Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2018 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2018 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Fluorescent contrast agents for tumor surgery (Review)

  • Authors:
    • Qi Xiao
    • Tianming Chen
    • Shilin Chen
  • View Affiliations / Copyright

    Affiliations: School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China, Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
    Copyright: © Xiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1577-1585
    |
    Published online on: July 4, 2018
       https://doi.org/10.3892/etm.2018.6401
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4-11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near‑infrared fluorescence imaging allows for real‑time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near‑infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5‑aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker‑targeted fluorescent dyes, which allow conjugation to different target sites.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Aliperti LA, Predina JD, Vachani A and Singhal S: Local and systemic recurrence is the Achilles heel of cancer surgery. Ann Surg Oncol. 18:603–607. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Jiang JX, Keating JJ, Jesus EM, Judy RP, Madajewski B, Venegas O, Okusanya OT and Singhal S: Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nucl Med Mol Imaging. 5:390–400. 2015.PubMed/NCBI

4 

Tansi FL, Rüger R, Böhm C, Kontermann RE, Teichgraeber UK, Fahr A and Hilger I: Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases. Biomaterials. 88:70–82. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Fedor D, Johnson WR and Singhal S: Local recurrence following lung cancer surgery: Incidence, risk factors, and outcomes. Surg Oncol. 22:156–161. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Zaman M, Bilal H, Woo CY and Tang A: In patients undergoing video-assisted thoracoscopic surgery excision, what is the best way to locate a subcentimetre solitary pulmonary nodule in order to achieve successful excision? Interact Cardiovasc Thorac Surg. 15:266–272. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Chella A, Lucchi M, Ambrogi MC, Menconi G, Melfi FM, Gonfiotti A, Boni G and Angeletti CA: A pilot study of the role of TC-99 radionuclide in localization of pulmonary nodular lesions for thoracoscopic resection. Eur J Cardiothoracic Surg. 18:17–21. 2000. View Article : Google Scholar

8 

Powell TI, Jangra D, Clifton JC, Lara-Guerra H, Church N, English J, Evans K, Yee J, Coxson H, Mayo JR and Finley RJ: Peripheral lung nodules: Fluoroscopically guided video-assisted thoracoscopic resection after computed tomography-guided localization using platinum microcoils. Ann Surg. 240:481–489. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Eichfeld U, Dietrich A, Ott R and Kloeppel R: Video-assisted thoracoscopic surgery for pulmonary nodules after computed tomography-guided marking with a spiral wire. Ann Thorac Surg. 79:313–317. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Licha K, Riefke B, Ebert B and Grötzinger C: Cyanine dyes as contrast agents in biomedical optical imaging. Acad Radiol. 9 Suppl 2:S320–S322. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Luker GD and Luker KE: Optical imaging: Current applications and future directions. J Nucl Med. 49:1–4. 2008. View Article : Google Scholar : PubMed/NCBI

12 

van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, et al: Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat Med. 17:1315–1319. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Polom K, Murawa D, Rho YS, Nowaczyk P, Hünerbein M and Murawa P: Current trends and emerging future of indocyanine green usage in surgery and oncology: A literature review. Cancer. 117:4812–4822. 2011. View Article : Google Scholar : PubMed/NCBI

14 

van Leeuwen FW, Hardwick JC and van Erkel AR: Luminescence-based imaging approaches in the field of interventional molecular imaging. Radiol. 276:12–29. 2015. View Article : Google Scholar

15 

KleinJan GH, Bunschoten A, van den Berg NS, Olmos RA, Klop WM, Horenblas S, van der Poel HG, Wester HJ and van Leeuwen FW: Fluorescence guided surgery and tracer-dose, fact or fiction? Eur J Nucl Med Mol Imaging. 43:1857–1867. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Brülisauer M, Moneta G, Jager K and Bollinger A: Infrared fluorescence videomicroscopy with indocyanine green (Cardiogreen). Adv Exp Med Biol. 220:219–221. 1987.PubMed/NCBI

17 

Chen CY, Fancher RM, Ruan Q, Marathe P, Rodrigues AD and Yang Z: A liquid chromatography tandem mass spectrometry method for the quantification of indocyanine green in dog plasma and bile. J Pharm Biomed Anal. 47:351–359. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Engel E, Schraml R, Maisch T, Kobuch K, König B, Szeimies RM, Hillenkamp J, Bäumler W and Vasold R: Light-induced decomposition of indocyanine green. Invest Ophthalmol Vis Sci. 49:1777–1783. 2008. View Article : Google Scholar : PubMed/NCBI

