guzick DS: Effect of mifepristone for symptomatic
leiomyomata on quality of life and uterine size: A randomized
controlled trial. Obstet Gynecol. 108:1381–1387. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Donnez J, Tatarchuk TF, Bouchard P,
Puscasiu L, Zakharenko NF, Ivanova T, Ugocsai G, Mara M, Jilla MP,
Bestel E, et al: Ulipristal acetate versus placebo for fibroid
treatment before surgery. N Engl J Med. 366:409–420. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xu Q, Ohara N, Chen W, Liu J, Sasaki H,
Morikawa A, Sitruk-Ware R, Johansson ED and Maruo T: Progesterone
receptor modulator CDB-2914 down-regulates vascular endothelial
growth factor, adrenomedullin and their receptors and modulates
progesterone receptor content in cultured human uterine leiomyoma
cells. Hum Reprod. 21:2408–2416. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ohara N, Morikawa A, Chen W, Wang J,
DeManno DA, Chwalisz K and Maruo T: Comparative effects of SPRM
asoprisnil (J867) on proliferation, apoptosis, and the expression
of growth factors in cultured uterine leiomyoma cells and normal
myometrial cells. Reprod Sci. 14 8 Suppl:S20–S27. 2007. View Article : Google Scholar
|
|
76
|
Eisinger SH, Bonfiglio T, Fiscella K,
Meldrum S and Guzick DS: Twelve-month safety and efficacy of
low-dose mifepristone for uterine myomas. J Minim Invasive Gynecol.
12:227–233. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Boettger-Tong H, Shipley G, Hsu CJ and
Stancel GM: Cultured human uterine smooth muscle cells are retinoid
responsive. Proc Soc Exp Biol Med. 215:pp. 59–65. 1997; View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Norian JM, Owen CM, Taboas J, Korecki C,
Tuan R, Malik M, Catherino WH and Segars JH: Characterization of
tissue biomechanics and mechanical signaling in uterine leiomyoma.
Matrix Biol. 31:57–65. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rogers R, Norian J, Malik M, Christman G,
Abu-Asab M, Chen F, Korecki C, Iatridis J, Catherino WH, Tuan RS,
et al: Mechanical homeostasis is altered in uterine leiomyoma. Am J
Obstet Gynecol. 198:474.e1–e11. 2008. View Article : Google Scholar
|
|
80
|
Xu HY, Chen ZW and Wu YM: Antitumor
activity of total paeony glycoside against human chronic myelocytic
leukemia K562 cell lines in vitro and in vivo. Med Oncol.
29:1137–1147. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tao XQ, Li N, Cao L, Zhang CF, Wang TJ,
Ding G, Wang ZZ and Xiao W: Effect of main components from Guizhi
Fuling capsule on human leiomyoma cell proliferation and
contraction of isolated mouse uterine. Chin J Exp Tradit Med Form.
2:91–96. 2016.
|
|
82
|
Lu CC, Shen CH, Chang CB, Hsieh HY, Wu JD,
Tseng LH, Hwang DW, Chen SY, Wu SF, Chan MW and Hsu CD: Guizhi
Fuling Wan as a novel agent for intravesical treatment for bladder
cancer in mouse model. Mol Med. Jan 13–2016.(Epub ahead of print).
View Article : Google Scholar
|
|
83
|
McCarty MF: Targeting multiple signaling
pathways as a strategy for managing prostate cancer: Multifocal
signal modulation therapy. Integr Cancer Ther. 3:349–380. 2004.
View Article : Google Scholar : PubMed/NCBI
|