Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation

  • Authors:
    • Shibao Wang
    • Yinghui Huang
    • Xupeng Mu
    • Tianyang Qi
    • Sha Qiao
    • Zhenxia Lu
    • Hongjun Li
  • View Affiliations / Copyright

    Affiliations: Department of Oncology and Hematology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China, Science Research Center, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China, Physical Examination Center, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3173-3180
    |
    Published online on: January 30, 2018
       https://doi.org/10.3892/etm.2018.5809
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to explore whether culture method had an influence on DNA methylation in colorectal cancer (CRC). In the present study, CRC cells were cultured in two‑dimensional (2D), three‑dimensional (3D) and mouse orthotopic transplantation (Tis) cultures. Principal component analysis (PCA) was used for global visualization of the three samples. A Venn diagram was applied for intersection and union analysis for different comparisons. The methylation condition of 5'‑C‑phosphate‑G‑3' (CpG) location was determined using unsupervised clustering analysis. Scatter plots and histograms of the mean β values between 3D vs. 2D, 3D vs. Tis and Tis vs. 2D were constructed. In order to explore the biological function of the genes, gene ontology and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses were utilized. To explore the influence of culture condition on genes, quantitative methylation specific polymerase chain reaction (QMSP) was performed. The three samples connected with each other closely, as demonstrated by PCA. Venn diagram analysis indicated that some differential methylation positions were commonly shared in the three groups of samples and 16 CpG positions appeared hypermethylated in the three samples. The methylation patterns between the 3D and 2D cultures were more similar than those of 3D and Tis, and Tis and 2D. Results of gene ontology demonstrated that differentially expressed genes were involved in molecular function, cellular components and biological function. KEGG analysis indicated that genes were enriched in 13 pathways, of which four pathways were the most evident. These pathways were pathways in cancer, mitogen‑activated protein kinase signaling, axon guidance and insulin signaling. Furthermore, QMSP demonstrated that methylation of mutL homolog, phosphatase and tensin homolog, runt‑related transcription factor, Ras association family member, cadherin‑1, O‑6‑methylguanine‑DNA‑methyltransferase and P16 genes had no obvious difference in 2D, 3D and Tis culture conditions. In conclusion, the culture method had no influence on DNA methylation in CRC cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Lobert VH, Mouradov D and Heath JK: Focusing the spotlight on the zebrafish intestine to illuminate mechanisms of colorectal cancer. Adv Exp Med Biol. 916:411–437. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Girard P, Ducreux M, Baldeyrou P, Rougier P, Le Chevalier T, Bougaran J, Lasser P, Gayet B, Ruffié P and Grunenwald D: Surgery for lung metastases from colorectal cancer: Analysis of prognostic factors. J Clin Oncol. 14:2047–2053. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, et al: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 360:1408–1417. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Jiang W, Wang PG, Zhan Y and Zhang D: Prognostic value of p16 promoter hypermethylation in colorectal cancer: A meta-analysis. Cancer Invest. 32:43–52. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Zou HZ, Yu BM, Wang ZW, Sun JY, Cang H, Gao F, Li DH, Zhao R, Feng GG and Yi J: Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res. 8:188–191. 2002.PubMed/NCBI

7 

Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and Sidransky D: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1:686–692. 1995. View Article : Google Scholar : PubMed/NCBI

8 

Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, et al: MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 97:1330–1338. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Müller HM, Oberwalder M, Fiegl H, Morandell M, Goebel G, Zitt M, Mühlthaler M, Ofner D, Margreiter R and Widschwendter M: Methylation changes in faecal DNA: A marker for colorectal cancer screening? Lancet. 363:1283–1285. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Herman JG, Graff JR, Myöhänen S, Nelkin BD and Baylin SB: Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93:pp. 9821–9826. 1996; View Article : Google Scholar : PubMed/NCBI

11 

Deaton AM and Bird A: CpG islands and the regulation of transcription. Genes Dev. 25:1010–1022. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Costello JF, Frühwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomäki P, Lang JC, et al: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 24:132–138. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Holmquist GP and Ashley T: Chromosome organization and chromatin modification: Influence on genome function and evolution. Cytogenet Genome Res. 114:96–125. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Jones PA and Takai D: The role of DNA methylation in mammalian epigenetics. Science. 293:1068–1070. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Wistuba II, Mao L and Gazdar AF: Smoking molecular damage in bronchial epithelium. Oncogene. 21:7298–7306. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Chai H and Brown RE: Field effect in cancer-an update. Ann Clin Lab Sci. 39:331–337. 2009.PubMed/NCBI