19 

van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, Smit VT, Löwik CW, van de Velde CJ, Frangioni JV and Vahrmeijer AL: Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 119:3411–3418. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Yokoyama N, Otani T, Hashidate H, Maeda C, Katada T, Sudo N, Manabe S, Ikeno Y, Toyoda A and Katayanagi N: Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: Preliminary results of a prospective study. Cancer. 118:2813–2819. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Rajaraman P, Schwartz BS, Rothman N, Yeager M, Fine HA, Shapiro WR, Selker RG, Black PM and Inskip PD: Delta-aminolevulinic acid dehydratase polymorphism and risk of brain tumors in adults. Environ Health Perspect. 113:1209–1211. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Iida G, Asano K, Seki M, Ishigaki K, Teshima K, Yoshida O, Edamura K and Kagawa Y: Intraoperative identification of canine hepatocellular carcinoma with indocyanine green fluorescent imaging. J Small Anim Pract. 54:594–600. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Gotoh K, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, Ohigashi H, Tomita Y, Miyamoto Y and Imaoka S: A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol. 100:75–79. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Ishizawa T, Masuda K, Urano Y, Kawaguchi Y, Satou S, Kaneko J, Hasegawa K, Shibahara J, Fukayama M, Tsuji S, et al: Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 21:440–448. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Cherrick GR, Stein SW, Leevy CM and Davidson CS: Indocyanine green: Observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 39:592–600. 1960. View Article : Google Scholar : PubMed/NCBI

26 

Cornelius CE, Ben-Ezzer J and Arias IM: Binding of sulfobromophthalein sodium (BSP) and other organic anions by isolated hepatic cell plasma membranes in vitro. Proc Soc Exp Biol Med. 124:665–667. 1967. View Article : Google Scholar : PubMed/NCBI

27 

Hunton DB, Bollman JL and Hoffman HN: Studies of hepatic function with indocyanine green. Gastroenterology. 39:713–724. 1960.PubMed/NCBI

28 

Leevy CM and Bender J: Physiology of dye extraction by the liver: Comparative studies of sulfobromophthalein and indocyanine green. Ann NY Acad Sci. 111:161–176. 1963. View Article : Google Scholar : PubMed/NCBI

29 

Shibasaki Y, Sakaguchi T, Hiraide T, Morita Y, Suzuki A, Baba S, Setou M and Konno H: Expression of indocyanine green-related transporters in hepatocellular carcinoma. J Surg Res. 193:567–576. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Holt D, Okusanya O, Judy R, Venegas O, Jiang J, DeJesus E, Eruslanov E, Quatromoni J, Bhojnagarwala P, Deshpande C, et al: Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS One. 9:e1033422014. View Article : Google Scholar : PubMed/NCBI

31 

Kosaka N, Mitsunaga M, Longmire MR, Choyke PL and Kobayashi H: Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer. 129:1671–1677. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Maeda H, Nakamura H and Fang J: The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 65:71–79. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Madajewski B, Judy BF, Mouchli A, Kapoor V, Holt D, Wang MD, Nie S and Singhal S: Intraoperative near-infrared imaging of surgical wounds after tumor resections can detect residual disease. Clin Cancer Res. 18:5741–5751. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Shin EH, Li Y, Kumar U, Sureka HV, Zhang X and Payne CK: Membrane potential mediates the cellular binding of nanoparticles. Nanoscale. 5:5879–5886. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Matsumura Y and Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:6387–6392. 1986.PubMed/NCBI

36 

Heneweer C, Holland JP, Divilov V, Carlin S and Lewis JS: Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J Nucl Med. 52:625–633. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Fang C, Wang K, Zeng C, Chi C, Shang W, Ye J, Mao Y, Fan Y, Yang J, Xiang N, et al: Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep. 6:210132016. View Article : Google Scholar : PubMed/NCBI

38 

Hyun H, Park MH, Owens EA, Wada H, Henary M, Handgraaf HJ, Vahrmeijer AL, Frangioni JV and Choi HS: Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med. 21:192–197. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K and Duvoll-Young J: Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci. 39:1286–1290. 1998.PubMed/NCBI

