|
1
|
Loyse A, Thangaraj H, Eastervrook P, Ford
N, Roy M, Chiller T, Govender N, Harrison TS and Bicanic T:
Cryptococcal meningitis: Improving access to essential antifungal
medicines in resource-poor countries. Lancet Infect Dis.
13:629–637. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Beardsley J, Wolbers M, Kibengo FM, Ggayi
AB, Kamali A, Cuc NT, Binh TQ, Chau NV, Farrar J, Merson L, et al:
Adjunctive dexamethasone in HIV-associated cryptococcal meningitis.
N Engl J Med. 374:542–554. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fang W, Fa Z and Liao W: Epidemiology of
Cryptococcus and cryptococcosis in China. Fungal Genet Biol.
78:7–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu TB, Kim JC, Wang Y, Toffaletti DL,
Eugenin E, Perfect JR, Kim KJ and Xue C: Brain inositol is a novel
stimulator for promoting Cryptococcus penetration of the
blood-brain barrier. PLoS Pathog. 9:e10032472013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jong A, Wu CH, Prasadarao NV, Kwon-Chung
KJ, Chang YC, Ouyang Y, Shackleford GM and Huang SH: Invasion of
Cryptococcus neoformans into human brain microvascular
endothelial cells requires protein kinase C-alpha activation. Cell
Microbiol. 10:1854–1865. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Panackal AA, Wuest SC, Lin YC, Wu T, Zhang
N, Kosa P, Komori M, Blake A, Browne SK, Rosen LB, et al:
Paradoxical immune responses in non-HIV Cryptococcal meningitis.
PLoS Pathog. 11:e10048842015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Graciela Agar CH, Orozco Rosalba V, Macias
Ivan C, Agnes F, Juan Luis GA and José Luis SH: Cryptococcal
choroid plexitis an uncommon fungal disease. Case report and
review. Can J Neurol Sci. 36:117–122. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kumari R, Raval M and Dhun A: Cryptococcal
choroid plexitis: Rare imaging findings of central nervous system
cryptococcal infection in an immunocompetent individual. Br J
Radiol. 83:e14–e17. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schwerk C, Tenenbaum T, Kim KS and
Schroten H: The choroid pleus-a multi-role player during infectious
diseases of the CNS. Front Cell Neurosci. 9:802015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ngamskulrungroj P, Chang Y, Sionov E and
Kwon-Chung KJ: The primary target organ of Cryptococcus
gattii is different from that of Cryptococcus neoformans
in a murine model. MBio. 3:e00103–e00112. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nathan C and Shiloh MU: Reactive oxygen
and nitrogen inter-mediates in the relationship between mammalian
hosts and microbial pathogens. Proc Natl Acad Sci USA. 97:pp.
8841–8848. 2000, View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Almeida F, Wolf JM and Casadevall A:
Virulence-associated enzymes of Cryptococcus neoformans.
Eukaryot Cell. 14:1173–1185. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
de Jesús-Berríos M, Liu L, Nussbaum JC,
Cox GM, Stamler JS and Heitman J: Enzymes that counteract
nitrosative stress promote fungal virulence. Curr Biol.
13:1963–1968. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang
Z, Janbon G, Idnurm A and Bahn YS: Cryptococcus neoformans
and Cryptococcus gattii, the etiologic agents of
cryptococcosis. Cold Spring Harb Perspect Med. 4:a0197602014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Upadhya R, Campbll LT, Donlin MJ, Aurora R
and Lodge JK: Global transcriptome profile of Cryptococcus
neoformans during exposure to hydrogen peroxide induced
oxidative stress. PLoS One. 8:e551102013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Voelz K, Lammas DA and May RC: Cytokine
signaling regulates the outcome of intracellular macrophage
parasitism by Cryptococcus neoformans. Infect Immun.
77:3450–3457. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Redlich S, Ribes S, Schütze S, Eiffert H
and Nau R: Toll-like receptor stimulation increases phagocytosis of
Cryptococcus neoformans by microglial cells. J
Neuroinflammation. 10:712013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chrisman CJ, Albuquerque P, Guimaraes AJ,
Nieves E and Casadevall A: Phospholipids trigger Cryptococcus
neoformans capsular enlargement during interactions with
amoebae and macrophages. PLoS Pathog. 7:e10020472011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Alvarez M and Casadevall A: Cell-to-cell
spread and massive vacuole formation after Cryptococcus
neoformans infection of murine macrophages. BMC Immunol.
