|
1
|
Farney AC, Sutherland DE and Opara EC:
Evolution of islet transplantation for the last 30 years. Pancreas.
1:8–20. 2016. View Article : Google Scholar
|
|
2
|
Tiwari S, Roel C, Wills R, Casinelli G,
Tanwir M, Takane KK and Fiaschi-Taesch NM: Early and late G1/S
cyclins and Cdks act complementarily to enhance authentic human
β-cell proliferation and expansion. Diabetes. 10:3485–3498. 2015.
View Article : Google Scholar
|
|
3
|
Wang GS, Rosenberg L and Scott FW: Tubular
complexes as a source for islet neogenesis in the pancreas of
diabetes-prone BB rats. Lab Invest. 5:675–688. 2005. View Article : Google Scholar
|
|
4
|
Dor Y, Brown J, Martinez OI and Melton DA:
Adult pancreatic beta-cells are formed by self-duplication rather
than stem-cell differentiation. Nautre. 429:41–46. 2004. View Article : Google Scholar
|
|
5
|
Stewart AF, Hussain MA, Garcia-Ocana A,
Vasavada RC, Bhunshan A, Bernal-Mizrachi E and Kulkarni RN: Human
β-cell proliferation and intracellular signaling: Part 3. Diabetes.
4:1872–1885. 2015. View Article : Google Scholar
|
|
6
|
Saltiel AR and Kahn CR: Insulin signaling
and the regulation of glucose and lipid metabolism. Nature.
414:799–806. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kulkarni RN, Mizrachi EB, Ocana AG and
Stewart AF: Human β-cell proliferation and intracellular signaling:
Driving in the dark without a road map. Diabetes. 9:2205–2213.
2012. View Article : Google Scholar
|
|
8
|
Pende M, Kozma SC, Jaquet M, Oorschot V,
Burcelin R, Le Marchand-Brustel Y, Kluperman J, Thorens B and
Thomas G: Hypoinsulinaemia, glucose intolerance and diminished
beta-cell size in S6K1-deficient mice. Nature. 408:994–997. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Arajuo EP, Amaral ME, Souza CT, Bordin S,
Ferreira F, Saad MJ, Boschero AC, Maqalhaes EC and Velloso LA:
Blockade of IRS1 in isolated rat pancreatic islets improves
glucose-induced insulin secretion. FEBS Lett. 531:437–442. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bringhenti I, Ornellas F,
Mandarim-de-Lacerda CA and Aguila MB: The insulin-signaling pathway
of the pancreatic islet is impaired in adult mice offspring of
mothers fed a high-fat diet. Nutrition. 32:1138–1143. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ou Y, Ren Z, Wang J and Yang X:
Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice:
Involved in insulin signaling pathway and GK expression. Chem Biol
Interact. 247:49–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kaneko K, Ueki K, Takahashi N, Hashimoto
S, Okamoto M, Awazawa M, Okazaki Y, Ohsugi M, Inabe K, Umehara T,
et al: Class IA phosphatidylinositol 3-kinase in pancreatic β cells
controls insulin secretion by multiple mechanisms. Cell Metab.
12:619–632. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen Q, Lu M, Monks BR and Birnabaum MJ:
Insulin is required to maintain albumin expression by inhibiting
forkhead box o1 protein. J Biol Chem. 291:2371–2378. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang C, Chen X, Ding X, He Y, Gu C and
Zhou L: Exendin-4 promotes beta cell proliferation via PI3K/Akt
signaling pathway. Cell Physiol Biochem. 35:2223–2232. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Katoh M and Katoh H: Human FOX gene family
(Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI
|
|
16
|
Seyer P, Vallois D, Poitry-Yamate C,
Schutz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B,
Grueter R, et al: Hepatic glucose sensing is required to preserve β
cell glucose competence. J Clin Invest. 123:1662–1676. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Huang L, Jiang X, Gong L and Xing D:
Photoactivation of Akt1/GSK3β Isoform-Specific signaling axis
promotes pancreatic β-cell regeneration. J Cell Biochem.
116:1741–1754. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Boucher MJ, Selander L, Carlsson L and
Edlund H: Phosphorylation marks IPF1/PDX1 protein for degradation
by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem.