40 

Baker KJ: Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Biol Med. 122:957–963. 1966. View Article : Google Scholar : PubMed/NCBI

41 

Janecki J and Krawcynski J: Labeling with indocyanine green of serum protein from normal persons and patients with acute viral hepatitis. Clin Chem. 16:1008–1011. 1970.PubMed/NCBI

42 

Desmettre T, Devoisselle JM and Mordon S: Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 45:15–27. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Onda N, Kimura M, Yoshida T and Shibutani M: Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging. Int J Cancer. 139:673–682. 2016. View Article : Google Scholar : PubMed/NCBI

44 

von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, MacGregor KA, Tomilin N, Pechstein A, Chau N, et al: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell. 146:471–484. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Kaibori M, Matsui K, Ishizaki M, Iida H, Okumura T, Sakaguchi T, Inoue K, Ikeura T, Asano H and Kon M: Intraoperative detection of superficial liver tumors by fluorescence imaging using indocyanine green and 5-aminolevulinic acid. Anticancer Res. 36:1841–1849. 2016.PubMed/NCBI

46 

Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM and Mohs AM: Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem. 26:294–303. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T: Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol. 11:358–365. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Nakamura M, Nishikawa J, Hamabe K, Goto A, Nishimura J, Shibata H, Nagao M, Sasaki S, Hashimoto S, Okamoto T and Sakaida I: Preliminary study of photodynamic diagnosis using 5-aminolevulinic acid in gastric and colorectal tumors. World J Gastroenterol. 21:6706–6712. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Leroy HA, Vermandel M, Lejeune JP, Mordon S and Reyns N: Fluorescence guided resection and glioblastoma in 2015: A review. Lasers Surg Med. 47:441–451. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Kitada M, Ohsaki Y, Matsuda Y, Hayashi S and Ishibashi K: Photodynamic diagnosis of pleural malignant lesions with a combination of 5-aminolevulinic acid and intrinsic fluorescence observation systems. BMC Cancer. 15:1742015. View Article : Google Scholar : PubMed/NCBI

51 

Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM and Peng Q: 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int J Oncol. 21:577–582. 2002.PubMed/NCBI

52 

Colditz MJ and Jeffree RL: Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies. J Clin Neurosci. 19:1471–1474. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Colditz MJ, Leyen K and Jeffree RL: Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: Theoretical, biochemical and practical aspects. J Clin Neurosci. 19:1611–1616. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Eljamel S: 5-ALA fluorescence image guided resection of glioblastoma multiforme: A meta-analysis of the literature. Int J Mol Sci. 16:10443–10456. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Nokes B, Apel M, Jones C, Brown G and Lang JE: Aminolevulinic acid (ALA): Photodynamic detection and potential therapeutic applications. J Surg Res. 181:262–271. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Yang X, Palasuberniam P, Kraus D and Chen B: Aminolevulinic acid-based tumor detection and therapy: Molecular mechanisms and strategies for enhancement. Int J Mol Sci. 16:25865–25880. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Ponka P: Cell biology of heme. Am J Med Sci. 318:241–256. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Kemmner W, Wan K, Rüttinger S, Ebert B, Macdonald R, Klamm U and Moesta KT: Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB J. 22:500–509. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Hooda J, Cadinu D, Alam MM, Shah A, Cao TM, Sullivan LA, Brekken R and Zhang L: Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PloS One. 8:e634022013. View Article : Google Scholar : PubMed/NCBI

60 

Gonçalves TL, Erthal F, Corte CL, Müller LG, Piovezan CM, Nogueira CW and Rocha JB: Involvement of oxidative stress in the pre-malignant and malignant states of cervical cancer in women. Clin Biochem. 38:1071–1075. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Neslund-Dudas C, Levin AM, Rundle A, Beebe-Dimmer J, Bock CH, Nock NL, Jankowski M, Datta I, Krajenta R, Dou QP, et al: Case-only gene-environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer. Prostate. 74:637–646. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Navone NM, Polo CF, Frisardi AL, Andrade NE and Battle AM: Heme biosynthesis in human breast cancer-mimetic ‘in vitro’ studies and some heme enzymic activity levels. Int J Biochem. 22:1407–1411. 1990. View Article : Google Scholar : PubMed/NCBI