8:162007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rohatgi S and Pirofski LA: Host immunity
to Cryptococcus neoformans. Future Microbiol. 10:565–581.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mambula SS, Simons ER, Hastey R, Selsted
ME and Levitz SM: Human neutrophil-mediated nonoxidative antifungal
activity against Cryptococcus neoformans. Infect Immun.
68:6257–6264. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Winterbourn CC, Vissers MC and Kettle AJ:
Myeloperoxidase. Curr Opin Hematol. 7:53–58. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alcouloumre MS, Ghannoum MA, Ibrahim AS,
Selsted ME and Edwards JE Jr: Fungicidal properties of defensin
NP-1 and activity against Cryptococcus neoformans in vitro.
Antimicrob Agents Chemother. 37:2628–2632. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wozniak KL and Levitz SM: Cryptococcus
neoformans enters the endolysosomal pathway of dendritic cells
and is killed by lysosomal components. Infect Immun. 76:4764–4771.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Islam A, Li SS, Oykhman P, Timm-McCann M,
Huston SM, Stack D, Xiang RF, Kelly MM and Mody CH: An acidic
microenvironment increases KN cell killing Cryptococcus
neoformans and Cryptococcus gattii by enhancing perforin
degtanulation. PLoS Pathog. 9:e10034392013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marr KJ, Jones GJ, Zheng C, Huston SM,
Timm-McCann M, Islam A, Berenger BM, Ma LL, Wisenman JC and Mody
CH: Cryptococcus neoformans directly stimulates perforin
production and rearms NK cells for enhanced anticryptococcal
microbicidal activity. Infect Immun. 77:2436–2446. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rodrigues ML, Nakayasu ES, Oliveira DL,
Nimrichter L, Nosanchuk JD, Almeida IC and Casadevall A:
Extracellular vesicles produced by Cryptococcus neoformans
contain protein components associated with virulence. Eukaryot
Cell. 7:58–67. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Doering TL: How sweet it is! Cell wall
biogenesis and polysaccharide capsule formation in Cryptococcus
neoformans. Annu Rev Microbiol. 63:223–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Leopold Wager CM, Hole CR, Wozniak KL,
Olszewski MA and Wormley FL Jr: STAT1 signaling is essential for
protection against Cryptococcus neoformans infection in
mice. J Immunol. 193:4060–4071. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Haynes BC, Skowyra ML, Spencer SJ, Gish
SR, Williams M, Held EP, Brent MR and Doering TL: Toward an
integrated model of capsule regulation in Cryptococcus
neoformans. PLoS Pathog. 7:e10024112011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Villena SN, Pinheiro RO, Pinheiro CS,
Nunes MP, Takiya CM, Dosreis GA, Previato JO, Mendonça-Previato L
and Freire-de-Lima CG: Capsular polysaccharides galactoxylomannan
and glucuronoxylomannan from Cryptococcus neoformans induce
macrophage apoptosis mediated by Fas ligand. Cell Microbiol.
10:1274–1285. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yauch LE, Lam JS and Levitz SM: Direct
inhibition of T-cell responses by the Cryptococcus capsular
polysaccharide glucuronoxylomannan. PLoS Pathog. 2:e1202006.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lupo P, Chang YC, Kelsall BL, Farber JM,
Pietrella D, Vecchiarelli A, Leon F and Kwon-Chung KJ: The presence
of capsule in Cryptococcus neoformans influences the gene
expression profile in dendritic cells during interaction with the
fungus. Infect Immun. 76:1581–1589. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chatterjee S, Prados-Rosales R, Itin B,
Casadevall A and Stark RE: Solid-state NMR reveals the carbon-based
molecular architecture of Cryptococcus neoformans fungal
eumelanins in the cell wall. J Biol Chem. 290:13779–13790. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sundaram C, Shantveer GU, Umabala P and
Lakshmi V: Diagnostic utility of melanin production by fungi: Study
on tissue sections and culture smears with Masson-Fontana stain.
