Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2018 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment

  • Authors:
    • Xinlei Wang
    • Guoyou Ding
    • Wei Lai
    • Shiwen Liu
    • Jun Shuai
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China, Department of Anesthesia, Ganzhou People's Hospital, Ganzhou, Jiangxi 310000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3181-3188
    |
    Published online on: February 5, 2018
       https://doi.org/10.3892/etm.2018.5838
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA‑383 (miR‑383) expression on propofol‑induced learning and memory impairment. In total, 48 male Sprague‑Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with propofol for 6 h and untreated (propofol model group), treated with a constructed lentivirus vector expressing miR‑383 mimics (mimic + propofol group), or treated with miR‑383 scramble (scramble + propofol group). The learning memory ability, hippocampal neuron apoptosis and expression of apoptosis‑associated factors were detected using reverse transcription‑quantitiative polymerase chain reaction and western blot analysis. Propofol treatment significantly reduced the relative mRNA and protein expression of miR‑383, induced neuron apoptosis, upregulated the Bax/Bcl‑2 ratio, downregulated the relative mRNA and protein expression levels of postsynaptic density protein 95 and cAMP‑response element binding protein, and inactivated the phosphoinositide 3‑kinase/protein kinase B signaling pathway. By contrast, miR‑383 mimics significantly altered the propofol‑induced dysregulation of the aforementioned factors. In conclusion, miR‑383 mimic was able to repair propofol‑induced cognitive impairment via protecting against hippocampal neuron apoptosis and dysregulation of related factors. The present study suggested that miR‑383 may be used as a potential therapeutic target for the clinical treatment of cognitive impairment induced by propofol anesthesia.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Parrott MD, Winocur G, Bazinet RP, Ma DW and Greenwood CE: Whole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model. Neurobiol Aging. 36:90–99. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Ng CL, Cheng OY, Kwan SC, Ho WL, Cheng KY, Chung SK, Lam KSL, Xu A and Chan KH: Adiponectin deficiency induced cognitive dysfunction and Alzheimer's disease pathogenesis in mice through the disruption of insulin sensitivity and inactivated AMPK signaling. Proceedings of the 67th Annual Meeting of the American Academy of Neurology (AAN 2015). AAN. Washington, DC. 2015;

3 

Rundshagen I: Postoperative cognitive dysfunction. Dtsch Arztebl Int. 111:119–125. 2014.PubMed/NCBI

4 

Grape S, Ravussin P, Rossi A, Kern C and Steiner L: Postoperative cognitive dysfunction. Trends Anaesthesia Crit Care. 2:98–103. 2012. View Article : Google Scholar

5 

Tabaka P, Goodam S, Sommer BR, Maloney W, Huddleston J and Lemmens HJ: The effect of desdlurane versus propofol anesthesia on postoperative delirium in elderly obese patients undergoing total knee replacement: A randomized, controlled, double-blinded clinical trial. J Clin Anethesia. 39:17–22. 2017. View Article : Google Scholar

6 

Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med. 10:789–799. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Wang Y, Wu C, Han B, Xu F, Mao M, Guo X and Wang J: Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3b siganling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep. 14:769–775. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S and Soreq H: Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 218:59–72. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Green M, Cairns M, Wu J, Dragovic M, Jablensky A, Tooney PA, Scott RJ and Carr VJ; Australian Schizophrenia Research Bank, : Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry. 18:774–780. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Takeda K, Kermani P, Anastasia A, Obinata Y, Hempstead BL and Kurihara H: BDNF protects human vascular endothelial cells from TNFα-induced apoptosis. Biochem Cell Biol. 91:341–349. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Dong J, Wang Y, Wang Y, Wei W, Min H, Song B, Xi Q, Teng W and Chen J: Iodine deficiency increases apoptosis and decreases synaptotagmin-1 and PSD-95 in rat hippocampus. Nutr Neurosci. 16:135–141. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Liu R, Xing L, Kong D, Jiang J, Shang L and Hao W: Bisphenol A inhibits proliferation and induces apoptosis in micromass cultures of rat embryonic midbrain cells through the JNK, CREB and p53 signaling pathways. Food Chemical Toxicol. 52:76–82. 2013. View Article : Google Scholar