63 

Krieg RC, Fickweiler S, Wolfbeis OS and Knuechel R: Cell-type specific protoporphyrin IX metabolism in human bladder cancer in vitro. Photochem Photobiol. 72:226–233. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Krieg RC, Messmann H, Rauch J, Seeger S and Knuechel R: Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Photochem Photobiol. 76:518–525. 2002. View Article : Google Scholar : PubMed/NCBI

65 

Hinnen P, de Rooij FW, van Velthuysen ML, Edixhoven A, van Hillegersberg R, Tilanus HW, Wilson JH and Siersema PD: Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: A study in patients with (pre)malignant lesions of the oesophagus. Br J Cancer. 78:679–682. 1998. View Article : Google Scholar : PubMed/NCBI

66 

Hinnen P, de Rooij FW, Terlouw EM, Edixhoven A, van Dekken H, van Hillegersberg R, Tilanus HW, Wilson JH and Siersema PD: Porphyrin biosynthesis in human Barrett's oesophagus and adenocarcinoma after ingestion of 5-aminolaevulinic acid. Br J Cancer. 83:539–543. 2000. View Article : Google Scholar : PubMed/NCBI

67 

Misawa Y, Tojo A and Shibuya M: Isolation of genes highly expressed in early and late stages of Friend virus-induced erythroleukemia in mice. Biochem Biophys Res Commun. 170:39–45. 1990. View Article : Google Scholar : PubMed/NCBI

68 

Ito E, Yue S, Moriyama EH, Hui AB, Kim I, Shi W, Alajez NM, Bhogal N, Li G, Datti A, et al: Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer. Sci Transl Med. 3:67ra672011. View Article : Google Scholar

69 

Dailey HA and Smith A: Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase. Biochem J. 223:441–445. 1984. View Article : Google Scholar : PubMed/NCBI

70 

Miyake M, Ishii M, Kawashima K, Kodama T, Sugano K, Fujimoto K and Hirao Y: siRNA-mediated knockdown of the heme synthesis and degradation pathways: Modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines. Photochem Photobiol. 85:1020–1027. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y and Hamada JI: Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 104:798–807. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Yang X, Li W, Palasuberniam P, Myers KA, Wang C and Chen B: Effects of silencing heme biosynthesis enzymes on 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy. Photochem Photobiol. 91:923–930. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, et al: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. 477:225–228. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, Matsui H and Taketani S: Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: Relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol. 71:42–49. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Gibson SL, Nguyen ML, Havens JJ, Barbarin A and Hilf R: Relationship of delta-aminolevulinic acid-induced protoporphyrin IX levels to mitochondrial content in neoplastic cells in vitro. Biochem Biophys Res Commun. 265:315–321. 1999. View Article : Google Scholar : PubMed/NCBI

77 

Gibson SL, Havens JJ, Foster TH and Hilf R: Time-dependent intracellular accumulation of delta-aminolevulinic acid, induction of porphyrin synthesis and subsequent phototoxicity. Photochem Photobiol. 65:416–421. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Nakanishi T, Ogawa T, Yanagihara C and Tamai I: Kinetic evaluation of determinant factors for cellular accumulation of protoporphyrin IX induced by external 5-aminolevulinic acid for photodynamic cancer therapy. J Pharm Sci. 104:3092–3100. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti KG and Schuetz JD: Identification of a mammalian mitochondrial porphyrin transporter. Nature. 443:586–589. 2006.PubMed/NCBI