281:6395–6403. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Morral N: Novel targets and therapeutic
strategies for type 2 diabetes. Trends Endocrinol Metab.
14:169–175. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Foster KG and Fingar DC: Mammalian target
of rapamycin (mTOR): Conducting the cellular signaling symphony. J
Biol Chem. 285:14071–14077. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Duzgn Z, Eroglu Z and Biray-Avci C: Role
of mTOR in glioblastoma. Gene. 575:187–190. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Maiese K: Novel nervous and multi-system
regenerative therapeutic strategies for diabetes mellitus with
mTOR. Neural Regen Res. 11:372–385. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang J, Yang X and Zhang J: Bridges
between mitochondrial oxidative stress, ER stress and mTOR
signaling in pancreatic β cells. Cell Signal. 28:1099–1104. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Maiese K: Targeting molecules to medicine
with mTOR, autophagy and neurodegenerative disorders. Br J Clin
Pharmacol. 82:1245–1266. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Escribano O, Gomez-Hernandez A,
Diaz-Castroverde S, Nevado C, Garcia G, Otoro YF, Perdomo L, Beneit
N and Benito M: Insulin receptor isoform A confers a higher
proliferative capability to pancreatic β cells enabling glucose
availability and IGF-1 signaling. Mol Cell Endocrinol. 409:82–91.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li W, Zhang H, Nie A, Ni Q, Li F, Ning G,
Li X, Gu Y and Wang Q: mTORC1 pathway mediates beta cell
compensatory proliferation in 60% partial-pancreatectomy mice.
Endocrine. 53:117–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
McCurdy CE and Klemm DJ: Adipose tissue
insulin sensitivity and macrophage recruitment: Does PI3K pick the
pathway. Adipocyte. 2:135–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bringhenti I, Moraes-Teixeira JA, Cunha
MR, Ornellas F, Mandarim-de-lacerda CA and Aguila MB: Maternal
obesity during the preconception and early life periods alters
pancreatic development in early and adult life in male mouse
offspring. PLoS One. 8:e557112013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cerf ME, Williams K, Chapman CS and Louw
J: Compromised beta-cell development and beta-cell dysfunction in
weanling offspring from dams maintained on a high-fat diet during
gestation. Pancreas. 34:347–353. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rhee M, Lee H, Kim JW, Ham DS, Park HS,
Yang HK, Shin JY, Cho JH, Kim YB, Youn BS, et al: Preadipocyte
factor 1 induces pancreatic ductal cell differentiation into
insulin-producing cells. Sci Rep. 6:239602016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gao Y, Liao G, Xiang C, Yang X, Cheng X
and Ou Y: Effects of phycocyanin on INS-1 pancreatic β-cell
mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol.
83:185–194. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ahn C, An BS and Jeung EB: Streptozotocin
induces endoplasmic reticulum stress and apoptosis via disruption
of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol.
412:302–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Khan S, Yan-Do R, Duong E, Wu X, Bautista
A, Cheley S, MacDonald PE and Braun M: Autocrine activation of P2Y1
receptors couples Ca (2+) release in human pancreatic beta cells.
Diabetologia. 57:2235–2245. 2014. View Article : Google Scholar
|
|
34
|
Roper MG, Qian WJ, Zhang BB, Kulkarni RN,
Kahn CR and Kennedy RT: Effect of the insulin mimetic L-783,281 on
intracellular Ca2 and insulin secretion from pancreatic beta-cells.
Diabetes. 51 Suppl:S43–S49. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Demozay D, Tsunekawa S, Briaud I, Shah R
and Rhodes CJ: Specific glucose-induced control of insulin receptor
substrate-2 expression is mediated via Ca2+-dependent
calcineurin/NFAT signaling in primary pancreatic islet β-cells.
