|
1
|
Alinia C, Mohammadi SF, Lashay A and
Rashidian A: Impact of diabetic retinopathy on health-related
quality of life in Iranian diabetics. Iran J Public Health.
46:55–65. 2017.PubMed/NCBI
|
|
2
|
Liu L, Wu X, Liu L, Geng J, Yuan Z, Shan Z
and Chen L: Prevalence of diabetic retinopathy in mainland China: A
meta-analysis. PLoS One. 7:e452642012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bunce C and Wormald R: Leading causes of
certification for blindness and partial sight in England &
Wales. BMC Public Health. 6:582006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Behl T, Kaur I and Kotwani A: Implication
of oxidative stress in progression of diabetic retinopathy. Surv
Ophthalmol. 61:187–196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Calderon GD, Juarez OH, Hernandez GE,
Punzo SM and De la Cruz ZD: Oxidative stress and diabetic
retinopathy: Development and treatment. Eye (Lond). 31:1122–1130.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Takahashi Y, Miyasaka N, Tasaka S, Miura
I, Urano S, Ikura M, Hikichi K, Matsumoto T and Wada M:
Constitution of two coloring matters in the flower petals of
Carthamus tinctorius L. Tetrahedron Lett. 23:5163–5166.
1982. View Article : Google Scholar
|
|
7
|
Gella L, Raman R, Kulothungan V, Pal
Saumya S, Ganesan S and Sharma T: Retinal sensitivity in subjects
with type 2 diabetes mellitus: Sankara Nethralaya Diabetic
Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS
II, Report No. 4). Br J Ophthalmol. 100:808–813. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Farshchi A, Aghili R, Oskuee M, Rashed M,
Noshad S, Kebriaeezadeh A, Kia M and Esteghamati A: Biphasic
insulin Aspart 30 vs. NPH plus regular human insulin in type 2
diabetes patients; a cost-effectiveness study. BMC Endocr Disord.
16:352016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jo HR, Kim YS and Son H: Erythropoietin
and carbamylated erythropoietin promote histone deacetylase 5
phosphorylation and nuclear export in rat hippocampal neurons.
Biochem Biophys Res Commun. 470:220–225. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ding J, Wang J, Li QY, Yu JZ, Ma CG, Wang
X, Lu CZ and Xiao BG: Neuroprotection and CD131/GDNF/AKT pathway of
carbamylated erythropoietin in hypoxic neurons. Mol Neurobiol.
54:5051–5060. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Coucha M, Elshaer SL, Eldahshan WS, Mysona
BA and El-Remessy AB: Molecular mechanisms of diabetic retinopathy:
Potential therapeutic targets. Middle East Afr J Ophthalmol.
22:135–144. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hampton BM, Schwartz SG, Brantley MA Jr
and Flynn HW Jr: Update on genetics and diabetic retinopathy. Clin
Ophthalmol. 9:2175–2193. 2015.PubMed/NCBI
|
|
13
|
Liew G, Klein R and Wong TY: The role of
genetics in susceptibility to diabetic retinopathy. Int Ophthalmol
Clin. 49:35–52. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hollborn M, Vogler S, Reichenbach A,
Wiedemann P, Bringmann A and Kohen L: Regulation of the
hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment
epithelial cells: involvement of NFAT5. Mol Vis. 21:360–377.
2015.PubMed/NCBI
|
|
15
|
Song Y, Long L, Zhang N and Liu Y:
Inhibitory effects of hydroxysafflor yellow A on PDGF BB induced
proliferation and migration of vascular smooth muscle cells via
mediating Akt signaling. Mol Med Rep. 10:1555–1560. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li D, Deng L, Xie X, Yang Z and Kang P:
Evaluation of the osteogenesis and angiogenesis effects of
erythropoietin and the efficacy of deproteinized bovine
bone/recombinant human erythropoietin scaffold on bone defect
repair. J Mater Sci Mater Med. 27:1012016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang XL, Yu T, Yan QC, Wang W, Meng N, Li
XJ and Luo YH: AGEs promote oxidative stress and induce apoptosis
in retinal pigmented epithelium cells RAGE-dependently. J Mol
Neurosci. 56:449–460. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu N, Zhao N, Chen L and Cai N: Survivin
contributes to the progression of diabetic retinopathy through
HIF-1α pathway. Int J Clin Exp Pathol. 8:9161–9167. 2015.PubMed/NCBI
|
|
19
|
Olivares-Gonzalez L, de la Camara
Martinez-Fernandez C, Hervas D, Marin MP, Lahoz A, Millan JM and
Rodrigo R: cGMP-phosphodiesterase inhibition prevents
hypoxia-induced cell death activation in porcine retinal explants.
PLoS One. 11:e01667172016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lu MC, Ji JA, Jiang ZY and You QD: The
keap1-Nrf2-ARE pathway as a potential preventive and therapeutic
target: An Update. Med Res Rev. 36:924–963. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stewart D, Killeen E, Naquin R, Alam S and
Alam J: Degradation of transcription factor Nrf2 via the
ubiquitin-proteasome pathway and stabilization by cadmium. J Biol
Chem. 278:2396–2402. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Park SY, Kim YH and Park G: Cucurbitacins
attenuate microglial activation and protect from neuroinflammatory
injury through Nrf2/ARE activation and STAT/NF-κB inhibition.
Neurosci Lett. 609:129–136. 2015. View Article : Google Scholar : PubMed/NCBI
|