Indian J Pathol Microbiol. 57:217–222. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nosanchuk JD, Rosas AL, Lee SC and
Casadevall A: Melanisation of Cryptococcus neoformans in
human brain tissue. Lancet. 355:2049–2050. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mauch RM, Cunha Vde O and Dias AL: The
copper interference with the melanogenesis of Cryptococcus
neoformans. Rev Inst Med Trop Sao Paulo. 55:117–120. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Santangelo R, Zoellner H, Sorrell T,
Wilson C, Donald C, Djordjevic J, Shounan Y and Wright L: Role of
extracellular phospholipases and mononuclear phagocytes in
dissemination of cryptococcosis in a murine model. Infect Immun.
72:2229–2239. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Evans RJ, Li Z, Hughes WS, Djordjevic JT,
Nielsen K and May RC: Cryptococcal phospholipase B1 is required for
intracellular proliferation and control of titan cell morphology
during macrophage infection. Infect Immun. 83:1296–1304. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maruvada R, Zhu L, Pearce D, Zheng Y,
Perfect J, Kwon-Chung KJ and Kim KS: Cryptococcus neoformans
phospholipase B1 activates host cell Rac1 for traversal across the
blood-brain barrier. Cell Microbiol. 14:1544–1553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rawson RB: The site-2 protease. Biochim
Biophys Acta. 1828:2801–2807. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Desalermos A, Tan X, Rajamuthiah R,
Arvanitis M, Wang Y, Li D, Kourkoumpetis TK, Fuchs BB and Mylonakis
E: A multi-host approach for the systematic analysis of virulence
factors in Cryptococcus neoformans. J Infect Dis.
211:298–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Morrow CA and Fraser JA: Is the
nickel-dependent urease complex of Cryptococcus the pathogen's
Achilles' heel? MBio. 4:e00408–e00413. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Singh A, Panting RJ, Varma A, Saijo T,
Waldron KJ, Jong A, Ngamskulrungroj P, Chang YC, Rutherford JC and
Kwon-Chung KJ: Factors required for activation of urease as a
virulence determinant in Cryptococcus neoformans. MBio.
4:e00220–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Olszewski MA, Noverr MC, Chen GH, Toews
GB, Cox GM, Perfect JR and Huffnagle GB: Urease expression by
Cryptococcus neoformans promotes microvascular
sequestration, thereby enhancing central nervous system invasion.
Am J Pathol. 164:1761–1771. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Breitenbach M, Weber M, Rinnerthaler M,
Karl T and Breitenbach-Koller L: Oxidative stress in fungi: Its
function in signal transduction, interaction with plant hosts, and
lignocellulose degradation. Biomolecules. 5:318–342. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Toledano MB, Delaunay-Moisan A, Outten CE
and Igbaria A: Functions and cellular copartmentation of the
thioredoxin and glutathione pathways in yeast. Antioxid Redox
Signal. 18:1699–1711. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Missall TA, Pusateri ME and Lodge JK:
Thiol peroxidase is critical for virulence and resistance to nitric
oxide and peroxide in the fungal pathogen, Cryptococcus
neoformans. Mol Microbiol. 51:1447–1458. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Benhar M, Shytaj IL, Stamler JS and
Savarino A: Dual targeting of the thioredoxin and glutathione
systems in cancer and HIV. J Clin Invest. 126:1630–1639. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Missall TA and Lodge JK: Function of
thioredoxin proteins in Cryptococcus neoformans during stress or
virulence and regulation by putative transcriptional modulators.
Mol Microbiol. 57:847–858. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Benhar M: Nitric oxide and the thioredoxin
system: A complex interplay in redox regulation. Biochim Biophys
Acta. 1850:2476–2484. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Netto LE and Antunes F: The roles of
peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in
signal transduction. Mol Cells. 39:65–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lu J and Holmgren A: The thioredoxin
antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yoshioka J: Thioredoxin superfamily and
its effects on cardiac physiology and pathology. Compr Physlol.