80 

Zhao SG, Chen XF, Wang LG, Yang G, Han DY, Teng L, Yang MC, Wang DY, Shi C, Liu YH, et al: Increased expression of ABCB6 enhances protoporphyrin IX accumulation and photodynamic effect in human glioma. Ann Surg Oncol. 20:4379–4388. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Paterson JK, Shukla S, Black CM, Tachiwada T, Garfield S, Wincovitch S, Ernst DN, Agadir A, Li X, Ambudkar SV, et al: Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane. Biochemistry. 46:9443–9452. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Tsuchida M, Emi Y, Kida Y and Sakaguchi M: Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem Biophys Res Commun. 369:369–375. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Matsumoto K, Hagiya Y, Endo Y, Nakajima M, Ishizuka M, Tanaka T and Ogura S: Effects of plasma membrane ABCB6 on 5-aminolevulinic acid (ALA)-induced porphyrin accumulation in vitro: Tumor cell response to hypoxia. Photodiagnosis Photodyn Ther. 12:45–51. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Robey RW, Steadman K, Polgar O and Bates SE: ABCG2-mediated transport of photosensitizers: Potential impact on photodynamic therapy. Cancer Biol Ther. 4:187–194. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Barron GA, Moseley H and Woods JA: Differential sensitivity in cell lines to photodynamic therapy in combination with ABCG2 inhibition. J Photochem Photobiol B. 126:87–96. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Ogawa M, Kosaka N, Choyke PL and Kobayashi H: H-type dimer formation of fluorophores: A mechanism for activatable, in vivo optical molecular imaging. ACS Chem Biol. 4:535–546. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Tansi F, Kallweit E, Kaether C, Kappe K, Schumann C, Hilger I and Reissmann S: Internalization of near-infrared fluorescently labeled activatable cell-penetrating peptide and of proteins into human fibrosarcoma cell line HT-1080. J Cell Biochem. 116:1222–1231. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Rizzo LY, Theek B, Storm G, Kiessling F and Lammers T: Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 24:1159–1166. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Tansi FL, Rüger R, Rabenhold M, Steiniger F, Fahr A, Kaiser WA and Hilger I: Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo. Small. 9:3659–3669. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Rüger R, Tansi FL, Rabenhold M, Steiniger F, Kontermann RE, Fahr A and Hilger I: In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes. J Control Release. 186:1–10. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Huang Y, Simms AE, Mazur A, Wang S, León NR, Jones B, Aziz N and Kelly T: Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis. 28:567–579. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E and Cheng JD: FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer. 11:2452011. View Article : Google Scholar : PubMed/NCBI

94 

Zhi K, Shen X, Zhang H and Bi J: Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J Exp Clin Cancer Res. 29:662010. View Article : Google Scholar : PubMed/NCBI

95 

Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M and De Wever O: Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol. 5:632015. View Article : Google Scholar : PubMed/NCBI

96 

Garin-Chesa P, Old LJ and Rettig WJ: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 87:7235–7239. 1990. View Article : Google Scholar : PubMed/NCBI

97 

Albert MB, Steinberg WM and Henry JP: Elevated serum levels of tumor marker CA19-9 in acute cholangitis. Dig Dis Sci. 33:1223–1225. 1988. View Article : Google Scholar : PubMed/NCBI

98 

Benamouzig R, Buffet C, Fourre C, Ink O, Moati F and Etienne JP: Serum levels of carbohydrate antigenic determinant (CA 19.9) in obstructive jaundice. Dig Dis Sci. 34:1640–1642. 1989. View Article : Google Scholar : PubMed/NCBI

99 

Encabo G and Ruibal A: Seric CA 19.9 levels in patients with non tumoral pathologies. Our experience in 892 cases. Bull Cancer. 73:256–259. 1986.PubMed/NCBI

100 

Gupta MK, Arciaga R, Bocci L, Tubbs R, Bukowski R and Deodhar SD: Measurement of a monoclonal-antibody-defined antigen (CA19-9) in the sera of patients with malignant and nonmalignant diseases. Comparison with carcinoembryonic antigen. Cancer. 56:277–283. 1985. View Article : Google Scholar : PubMed/NCBI

101 

Haglund C, Roberts PJ, Jalanko H and Kuusela P: Tumour markers CA 19-9 and CA 50 in digestive tract malignancies. Scand J Gastroenterol. 27:169–174. 1992. View Article : Google Scholar : PubMed/NCBI

102 

Loy TS, Sharp SC, Andershock CJ and Craig SB: Distribution of CA 19-9 in adenocarcinomas and transitional cell carcinomas. An immunohistochemical study of 527 cases. Am J Clin Pathol. 99:726–728. 1993. View Article : Google Scholar : PubMed/NCBI

103 

Makovitzky J: The distribution and localization of the monoclonal antibody-defined antigen 19-9 (CA19-9) in chronic pancreatitis and pancreatic carcinoma. An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol. 51:535–544. 1986. View Article : Google Scholar : PubMed/NCBI

104 

Magnani JL, Steplewski Z, Koprowski H and Ginsburg V: Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43:5489–5492. 1983.PubMed/NCBI