Diabetes. 60:2892–2902. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Goodyer WR, Gu X, Liu Y, Bottino R,
Crabtree GR and Kim SK: Neonatal β cell development in mice and
humans is regulated by calcineurin/NFAT. Dev Cell. 23:21–34. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nguidjoe E, Sokolow S, Bigabwa S, Pachera
N, D'Amico E, Allagnat F, Vanderwinden JM, Sener A, Manto M,
Depreter M, et al: Heterozygous inactivation of the Na/Ca exchanger
increases glucose-induced insulin release, β-cell proliferation,
and mass. Diabetes. 60:2076–2085. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lawrence MC, Naziruddin B, Levy MF,
Jackson A and McGlynn K: Calcineurin/nuclear factor of activated T
cells and MAPK signaling induce TNF-{alpha} gene expression in
pancreatic islet endocrine cells. J Biol Chem. 286:1025–1036. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gilon P, Chae HY, Rutter GA and Ravier MA:
Calcium signaling in pancreatic β-cells in health and in type 2
diabetes. Cell Calcium. 5:340–361. 2014. View Article : Google Scholar
|
|
40
|
Kappel VD, Frederico MJ, Postal BG, Mendes
CP, Cazarolli LH and Silva FR: The role of calcium in intracellular
pathways of rutin in rat pancreatic islets: Potential insulin
secretagogue effect. Eur J Pharmacol. 702:264–268. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Castro AJ, Cazarolli LH, de-Carvalho FK,
da Luz G, Altenhofen D, dos Santos AR, Pizzolatti MG and Silva FR:
Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is
mediated by GLP-1, potassium and calcium channels for the glucose
homeostasis. J Sterois Biochem Mol Biol. 150:112–122. 2015.
View Article : Google Scholar
|
|
42
|
Marcelo KL, Ribar T, Means CR, Tsimelzon
A, Stevens RD, Llkayeva O, Bain JR, Hilsenbeck SG, Newgard CB,
Means AR and York B: Research resource: Roles for
calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in
systems metabolism. Mol Endocrinol. 30:557–572. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Markwardt ML, Seckinger KM and Rizzo MA:
Regulation of glucokinase by intracellular calcium levels in
pancreatic β cells. J Biol Chem. 291:3000–3009. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nussinov R, Tsai CJ, Muratcioglu S, Jang
H, Gursoy A and Keskin O: Principles of K-Ras effector organization
and the role of oncogenic K-Ras in cancer initiation through G1
cell cycle. Expert Rev Proteomics. 12:669–682. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chamberlain CE, Scheel DW, Mcglynn K, Kim
H, Miyatsuka T, Wang J, Nguyen V, Zhao S, Mavropoulos A, Abraham
AG, et al: Menin determines K-RAS proliferative outputs in
endocrine cells. J Clin Invest. 124:4093–4101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim TK, Lee JS, Jung HS, Ha TK, Kim SM,
Han N, Lee EJ, Kim TN, Kwon MJ, Lee SH, et al: Triiodothyronine
induces proliferation of pancreatic β-cells through the MAPK/ERK
pathway. Exp Clin Endocrinol Diabetes. 122:240–245. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen H, Gu X, Liu Y, Wang J, Wirt SE,
Bottino R, Schorle H, Sage J and Kim SK: PDGF signaling controls
age-dependent proliferation in pancreatic β-cells. Nature.
478:349–355. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hoarau E, Chandra V, Rustin P, Scharfmann
R and Duvillie B: Pro-oxidant/antioxidant balance controls
pancreatic β-cell differentiation through the ERK1/2 pathway. Cell
Death Dis. 5:e14872014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xiang RL, Mei M, Su YC, Li L, Wang JY and
Wu LL: Visfatin protects rat pancreatic β-cells against
IFN-γ-induced apoptosis through AMPK and ERK1/2 signaling pathways.
Biomed Environ Sci. 28:169–177. 2015.PubMed/NCBI
|
|
50
|
Ozaki KI, Awazu M, Tamiya M, Lwasaki Y,
Harada A, Kugisaki S, Tanimura S and Kohno M: Targeting the ERK
signaling pathway as a potential treatment for insulin resistance
and type 2 diabetes. Am J Physiol Endocrino Metab. 310:E643–E651.
