Expression of miR-625 and Fas in cervical vertebral cartilage endplate

  • Authors:
    • Beilei Zhan
    • Yan Zhan
    • Wei Wang
    • Yunzhong Zhan
    • Bingsheng Liu
  • View Affiliations

  • Published online on: October 31, 2017     https://doi.org/10.3892/etm.2017.5403
  • Pages: 513-519
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to assess miR‑625 and Fas expression in normal and degenerative cervical cartilage endplate (CEP) tissues. Following biof‑informatics analysis, the Fas gene was predicted to be one of the targets of miR‑625. Quantitative PCR (qPCR) and western blotting were used to detect miR‑625 and Fas expression in normal and degenerative CEP. A luciferase reporter assay was used to identify whether miR‑625 could directly target the 3' untranslated region (3'‑UTR) of Fas. Lentiviral overexpression and/or inhibition vectors of miR-625 (pre-miR-625)/antigomiR-625 were constructed to determine whether overexpression or inhibition of miR‑625 could affect Fas and B‑cell lymphoma 2 (Bcl‑2) expression in cartilaginous endplate cells (CECs) and tissues. qPCR analysis demonstrated that miR-625 expression in degenerative CEP was significantly lower than in normal CEP tissue, while the production of Fas in degenerated CEP was significantly higher. Results from western blotting also showed a significant increase in Fas expression in degenerative CEP. miR‑625 can bind directly to the 3'‑UTR of the Fas gene. However, this inhibition was attenuated by a target mutation in the miR‑625‑binding site of the 3'‑UTR of Fas mRNA. In addition, following transfection of CECs with pre‑miR‑625 and antigomiR‑625, expression of Fas significantly decreased and increased, respectively, and Bcl‑2 expression was upregulated and downregulated, respectively. Upregulation of miR‑625 can inhibit Fas expression and further affect Bcl‑2 expression in CEP degeneration, suggesting that miR‑625‑mediated inhibition of the Fas gene is important in cervical degeneration.
View Figures
View References

Related Articles

Journal Cover

January-2018
Volume 15 Issue 1

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhan B, Zhan Y, Wang W, Zhan Y and Liu B: Expression of miR-625 and Fas in cervical vertebral cartilage endplate. Exp Ther Med 15: 513-519, 2018
APA
Zhan, B., Zhan, Y., Wang, W., Zhan, Y., & Liu, B. (2018). Expression of miR-625 and Fas in cervical vertebral cartilage endplate. Experimental and Therapeutic Medicine, 15, 513-519. https://doi.org/10.3892/etm.2017.5403
MLA
Zhan, B., Zhan, Y., Wang, W., Zhan, Y., Liu, B."Expression of miR-625 and Fas in cervical vertebral cartilage endplate". Experimental and Therapeutic Medicine 15.1 (2018): 513-519.
Chicago
Zhan, B., Zhan, Y., Wang, W., Zhan, Y., Liu, B."Expression of miR-625 and Fas in cervical vertebral cartilage endplate". Experimental and Therapeutic Medicine 15, no. 1 (2018): 513-519. https://doi.org/10.3892/etm.2017.5403