105 

Girgis MD, Kenanova V, Olafsen T, McCabe KE, Wu AM and Tomlinson JS: Anti-CA19-9 diabody as a PET imaging probe for pancreas cancer. J Surg Res. 170:169–178. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Sawada R, Sun SM, Wu X, Hong F, Ragupathi G, Livingston PO and Scholz WW: Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clin Cancer Res. 17:1024–1032. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Houghton JL, Zeglis BM, Abdel-Atti D, Aggeler R, Sawada R, Agnew BJ, Scholz WW and Lewis JS: Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci USA. 112:15850–15855. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Li CH, Kuo TR, Su HJ, Lai WY, Yang PC, Chen JS, Wang DY, Wu YC and Chen CC: Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep. 5:156752015. View Article : Google Scholar : PubMed/NCBI

109 

Góra J and Latajka R: Involvement of cysteine proteases in cancer. Curr Med Chem. 22:944–957. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Ofori LO, Withana NP, Prestwood TR, Verdoes M, Brady JJ, Winslow MM, Sorger J and Bogyo M: Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem Biol. 10:1977–1988. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Kelemen LE: The role of folate receptor alpha in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int J Cancer. 119:243–250. 2006. View Article : Google Scholar : PubMed/NCBI

112 

Low PS and Antony AC: Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev. 56:1055–1058. 2004. View Article : Google Scholar : PubMed/NCBI

113 

Low PS, Henne WA and Doorneweerd DD: Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 41:120–129. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Low PS and Kularatne SA: Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 13:256–262. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Lu Y, Sega E and Low PS: Folate receptor-targeted immunotherapy: Induction of humoral and cellular immunity against hapten-decorated cancer cells. Int J Cancer. 116:710–719. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Lu Y, Xu LC, Parker N, Westrick E, Reddy JA, Vetzel M, Low PS and Leamon CP: Preclinical pharmacokinetics, tissue distribution, and antitumor activity of a folate-hapten conjugate-targeted immunotherapy in hapten-immunized mice. Mol Cancer Ther. 5:3258–3267. 2006. View Article : Google Scholar : PubMed/NCBI

117 

O'Shannessy DJ, Yu G, Smale R, Fu YS, Singhal S, Thiel RP, Somers EB and Vachani A: Folate receptor alpha expression in lung cancer: Diagnostic and prognostic significance. Oncotarget. 3:414–425. 2012. View Article : Google Scholar : PubMed/NCBI

118 

De Jesus E, Keating JJ, Kularatne SA, Jiang J, Judy R, Predina J, Nie S, Low P and Singhal S: Comparison of folate receptor targeted optical contrast agents for intraoperative molecular imaging. Int J Mol Imaging. 2015:4690472015. View Article : Google Scholar : PubMed/NCBI

119 

Srinivasarao M, Galliford CV and Low PS: Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 14:203–219. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xiao Q, Chen T and Chen S: Fluorescent contrast agents for tumor surgery (Review). Exp Ther Med 16: 1577-1585, 2018.
APA
Xiao, Q., Chen, T., & Chen, S. (2018). Fluorescent contrast agents for tumor surgery (Review). Experimental and Therapeutic Medicine, 16, 1577-1585. https://doi.org/10.3892/etm.2018.6401
MLA
Xiao, Q., Chen, T., Chen, S."Fluorescent contrast agents for tumor surgery (Review)". Experimental and Therapeutic Medicine 16.3 (2018): 1577-1585.
Chicago
Xiao, Q., Chen, T., Chen, S."Fluorescent contrast agents for tumor surgery (Review)". Experimental and Therapeutic Medicine 16, no. 3 (2018): 1577-1585. https://doi.org/10.3892/etm.2018.6401
Copy and paste a formatted citation
x
Spandidos Publications style
Xiao Q, Chen T and Chen S: Fluorescent contrast agents for tumor surgery (Review). Exp Ther Med 16: 1577-1585, 2018.
APA
Xiao, Q., Chen, T., & Chen, S. (2018). Fluorescent contrast agents for tumor surgery (Review). Experimental and Therapeutic Medicine, 16, 1577-1585. https://doi.org/10.3892/etm.2018.6401
MLA
Xiao, Q., Chen, T., Chen, S."Fluorescent contrast agents for tumor surgery (Review)". Experimental and Therapeutic Medicine 16.3 (2018): 1577-1585.
Chicago
Xiao, Q., Chen, T., Chen, S."Fluorescent contrast agents for tumor surgery (Review)". Experimental and Therapeutic Medicine 16, no. 3 (2018): 1577-1585. https://doi.org/10.3892/etm.2018.6401
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team