2016. View Article : Google Scholar
|
|
51
|
Wang H, Gambosova K, Cooper ZA, Holloway
MP, Kassai A, Lzquierdo D, Cleveland K, Boney CM and Altura RA: EGF
regulates surviving stability through the Raf-1/ERK pathway in
insulin-secreting pancreatic β-cells. BMC Mol Biol. 11:662010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ernesto BM, Kulkarni RN, Scott DK,
Mauvais-Jarvis F, Stewart AF and Garcia-Ocana A: Human β-cell
proliferation and intracellular signaling part 2: Still driving in
the dark without a road map. Diabetes. 63:819–831. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Oh YS, Shin S, Lee YJ, Kim EH and Jun HS:
Betacellulin-induced beta cell proliferation and regeneration is
mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One.
6:e238942011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hakonen E, Ustinov J, Eizirik DL, Sariola
H, Miettinen PJ and Otonkoski T: In vivo activation of the PI3K-Akt
pathway in mouse beta cells by the EGFR mutation L858R protects
against diabetes. Diabetologia. 57:970–979. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zarrouki B, Benterki I, Fontes G, Peyot
ML, Seda O, Prentki M and Poitout V: Epidermal growth factor
receptor signaling promotes pancreatic β-cell proliferation in
response to nutrient excess in rats through mTOR and FOXM1.
Diabetes. 63:982–993. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang CC, Yin X, Cao CY, Wei J, Zhang Q
and Gao JM: Chemical constituents from hericium erinaceus and their
ability to stimulate NGF-mediated neurite outgrowth on PC12 cells.
Bioorg Med Chem Lett. 25:5078–5082. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rosenbaum T, Vidaltamayo R, Sanchez-Soto
MC, Zentella A and Hiriart M: Pancreatic beta cells synthesize and
secrete nerve growth factor. Proc Natl Acad Sci USA. 95:7784–7788.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Freund V and Frossard N: Expression of
nerve growth factor in the airways and its possible role in asthma.
Prog Brain Res. 146:335–346. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Roux PP and Barker PA: Neurotrophin
signaling through the P75 neurotrophin receptor. Prog Neurobiol.
67:203–233. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pingitore A, Caroleo MC, Cione E,
Castanera-Gonzalez R, Huang GC and Perasud SJ: Fine tuning of
insulin secretion by release of nerve growth factor from mouse and
human islet β-cells. Mol Cell Endocrinol. 436:23–32. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
EI-Gohary Y, Tulachan S, Guo P, Welsh C,
Wiersch J, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al:
Smad signaling pathways regulate pancreatic endocrine development.
Dev Biol. 378:83–93. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Feng Z, Zi Z and Liu X: Measuring TGF-β
ligand dynamics in culture medium. Methods Mol Biol. 1344:379–389.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Richardson CC, To K, Foot VL, Hauge-Evans
AC, Carmignac D and Christie MR: Increased perinated remodeling of
the pancreas in somatostatin-deficient mice: Potential role of
transforming growth factor-beta signaling in regulating beta cell
growth in early life. Horm Metab Res. 47:56–63. 2015.PubMed/NCBI
|
|
64
|
Xiao X, Wiersch J, EI-Gohary Y, Guo P,
Prasadan K, Paredes J, Welsh C, Shiota C and Gittes GK: TGFβ
receptor signaling is essential for inflammation-induced but not
β-cell workload-induced β-cell proliferation. Diabetes.
62:1217–1226. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Blum B, Roose AN, Barrrandon O, Maehr R,
Arvanites AC, Davidow LS, Davis JC, Peterson QP, Rubin LL and
Melton DA: Reversal of β cell de-differentiation by a small
molecule inhibitor of the TGFβ pathway. Elife. 3:e028092014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bruun C, Christensen GL, Jacobsen ML,
Kanstrup MB, Jensen PR, Fjordvang H, Mandrup-Poulsen T and
Billestrup N: Inhibition of beta cell growth and function by bone
morphogenetic proteins. Diabetologia. 57:2546–2554. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
EI-Gohary Y, Tulachan S, Wiersch J, Guo P,
Welsh C, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al: A
smad signaling network regulates islet cell proliferation.