5:513–530. 2015. View Article : Google Scholar
|
|
55
|
Ianiri G and Idnurm A: Essential gene
discovery in the basidiomycete Cryptococcus neoformans for
antifungal drug target prioritization. MBio. 6:e02334–14. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Missall TA and Lodge JK: Thioredoxin
reductase is essential for viability in the fungal pathogen
Cryptococcus neoformans. Eukaryot Cell. 4:487–489. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kalinina EV, Chernov NN and Novivhkova MD:
Role of glutathione transferase, and glutaredoxin in regulation of
redox-dependent processes. Biochemistry (Mosc). 79:1562–1583. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lu J and Holmgren A: The thioredoxin
antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Grant CM: Role of the
glutathione/glutaredoxin and thioredoxin systems in yeast growth
and response to stress conditions. Mol Microbiol. 39:533–541. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hanschmann EM, Godoy JR, Berndt C,
Hudemann C and Lilling CH: Thioredoxins, glutaredoxins, and
peroxiredoxins-molecular mechanisms and health significance: From
cofactors to antioxidants to redox signaling. Antioxid Redox
Signal. 19:1539–1605. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Narasipura SD, Chaturvedi V and Chaturvedi
S: Characterization of Cryptococcus neoformans variety
gattii SOD2 reveals distinct roles of the two superoxide dismutases
in fungal biology and virulence. Mol Microbiol. 55:1782–1800. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cox GM, Harrison TS, McDade HC, Taborda
CP, Heinrich G, Casadevall A and Perfect JR: Superoxide dismutase
influences the virulence of Cryptococcus neoformans by
affecting growth within macrophages. Infect Immun. 71:173–180.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Narasipura SD, Ault JG, Behr MJ,
Chaturvedi V and Chaturvedi S: Characterization of Cu, Zn
superoxide dismutase (SOD1) gene knock-out mutant of
Cryptococcus neoformans var. gattii: Role in biology and
virulence. Mol Microbiol. 47:1681–1694. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Giles SS, Stajich JE, Nichols C, Gerrald
QD, Alspaugh JA, Dietrich F and Perfect JR: The Cryptococcus
neoformans catalase gene family and its role in antioxidant
defense. Eukaryot Cell. 5:1447–1459. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Giles SS, Perfect JR and Cox GM:
Cytochrome c peroxidase contributes to the antioxidant
defense of Cryptococcus neoformans. Fungal Genet Biol.
42:20–29. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Akhter S, McDade HC, Gorlach JM, Heinrich
G, Cox GM and Perfect JR: Role of alternative oxidase gene in
pathogenesis of Cryptococcus neoformans. Infect Immun.
71:5794–5802. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vu K, Eigenheer RA, Phinney BS and Gelli
A: Cryptococcus neoformans promotes its transmigration into
the central nervous system by inducing molecular and cellular
changes in brain endothelial cells. Infect Immun. 81:3139–3147.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zou LL, Ma JL, Wang T, Yang TB and Liu CB:
Cell-penetrating peptide-mediated therapeutic molecule delivery
into the central nervous system. Curr Neuropharmacol. 11:197–208.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tseng HK, Liu CP, Price MS, Jong AY, Chang
JC, Toffaletti DL, Betancourt-Quiroz M, Frazzitta AE, Cho WL and
Perfect JR: Identification of genes from the fungal pathogen
Cryptococcus neoformans related to transmigration into the
central nervous system. PLoS One. 7:e450832012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Stie J and Fox D: Blood-brain barrier
invasion by Cryptococcus neoformans is enhanced by
functional interactions with plasmin. Microbiology. 158:240–258.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shi M, Li SS, Zheng C, Jones GJ, Kim KS,
Zhou H, Kubes P and Mody CH: Real-time imaging of trapping and
urease-dependent transmigration of Cryptococcus neoformans
in mouse brain. J Clin Invest. 120:1683–1693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Charlier C, Chrétien F, Baudrimont M,
Mordelet E, Lortholary O and Dromer F: Capsule structure changes
associated with Cryptococcus neoformans crossing of the
blood-brain barrier. Am J Pathol. 166:421–432. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chang YC, Wang Z, Flax LA, Xu D, Esko JD,
Nizet V and Baron MJ: Glycosaminoglycan binding facilitates entry
of a bacterial pathogen into central nervous systems. PLoS Pathog.
7:e10020822011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Vu K, Weksler B, Romero I, Couraud PO and
Gelli A: Immortalized human brain endothelial cell line HCMEC/D3 as
a model of the blood-brain barrier facilitates in vitro studies of
central nervous system infection by Cryptococcus neoformans.
Eukaryot Cell. 8:1803–1807. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jong A, Wu CH, Gonzales-Gomez I,
Kwon-Chung KJ, Chang YC, Tseng HK, Cho WL and Huang SH: Hyaluronic
acid receptor CD44 deficiency is associated with decreased
Cryptococcus neoformans brain infection. J Biol Chem.
