Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation

  • Authors:
    • Jie Li
    • Liqiang Li
    • Yong Shen
  • View Affiliations / Copyright

    Affiliations: Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
  • Pages: 3563-3569
    |
    Published online on: February 1, 2018
       https://doi.org/10.3892/etm.2018.5829
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to investigate the role of microRNA (miR)‑219‑5p in spinal cord injury (SCI) and to examine the underlying molecular mechanism. SCI rat and cell models were conducted in the current study, while reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect the level of miR‑219‑5p in the SCI mice and neurons. Bioinformatics analysis was applied to predict the target genes of miR‑219‑5p, and dual‑luciferase reporter assay was performed to verify the prediction. In addition, MTT assay and flow cytometry were conducted to determine the cell viability and cell apoptosis of the neurons, respectively. Western blot analysis was also performed to detect the expression of associated proteins. The study results demonstrated that miR‑219‑5p was highly expressed in SCI mice and neurons, and directly targets liver receptor homolog‑1 (LRH‑1). The neuron viability was significantly reduced by SCI, however, it was recovered upon transfection with an miR‑219‑5p inhibitor. Neuron apoptosis was notably induced by SCI and inhibited by miR‑219‑5p inhibition. The LRH‑1/Wnt/β‑catenin signaling pathway was also inhibited by SCI, while it was significantly enhanced by the miR‑219‑5p inhibitor. Furthermore, LRH‑1 overexpression eliminated the effects of the miR‑219‑5p inhibitor on SCI. In conclusion, these data indicated that the miR‑219‑5p inhibitor served a protective role in SCI via regulating the LRH‑1/Wnt/β‑catenin signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Hulsebosch CE: Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ. 26:238–255. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB and Dumont AS: Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 24:254–264. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Bareyre FM and Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: Insights from DNA microarrays. Trends Neurosci. 26:555–563. 2003. View Article : Google Scholar : PubMed/NCBI

4 

W.H.O., . Spinal Cord Injury Fact Sheet N 384. 2013.

5 

Ozdemir M, Attar A and Kuzu I: Regenerative treatment in spinal cord injury. Curr Stem Cell Res Ther. 7:364–369. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Pereira JE, Costa LM, Cabrita AM, Couto PA, Filipe VM, Magalhães LG, Fornaro M, Di Scipio F, Geuna S, Maurício AC and Varejão AS: Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Exp Neurol. 220:71–81. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Winter J, Jung S, Keller S, Gregory RI and Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Wang W, Kwon EJ and Tsai LH: MicroRNAs in learning, memory, and neurological diseases. Learn Mem. 19:359–368. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Rao P, Benito E and Fischer A: MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci. 6:392013. View Article : Google Scholar : PubMed/NCBI

12 

Dong J, Lu M, He X, Xu J, Qin J, Cheng Z, Liang B, Wang D and Li H: Identifying the role of microRNAs in spinal cord injury. Neurol Sci. 35:1663–1671. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Ning B, Gao L, Liu RH, Liu Y, Zhang NS and Chen ZY: microRNAs in spinal cord injury: Potential roles and therapeutic implications. Int J Biol Sci. 10:997–1006. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, Navarro-Ruiz R, Del Águila A and Maza RM: microRNA dysregulation in spinal cord injury: Causes, consequences and therapeutics. Front Cell Neurosci. 8:532014. View Article : Google Scholar : PubMed/NCBI

15 

Wang Q, Zhu L, Jiang Y, Xu J, Wang F and He Z: miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. Oncol Lett. 13:1319–1324. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Li C, Dong J, Han Z and Zhang K: MicroRNA-219-5p represses the proliferation, migration and invasion of gastric cancer cells by targeting the LRH-1/Wnt/β-catenin signaling pathway. Oncol Res. 25:617–627. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Huang C, Cai Z, Huang M, Mao C, Zhang Q, Lin Y, Zhang X, Tang B, Chen Y, Wang X, et al: miR-219-5p modulates cell growth of papillary thyroid carcinoma by targeting estrogen receptor α. J Clin Endocrinol Metab. 100:E204–E213. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Huang N, Lin J, Ruan J, Su N, Qing R, Liu F, He B, Lv C, Zheng D and Luo R: MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 586:884–891. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y and Ochi M: Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord. 52:596–600. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB and Kang SK: MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain. 135:1237–1252. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Jaworski J and Sheng M: The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol. 34:205–219. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Wang Z, Zhou L, Zheng X, Chen G, Pan R, Li J and Liu W: Autophagy protects against PI3K/Akt/mTOR-mediated apoptosis of spinal cord neuronsafter mechanical injury. Neurosci Lett. 656:158–164. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Zhai G, Song J, Shu T, Yan J, Jin X, He J and Yin Z: LRH-1senses signaling from phosphatidylcholine to regulate the expansion growth of digestive organs via synergy with Wnt/β-catenin signaling in zebrafish. J Genet Genomics. 20:307–317. 2017. View Article : Google Scholar