Diabetes. 63:224–236. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lei C, Zhou X, Pang Y, Mao Y, Lu X, Li M
and Zhang J: TGF-β signaling prevents pancreatic beta cell death
after proliferation. Cell Prolif. 48:356–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wu H, Mezghenna K, Marmol P, Guo T,
Moliner A, Yang SN, Berggren PO and Lbanez CF: Differential
regulation of mouse pancreatic islet insulin secretion and Smad
proteins by activin ligands. Diabetologia. 57:148–156. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xiao X, Gaffar I, Guo P, Wiersch J,
Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota G
and Gittes GK: M2 macrophages promote beta-cell proliferation by
up-regulation of SMAD7. Prov Natl Acad Sci USA. 111:E1211–E1220.
2014. View Article : Google Scholar
|
|
71
|
Shin JA, Hong OK, Lee HJ, Jeon SY, Kim JW,
Lee SH, Cho JH, Lee JM, Choi YH, Chang SA, et al: Transforming
growth factor-β induces epithelial to mesenchymal transition and
suppresses the proliferation and transdifferentiation of cultured
human pancreatic duct cells. J Cell Biochem. 112:179–188. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Toren-Haritan G and Efrat S: TGFβ pathway
inhibition redifferentiates human pancreatic islet β cells expanded
in vitro. PLoS One. 9:e01391682015. View Article : Google Scholar
|
|
73
|
Li J, Ying H, Cai G, Guo Q and Chen L:
Pre-Eclampsia-associated reduction in placental growth factor
impaired beta cell proliferation through PI3K signaling. Cell
Physiol Biochem. 36:34–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Huang Y and Chang Y: Regulation of
pancreatic islet beta-cell mass by growth factor and hormone
signaling. Prog Mol Biol Transl Sci. 121:321–349. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee YS and Jun HS: Anti-diabetic actions
of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism.
63:9–19. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tian L and Jin T: The incretin hormone
GLP-1 and mechanisms underlying its secretion. J Diabetes.
8:753–765. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dai FF, Bhattacharjee A, Liu Y, Batchuluun
B, Zhang M, Wang XS, Huang X, Luu L, Zhu D, Gaisano H and Wheeler
MB: A novel GLP1 receptor interacting protein ATP6ap2 regulates
insulin secretion in pancreatic beta cells. J Biol Chem.
290:25045–25061. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang M, Robitaille M, Showalter AD, Huang
X, Liu Y, Bhattacharjee A, Willard FS, Han J, Froese S, Wei L, et
al: Progesterone receptor membrane component 1 is a functional part
of the glucagon-like peptide-1 (GLP-1) receptor complex in
pancreatic β cells. Mol Cell Proteomics. 13:3049–3062. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Campbell JE and Drucker DJ: Pharmacology,
physiology, and mechanisms of incretin hormone action. Cell Metab.
17:819–837. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lavine JA and Attie AD: Gastrointerstinal
hormones and the regulation of β-cell mass. Ann NY Acad Sci.
1212:41–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kong X, Yan D, Wu X, Guan Y and Ma X:
Glucotoxicity inhibits cAMP-protein kinase A-potentiated
glucose-stimulated insulin secretion in pancreatic β-cells. J
Diabetes. 7:378–385. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Y, Ding Y, Zhong X, Guo Q, Wang H,
Gao J, Bai T, Ren L, Guo Y, Jiao X and Liu Y: Geniposide acutely
stimulates insulin secretion in pancreation β-cells by regulating
GLP-1 receptor/cAMP signaling and ion channels. Mol Cell
Endocrinol. 430:89–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou
M, Yang Q, Mao T and Tong N: Activation of PPARβ/δ protects
pancreatic β cells from palmitate-induced apoptosis by upregulating
the expression of GLP-1 receptor. Cell Signal. 26:268–278. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Boutant M, Ramos OH, Tourrel-Cuzin C,
Movassat J, Llias A, Vallois D, Planchais J, Pegorier JP, Schuit F,
Petit PX, et al: COUP-TFII controls mouse pancreatic β-cell mass
through GLP-1-β-catenin signaling pathways. PLoS One. 7:e308472012.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nelson WJ and Nusse R: Convergence of Wnt,
beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nusse R: Wnt signaling in disease and in
development. Cell Res. 15:28–32. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Heller C, Kuhn MC, Mulders-Opgenoorth B,
Schott M, Willenberg HS, Scherbaum WA and Schinner S: Exendin-4
upregulates the expression of wnt-4, a novel regulator of
pancreatic β-cell proliferation. Am J Physiol Endocrinol Metab.