287:15298–15306. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jong A, Wu CH, Chen HM, Luo F, Kwon-Chuang
KJ, Chang YC, Lamunyon CW, Plaas A and Huang SH: Identification and
characterization of CPS1 as a hyaluronic acid synthase contributing
to the pathogenesis of Cryptococcus neoformans infection.
Eukaryot Cell. 6:1486–1496. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Huang SH, Long M, Wu CH, Kwon-Chung KJ,
Chang YC, Chi F, Lee S and Jong A: Invasion of Cryptococcus
neoformans into human brain microvascular endothelial cells is
mediated through the lipid rafts-endocytic pathway via the dual
specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J
Biol Chem. 286:34761–34769. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Long M, Huang SH, Shackleford GM and Jong
A: Lipid raft/caveolae signaling is required for Cryptococcus
neoformans invasion into human brain microvascular endothelial
cells. J Biomed Sci. 19:192012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jong A, Wu CH, Shackleford GM, Kwon-Chung
KJ, Chang YC, Chen HM, Quyang Y and Huang SH: Involvement of human
CD44 during Cryptococcus neoformans infection of brain
microvascular endothelial cells. Cell Microbiol. 10:1313–1326.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Vu K, Tham R, Uhrig JP, Thompson GR III,
Pombejra Na S, Jamklang M, Bautos JM and Gelli A: Invasion of the
central nervous system by Cryptococcus neoformans requires a
secreted fungal metalloprotease. MBio. 5:e01101–e1114. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim KS: Mechanisms of microbial traversal
of the blood-brain barrier. Nat Rev Microbiol. 6:625–634. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Stie J, Bruni G and Fox D:
Surface-associated plasminogen binding of Cryptococcus
neoformans promotes extracellular matrix invasion. PLoS One.
4:e57802009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Charlier C, Chrétien F, Lortholary O and
Dromer F: Early capsule structure changes associated with
Cryptococcus neoformans crossing of the blood-brain barrier. Med
Sci (Paris). 21:685–687. 2005.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen SH, Stins MF, Huang SH, Chen YH,
Kwon-Chung KJ, Chang Y, Kim KS, Suzuki K and Jong AY:
Cryptococcus neoformans induces alterations in the
cytoskeleton of human brain microvascular endothelial cells. J Med
Microbiol. 52:961–970. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Charlier C, Nielsen K, Daou S, Brigitte M,
Chretien F and Dromer F: Evidence of a role for monocytes in
dissemination and brain invasion by Cryptococcus neoformans.
Infect Immun. 77:120–127. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Alvarez M and Casadevall A: Phagosome
extrusion and host-cell survival after Cryptococcus
neoformans phagocytosis by macrophages. Curr Biol.
16:2161–2165. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Coelho C, Souza AC, Derengowski Lda S, de
Leon-Rodriguez C, Wang B, Leon-Rivera R, Bocca AL, Gonçalves T and
Casadevall A: Macrophage mitochondrial and stress response to
ingestion of Cryptococcus neoformans. J Immunol.
194:2345–2357. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sorrell TC, Juillard PG, Djordjevic JT,
Kaufman-Francis K, Dietman A, Milonig A, Combes V and Grau GE:
Cryptococcal transmigration across a model brain blood-barrier:
Evidence of the Trojan horse mechanism and differences between
Cryptococcus neoformans var. grubii strain H99 and
Cryptococcus gattii strain R265. Microbes Infect. 18:57–67.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ma H, Croudace JE, Lammas DA and May RC:
Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol.
8:152007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Davis MJ, Eastman AJ, Qiu Y, Greorka B,
Kozel TR, Osterholzer JJ, Curtis JL, Swanson JA and Olszewski MA:
Cryptococcus neoformans-induced macrophage lysosome damage
crucially contributes to fungal virulence. J Immunol.
194:2219–2231. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu TB, Perlin DS and Xue C: Molecular
mechanisms of cryptococcal meningitis. Virulence. 3:173–181. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Alanio A, Vernel-Pauillac F,
Sturny-Leclère A and Dromer F: Cryptococcus neoformans host
adaptation: Toward biological evidence of dormancy. MBio.
6:e02580–14. 2015. View Article : Google Scholar : PubMed/NCBI
|