13 

Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Zhao L, Wang S and Su Z: RKIP regulates neural cell apoptosis induced by exposure to microwave radiation partly through the MEK/ERK/CREB pathway. Mol Neurobiol. 51:1520–1529. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Welch C, Chen Y and Stallings R: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 26:5017–5022. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Zhao L, Gu H, Chang J, Wu J, Wang D, Chen S, Yang X and Qian B: MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g. PLoS One. 9:e1104722014. View Article : Google Scholar : PubMed/NCBI

16 

Liu G, Wang T, Wang T, Song J and Zhou Z: Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep. 1:861–867. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Liang K, Ye Y, Wang Y, Zhang J and Li C: Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci. 344:100–104. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Malla R, Gopinath S, Alapati K, Gondi CS, Gujrati M, Dinh DH, Mohanam S and Rao JS: Correction: Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas. PLoS One. 9:2014. View Article : Google Scholar : PubMed/NCBI

19 

Yao D, Zhang WR, He X, Wang JH, Jiang KW and Zhao ZY: The expression of PI3K/Akt signaling pathway and PTEN in hippocampus of the brain and the correlation with cognitive impairment after neonatal hypoxic ischemic brain damage in rats. Int J Clin Exp Med. 9:9044–9053. 2016.

20 

Shu Y, Zhang H, Kang T, Zhang JJ, Yang Y, Liu H and Zhang L: PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One. 8:e819012013. View Article : Google Scholar : PubMed/NCBI

21 

Wang Y, Wu C, Han B, Xu F, Mao M, Guo X and Wang J: Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep. 14:769–775. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Li KK, Pang JC, Lau KM, Zhou L, Mao Y, Wang Y, Poon WS and Ng HK: MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol. 23:413–425. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Lian J, Tian H, Liu L, Zhang XS, Li WQ, Deng YM, Yao GD, Yin MM and Sun F: Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis. 1:e942010. View Article : Google Scholar : PubMed/NCBI

24 

He Z, Cen D, Luo X, Li D, Li P, Liang L and Meng Z: Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol. 30:5572013. View Article : Google Scholar : PubMed/NCBI

25 

Cazzalini O, Scovassi AI, Savio M, Stivala LA and Prosperi E: Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res. 704:12–20. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Chakraborty C, Doss CG, Bandyopadhyay S and Agoramoorthy G: Influence of miRNA in insulin signaling pathway and insulin resistance: Micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 5:697–712. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Method. 25:402–408. 2001. View Article : Google Scholar

28 

Smith CC, Guévremont D, Williams JM and Napper RM: Apoptotic cell death and temporal expression of apoptotic proteins Bcl-2 and Bax in the hippocampus, following binge ethanol in the neonatal rat model. Alcohol Clin Exp Res. 39:36–44. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Cao J, Chen J, Wang J, Jia R, Xue W, Luo Y and Gan X: Effects of fluoride on liver apoptosis and Bcl-2, Bax protein expression in freshwater teleost, Cyprinus carpio. Chemosphere. 91:1203–1212. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Bustos FJ, Varela-Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, Aguayo LG, Montecino M, Constantine-Paton M, Inestrosa NC and van Zundert B: PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS One. 9:e940372014. View Article : Google Scholar : PubMed/NCBI

31 

Bell KF, Bent RJ, Meese-Tamuri S, Ali A, Forder JP and Aarts MM: Calmodulin Kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption. J Neurochem. 126:274–287. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, Dong L and Gao F: Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 19:946–957. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Roy R, Singh SK, Chauhan LK, Das M, Tripathi A and Dwivedi PD: Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett. 227:29–40. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Luo T, Yin S, Shi R, Xu C, Wang Y, Cai J, Yue Y and Wu A: miRNA expression profile and involvement of Let-7d-APP in aged rats with isoflurane-induced learning and memory impairment. PLoS One. 10:e01193362015. View Article : Google Scholar : PubMed/NCBI