17 

Coppedè F, Migheli F, Lopomo A, Failli A, Legitimo A, Consolini R, Fontanini G, Sensi E, Servadio A, Seccia M, et al: Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: Correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism. Epigenetics. 9:621–633. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Godugu C and Singh M: AlgiMatrix™-based 3D cell culture system as an in vitro tumor model: An important tool in cancer research. Methods Mol Biol. 1379:117–128. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, Xu B, Johnson D, Griffiths L, Frase S, et al: Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell. 17:101–115. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–459. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Bolstad BM, Irizarry RA, Åstrand M and Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Ma CH, Lv Q, Cao Y, Wang Q, Zhou XK, Ye BW and Yi CQ: Genes relevant with osteoarthritis by comparison gene expression profiles of synovial membrane of osteoarthritis patients at different stages. Eur Rev Med Pharmacol Sci. 18:431–439. 2014.PubMed/NCBI

25 

Bro R and Smilde AK: Principal component analysis. Anal Met. 6:2812–2831. 2014. View Article : Google Scholar

26 

Rencher AC: Principal component analysis. Met Multi Anal (Second). 1–407. 2002.

27 

Stambolic V, Suzuki A, De La Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP and Mak TW: Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 95:29–39. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Blyth K, Cameron ER and Neil JC: The RUNX genes: Gain or loss of function in cancer. Nat Rev Cancer. 5:376–387. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Allen NP, Donninger H, Vos MD, Eckfeld K, Hesson L, Gordon L, Birrer MJ, Latif F and Clark GJ: RASSF6 is a novel member of the RASSF family of tumor suppressors. Oncogene. 26:6203–6211. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Atkin WS, Edwards R, Kralj-Hans I, Wooldrage K, Hart AR, Northover JM, Parkin DM, Wardle J, Duffy SW and Cuzick J: UK Flexible Sigmoidoscopy Trial Investigators: Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: A multicentre randomised controlled trial. Lancet. 375:1624–1633. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Dai Z, Zheng RS, Zou XN, Zhang SW, Zeng HM, Li N and Chen WQ: Analysis and prediction of colorectal cancer incidence trend in China. Zhonghua Yu Fang Yi Xue Za Zhi. 46:598–603. 2012.(In Chinese). PubMed/NCBI

32 

Ni S, Peng J, Huang D, Xu M, Wang L, Tan C, SUN H, Cai S and Sheng W: HER2 overexpression and amplification in patients with colorectal cancer: A large-scale retrospective study in Chinese population. Am Society Clin Oncol. 2017.

33 

Mu WP, Wang J, Niu Q, Shi N and Lian HF: Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: A meta-analysis. Onco Targets Ther. 7:1237–1245. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, et al: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 38:787–793. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Yuan J, Luo RZ, Fujii S, Wang L, Hu W, Andreeff M, Pan Y, Kadota M, Oshimura M, Sahin AA, et al: Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res. 63:4174–4180. 2003.PubMed/NCBI

36 

Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, et al: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 41:178–186. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Zhang JD and Wiemann S: KEGGgraph: A graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics. 25:1470–1471. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P and Ogier-Denis E: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 276:35243–35246. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E, et al: PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol. 20:84–90. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Sawai H, Yasuda A, Ochi N, Ma J, Matsuo Y, Wakasugi T, Takahashi H, Funahashi H, Sato M and Takeyama H: Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival. BMC Gastroenterol. 8:562008. View Article : Google Scholar : PubMed/NCBI

41 

Miyazono K, Maeda S and Imamura T: Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene. 23:4232–4237. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Wai PY, Mi Z, Gao C, Guo H, Marroquin C and Kuo PC: Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J Biol Chem. 281:18973–18982. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Djos A, Martinsson T, Kogner P and Carén H: The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer. 11:402012. View Article : Google Scholar : PubMed/NCBI

44 

van der Weyden L and Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 1776:58–85. 2007.PubMed/NCBI

45 

DesRochers TM, Shamis Y, Alt-Holland A, Kudo Y, Takata T, Wang G, Jackson-Grusby L and Garlick JA: The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma. Epigenetics. 7:34–46. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S, Huang Y, Mu X, Qi T, Qiao S, Lu Z and Li H: DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Exp Ther Med 15: 3173-3180, 2018.
APA
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., & Li, H. (2018). DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Experimental and Therapeutic Medicine, 15, 3173-3180. https://doi.org/10.3892/etm.2018.5809
MLA
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., Li, H."DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation". Experimental and Therapeutic Medicine 15.4 (2018): 3173-3180.
Chicago
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., Li, H."DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3173-3180. https://doi.org/10.3892/etm.2018.5809
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S, Huang Y, Mu X, Qi T, Qiao S, Lu Z and Li H: DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Exp Ther Med 15: 3173-3180, 2018.
APA
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., & Li, H. (2018). DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Experimental and Therapeutic Medicine, 15, 3173-3180. https://doi.org/10.3892/etm.2018.5809
MLA
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., Li, H."DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation". Experimental and Therapeutic Medicine 15.4 (2018): 3173-3180.
Chicago
Wang, S., Huang, Y., Mu, X., Qi, T., Qiao, S., Lu, Z., Li, H."DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3173-3180. https://doi.org/10.3892/etm.2018.5809
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team