25 

Kramer HB, Lai CF, Patel H, Periyasamy M, Lin ML, Feller SM, Fuller-Pace FV, Meek DW, Ali S and Buluwela L: LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 44:582–594. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Harkema SJ: Neural plasticity after human spinal cord injury: Application of locomotor training to the rehabilitation of walking. Neuroscientist. 7:455–468. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr, Preul MC and Theodore N: The role of microRNA markers in the diagnosis, treatment and outcome prediction of spinal cord injury. Front Surg. 3:562016. View Article : Google Scholar : PubMed/NCBI

28 

Liu D, Huang Y, Jia C, Li Y, Liang F and Fu Q: Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis andfunctional recovery in rats with spinal cord injury. Cell Mol Neurobiol. 35:483–491. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Yang Z, Xu J, Zhu R and Liu L: Down-regulation of miRNA-128 contributes to neuropathic pain following spinal cord injury via activation of P38. Med Sci Monit. 23:405–411. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Zhou HJ, Wang LQ, Xu QS, Fan ZX, Zhu Y, Jiang H, Zheng XJ, Ma YH and Zhan RY: Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Exp Cell Res. 349:60–67. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Tao B and Shi K: Decreased miR-195 expression protects rats from spinal cord injury primarily by targeting HIF-1α. Ann Clin Lab Sci. 46:49–53. 2016.PubMed/NCBI

32 

Boon H, Sjögren RJ, Massart J, Egan B, Kostovski E, Iversen PO, Hjeltnes N, Chibalin AV, Widegren U and Zierath JR: MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression. Physiol Rep. 3:pii e126222015. View Article : Google Scholar

33 

Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Chen X, Feng S, Xiu Y and Li W: miR-142-3p is a potential therapeutic target for sensory function recovery of spinal cord injury. Med Sci Monit. 21:2553–2556. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Rao SA, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA and Somasundaram K: miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 8:e631642013. View Article : Google Scholar : PubMed/NCBI

35 

Cheng J, Deng R, Zhang P, Wu C, Wu K, Shi L, Liu X, Bai J, Deng M, Shuai X, et al: miR-219-5p plays a tumor suppressive role in colon cancer by targeting oncogene Sall4. Oncol Rep. 34:1923–1932. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Nadolny C and Dong X: Liver receptor homolog-1 (LRH-1): A potential therapeutic target for cancer. Cancer Biol Ther. 16:997–1004. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J and Schoonjans K: Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell. 15:499–509. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Li L and Shen Y: Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Exp Ther Med 15: 3563-3569, 2018.
APA
Li, J., Li, L., & Shen, Y. (2018). Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Experimental and Therapeutic Medicine, 15, 3563-3569. https://doi.org/10.3892/etm.2018.5829
MLA
Li, J., Li, L., Shen, Y."Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation". Experimental and Therapeutic Medicine 15.4 (2018): 3563-3569.
Chicago
Li, J., Li, L., Shen, Y."Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3563-3569. https://doi.org/10.3892/etm.2018.5829
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Li L and Shen Y: Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Exp Ther Med 15: 3563-3569, 2018.
APA
Li, J., Li, L., & Shen, Y. (2018). Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Experimental and Therapeutic Medicine, 15, 3563-3569. https://doi.org/10.3892/etm.2018.5829
MLA
Li, J., Li, L., Shen, Y."Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation". Experimental and Therapeutic Medicine 15.4 (2018): 3563-3569.
Chicago
Li, J., Li, L., Shen, Y."Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3563-3569. https://doi.org/10.3892/etm.2018.5829
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team