35 

Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J and Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice. Neurobiol Aging. 33:522–534. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Liu Y, Wang XJ, Wang N, Cui CL and Wu LZ: Electroacupuncture Ameliorates propofol-induced cognitive impairment via an opioid receptor-independent mechanism. Am J Chin Med. 44:705–719. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Yang B, Liang G, Khojasteh S, Wu Z, Yang W, Joseph D and Wei H: Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One. 9:e991712014. View Article : Google Scholar : PubMed/NCBI

38 

Luo J, Min S, Wei K, Li P, Dong J and Liu YF: Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats. J Anesth. 25:657–665. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Schoen J, Husemann L, Tiemeyer C, Lueloh A, Sedemund-Adib B, Berger KU, Hueppe M and Heringlake M: Cognitive function after sevoflurane-vs propofol-based anaesthesia for on-pump cardiac surgery: A randomized controlled trial. Br J Anaesth. 106:840–850. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Butterfield NN, Graf P, Macleod BA, Ries CR and Zis AP: Propofol reduces cognitive impairment after electroconvulsive therapy. J ECT. 20:3–9. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK and Zhao WJ: Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int. 80:60–71. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Romanov V, Whyard TC, Waltzer WC, Grollman AP and Rosenquist T: Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol. 89:47–56. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Choe JY, Park KY and Kim SK: Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: Mechanism for urate-induced nephropathy. Apoptosis. 20:38–49. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Zhang Y, Han L, Qi W, Cheng D, Ma X, Hou L, Cao X and Wang C: Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca (2+)-JNK mitochondrial pathways. Biochem Biophys Res Commun. 456:926–932. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Zhang D, Zhou XH, Zhang J, Zhou YX, Ying J, Wu GQ and Qian JH: Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun. 468:561–567. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Li XM, Zhou MT, Wang XM, Ji MH, Zhou ZQ and Yang JJ: Resveratrol pretreatment attenuates the isoflurane-induced cognitive impairment through its anti-inflammation and-apoptosis actions in aged mice. J Mol Neurosci. 52:286–293. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Yap JL, Cao X, Vanommeslaeghe K, Jung KY, Peddaboina C, Wilder PT, Nan A, MacKerell AD Jr, Smythe WR and Fletcher S: Relaxation of the rigid backbone of an oligoamide-foldamer-based α-helix mimetic: Identification of potent Bcl-x L inhibitors. Org Biomol Chem. 10:2928–2933. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Yue J, Ben Messaoud N and López JM: Hyperosmotic shock engages two positive feedback loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 290:30375–30389. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Das S, Cordis GA, Maulik N and Das DK: Pharmacological preconditioning with resveratrol: Role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol. 288:H328–H335. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Fujii M, Sherchan P, Soejima Y, Hasegawa Y, Flores J, Doycheva D and Zhang JH: Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp Neurol. 261:396–403. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Yoshii A and Constantine-Paton M: Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front Synaptic Neurosci. 6:62014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Ding G, Lai W, Liu S and Shuai J: MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Exp Ther Med 15: 3181-3188, 2018.
APA
Wang, X., Ding, G., Lai, W., Liu, S., & Shuai, J. (2018). MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Experimental and Therapeutic Medicine, 15, 3181-3188. https://doi.org/10.3892/etm.2018.5838
MLA
Wang, X., Ding, G., Lai, W., Liu, S., Shuai, J."MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment". Experimental and Therapeutic Medicine 15.4 (2018): 3181-3188.
Chicago
Wang, X., Ding, G., Lai, W., Liu, S., Shuai, J."MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3181-3188. https://doi.org/10.3892/etm.2018.5838
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Ding G, Lai W, Liu S and Shuai J: MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Exp Ther Med 15: 3181-3188, 2018.
APA
Wang, X., Ding, G., Lai, W., Liu, S., & Shuai, J. (2018). MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Experimental and Therapeutic Medicine, 15, 3181-3188. https://doi.org/10.3892/etm.2018.5838
MLA
Wang, X., Ding, G., Lai, W., Liu, S., Shuai, J."MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment". Experimental and Therapeutic Medicine 15.4 (2018): 3181-3188.
Chicago
Wang, X., Ding, G., Lai, W., Liu, S., Shuai, J."MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment". Experimental and Therapeutic Medicine 15, no. 4 (2018): 3181-3188. https://doi.org/10.3892/etm.2018.5838
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team