301:E864–E872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xue G, Romano E, Massi D and MandaIa M:
Wnt/β-catenin signaling in melanoma: Preclinical rationale and
novel therapeutic insights. Cancer Treat Rev. 49:1–12. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Schinner S, Ulgen F, Papewalis C, Schott
M, Woelk A, Vidal-Puig A and Scherbaum WA: Regulation of insulin
secretion, glucokinase gene transcription and beta cell
proliferation by adipicyte-derived wnt signaling molecules.
Diabetologia. 51:147–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bader E, Migliorini A, Gegg M, Moruzzi N,
Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J, et
al: Indentification of proliferative and mature β-cells in the
islets of Langerhans. Nature. 535:430–434. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Krutzfeldt J and Stoffel M: Regulation of
wingless-type MMTV integration site family (WNT) signaling in
pancreatic islets from wild-type and obese mice. Diabetologia.
53:123–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu
Y, Zhang J, Zhang M, Yang Y and Wang DW: Wnt3a regulates
proliferation, apoptosis and function of pancreatic NIT-1 β cells
via activation of IRS2/PI3K signaling. J Cell Biochem.
114:1488–1497. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rulifson IC, Karnik SK, Heiser PW, Ten
Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebro M and Kim SK: Wnt
signaling regulates pancreatic beta cell proliferation. Proc Nati
Acad Sci USA. 104:6247–6252. 2007. View Article : Google Scholar
|
|
94
|
He X, Han W, Hu SX, Zhang MZ, Hua JL and
Peng S: Canonical wnt signaling pathway contributes to the
proliferation and survival in porcine pancreatic stem cells (PSCs).
Cell Tissue Res. 362:379–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sarkar S and Mandal C, Sangwan R and
Mandal C: Coupling G2/M arrest to the wnt/β-catenin pathway
restrains pancreatic adcnocarcinoma. Endocr Relat Cancer.
21:113–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang YQ, Morris JP, Yan W, Schofield HK,
Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di
Magliano M: Canonical wnt signaling is required for pancreatic
carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Afelik S, Pool B, Schmerr M, Penton C and
Jensen J: Wnt7b is required for epithelial progenitor growth and
operates during epithelial-to-mesenchymal signaling in pancreatic
development. Dev Biol. 399:204–217. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lyssenko V: The transcription factor
7-like 2 gene and increased risk of type 2 diabetes: An update.
Curr Opin Clin Nutr Metab Care. 11:385–392. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Takamoto I, Kubota N, Nakaya K, Kumagai K,
Hashimoto S, Kubota T, Inoue M, Kajiwara E, Katsuyama H, Obata A,
et al: TCF7L2 in mouse pancreatic beta cells plays a crucial role
in glucose homeostasis by regulating beta cell mass. Diabetologia.
57:542–553. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhou Y, Oskolkov N, Shcherbina L, Ratti J,
Kock KH, Su J, Martin B, Oskolkova MZ, Goransson O, Bacon J, et al:
HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic
islets. Mol Cell Endocrinol. 430:138–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yao DD, Yang L, Wang Y, Liu C, Wei YJ, Jia
XB, Yin W and Shu L: Geniposide promotes beta-cell regeneration and
survival through regulating β-catenin/TCF7L2 pathway. Cell Death
Dis. 6:e17462015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kiu H and Nicholson SE: Biology and
significance of the JAK/STAT signaling pathways. Growth Factors.
30:88–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
O'Shea JJ and Plenge R: JAK and STAT
signaling molecules in immunoregulation and immune-mediated
disease. Immunity. 36:542–550. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhuang S: Regulation of STAT signaling by
acetylation. Cell Signal. 25:1942–1931. 2013. View Article : Google Scholar
|
|
105
|
Brooks AJ, Dai W, O'Mara ML, Abankwa D,
Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ,
et al: Mechanism of activation of protein kinase JAK2 by the growth
hormone recetor. Science. 344:12497832014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liongue C, Taznin T and Ward AC: Signaling
via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution.
Mol Immunol. 71:166–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Linossi EM, Babon JJ, Hilton DJ and
Nicholson SE: Suppression of cytokine signaling: The SOCS
perspective. Cytokine Growth Factor Rev. 24:241–248. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shuai K and Liu B: Regulation of
gene-activation pathways by PIAS protein in the immune system. Nat
Rev Immunol. 5:593–605. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Trengove MC and Ward AC: SOCS proteins in
development and disease. Am J Exp Clin Immunol. 2:1–29. 2013.
|
|
110
|
Fleyel T, Brorsson C, Nielsen LB, Miani M,
Bang-Berthelsen CH, Friedrichsen M, Overgaard AJ, Berchtold LA,
Wiberg A, Poulsen P, et al: CTSH regulates β-cell function and
disease progression in newly diagnosed type 1 diabetes patients.
Proc Natl Acad Sci USA. 111:10305–10310. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Stanley WJ, Litwak SA, Quah HS, Tan SM,
Kay TW, Tiganis T, de Haan JB, Thomas HE and Gurzov EN:
Inactivation of protein tyrosine phosphatases enhances interferon
signaling in pancreatic islets. Diabetes. 64:2489–2496. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chou DH, Vetere A, Choudhary A, Scully SS,
Schenone M, Tang A, Gomez R, Burns SM, Lundh M, Vital T, et al:
Kinase-independent small-molecule inhibition of JAK-STAT signaling.
J Am Chem Soc. 137:7929–7934. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Chen H, Kleinberger JW, Takane KK, Salim
F, Fiaschi-Taesch N, Pappas K, Parsons R, Jiang J, Zhang Y, Liu H,
et al: Augmented stat5 signaling bypasses multiple impediments to
lactogen-mediated proliferation in human β-cells. Diabetes.
64:3784–3797. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Choi D, Schroer SA, Lu SY, Wang L, Wu X,
Liu Y, Zhang Y, Gaisano HY, Wagner KY, Wu H, et al: Erythropoietin
protects against diabetes through direct effects on pancreatic beta
cells. J Exp Med. 207:2831–2842. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
De-Groef S, Renmans D, Cai Y, Leuckx G,
Roels S, Staels W, GradwohI G, Baeyens L, Heremans Y, Martens GA,
et al: STAT3 modulates β-cell cycling in injured mouse pancreas and
protects against DNA damage. Cell Death Dis. 7:e22722016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Shao L, Zhang P, Zhang Y and Ma A:
Inflammatory unbalance of TLR3 and TLR4 in PCI patients with or
without type 2 diabetes mellitus. Immunol Lett. 161:81–88. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kruger B, Yin N, Zhang N, Yadav A, Coward
W, Lai G, Zang W, S Heeger P, Bromberg JS, Murphy B, et al:
Islet-expressed TLR2 and TLR4 sense injury and mediate early graft
failure after transplantation. Eur J Immunol. 40:2914–2924. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yang X, Haghiac M, Glazebrook P, Minium J,
Catalano PM and Hanguel-de Mouzon S: Saturated fatty acids enhance
TLR4 immune pathways in human trophoblasts. Hum Reprod.
30:2152–2159. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sepehri Z, Kiani Z, Nasiri AA, Mashhadi
MA, Javadian F, Haghighi A, Kohan F, Bahari A and Sargazi A: Human
Toll like receptor 4 gene expression of PBMCs in diabetes mellitus
type 2 patients. Cell Mol Biol. 61:92–95. 2015.PubMed/NCBI
|
|
120
|
Verzila D, Cappuccino L, D'Amato E,
Villaggio B, Gianiorio F, Mij M, Simonato A, Viazzi F, Salvidia G
and Garibotto G: Enhanced glomerular Toll-like receptor 4
expression and signaling in patients with type 2 diabetic
nephropathy and microalbuminuria. Kidney Int. 86:1229–1243. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Baldan A, Ferronato S, Olivato S, Malerba
G, Scuro A, Veraldi GF, Gelati M, Ferrari S, Mariotto S, Pignati
PF, et al: Cyclooxygenase 2, toll-like receptor 4 and interleukin
1β mRNA expression in atherosclerotic plaques of type 2 diabetic
patients. Inflamm Res. 63:851–858. 2014. View Article : Google Scholar : PubMed/NCBI
|