Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2018 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2018 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)

  • Authors:
    • Wen‑Juan Jiang
    • Yun‑Chuan Peng
    • Kai‑Ming Yang
  • View Affiliations / Copyright

    Affiliations: Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3275-3285
    |
    Published online on: August 13, 2018
       https://doi.org/10.3892/etm.2018.6603
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

It is established that a decrease in β‑cell number and deficiency in the function of existing β‑cells contribute to type 1 and type 2 diabetes mellitus. Therefore, a major focus of current research is to identify novel methods of improving the number and function of β‑cells, so as to prevent and/or postpone the development of diabetes mellitus and potentially reverse diabetes mellitus. Based on prior knowledge of the above‑mentioned causes, promising therapeutic approaches may include direct transplantation of islets, implantation and subsequent induced differentiation of progenitors/stem cells to β‑cells, replication of pre‑existing β‑cells, or activation of endogenous β‑cell progenitors. More recently, with regards to cell replacement and regenerative treatment for diabetes patients, the identification of cellular signaling pathways with related genes or corresponding proteins involved in diabetes has become a topic of interest. However, the majority of pathways and molecules associated with β‑cells remain unresolved, and the specialized functions of known pathways remain unclear, particularly in humans. The current article has evaluated the progress of research on pivotal cellular signaling pathways involved with β‑cell proliferation and survival, and their validity for therapeutic adult β‑cell regeneration in diabetes. More efforts are required to elucidate the cellular events involved in human β‑cell proliferation in terms of the underlying mechanisms and functions.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Farney AC, Sutherland DE and Opara EC: Evolution of islet transplantation for the last 30 years. Pancreas. 1:8–20. 2016. View Article : Google Scholar

2 

Tiwari S, Roel C, Wills R, Casinelli G, Tanwir M, Takane KK and Fiaschi-Taesch NM: Early and late G1/S cyclins and Cdks act complementarily to enhance authentic human β-cell proliferation and expansion. Diabetes. 10:3485–3498. 2015. View Article : Google Scholar

3 

Wang GS, Rosenberg L and Scott FW: Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab Invest. 5:675–688. 2005. View Article : Google Scholar

4 

Dor Y, Brown J, Martinez OI and Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nautre. 429:41–46. 2004. View Article : Google Scholar

5 

Stewart AF, Hussain MA, Garcia-Ocana A, Vasavada RC, Bhunshan A, Bernal-Mizrachi E and Kulkarni RN: Human β-cell proliferation and intracellular signaling: Part 3. Diabetes. 4:1872–1885. 2015. View Article : Google Scholar

6 

Saltiel AR and Kahn CR: Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 414:799–806. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Kulkarni RN, Mizrachi EB, Ocana AG and Stewart AF: Human β-cell proliferation and intracellular signaling: Driving in the dark without a road map. Diabetes. 9:2205–2213. 2012. View Article : Google Scholar

8 

Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Kluperman J, Thorens B and Thomas G: Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 408:994–997. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Arajuo EP, Amaral ME, Souza CT, Bordin S, Ferreira F, Saad MJ, Boschero AC, Maqalhaes EC and Velloso LA: Blockade of IRS1 in isolated rat pancreatic islets improves glucose-induced insulin secretion. FEBS Lett. 531:437–442. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Bringhenti I, Ornellas F, Mandarim-de-Lacerda CA and Aguila MB: The insulin-signaling pathway of the pancreatic islet is impaired in adult mice offspring of mothers fed a high-fat diet. Nutrition. 32:1138–1143. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Ou Y, Ren Z, Wang J and Yang X: Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression. Chem Biol Interact. 247:49–54. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M, Okazaki Y, Ohsugi M, Inabe K, Umehara T, et al: Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab. 12:619–632. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Chen Q, Lu M, Monks BR and Birnabaum MJ: Insulin is required to maintain albumin expression by inhibiting forkhead box o1 protein. J Biol Chem. 291:2371–2378. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Wang C, Chen X, Ding X, He Y, Gu C and Zhou L: Exendin-4 promotes beta cell proliferation via PI3K/Akt signaling pathway. Cell Physiol Biochem. 35:2223–2232. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Katoh M and Katoh H: Human FOX gene family (Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI

16 

Seyer P, Vallois D, Poitry-Yamate C, Schutz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B, Grueter R, et al: Hepatic glucose sensing is required to preserve β cell glucose competence. J Clin Invest. 123:1662–1676. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Huang L, Jiang X, Gong L and Xing D: Photoactivation of Akt1/GSK3β Isoform-Specific signaling axis promotes pancreatic β-cell regeneration. J Cell Biochem. 116:1741–1754. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Boucher MJ, Selander L, Carlsson L and Edlund H: Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem. 281:6395–6403. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Morral N: Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol Metab. 14:169–175. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Foster KG and Fingar DC: Mammalian target of rapamycin (mTOR): Conducting the cellular signaling symphony. J Biol Chem. 285:14071–14077. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Duzgn Z, Eroglu Z and Biray-Avci C: Role of mTOR in glioblastoma. Gene. 575:187–190. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Maiese K: Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res. 11:372–385. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wang J, Yang X and Zhang J: Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal. 28:1099–1104. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Maiese K: Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol. 82:1245–1266. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Escribano O, Gomez-Hernandez A, Diaz-Castroverde S, Nevado C, Garcia G, Otoro YF, Perdomo L, Beneit N and Benito M: Insulin receptor isoform A confers a higher proliferative capability to pancreatic β cells enabling glucose availability and IGF-1 signaling. Mol Cell Endocrinol. 409:82–91. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Li W, Zhang H, Nie A, Ni Q, Li F, Ning G, Li X, Gu Y and Wang Q: mTORC1 pathway mediates beta cell compensatory proliferation in 60% partial-pancreatectomy mice. Endocrine. 53:117–128. 2016. View Article : Google Scholar : PubMed/NCBI

27 

McCurdy CE and Klemm DJ: Adipose tissue insulin sensitivity and macrophage recruitment: Does PI3K pick the pathway. Adipocyte. 2:135–142. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Bringhenti I, Moraes-Teixeira JA, Cunha MR, Ornellas F, Mandarim-de-lacerda CA and Aguila MB: Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS One. 8:e557112013. View Article : Google Scholar : PubMed/NCBI

29 

Cerf ME, Williams K, Chapman CS and Louw J: Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas. 34:347–353. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Rhee M, Lee H, Kim JW, Ham DS, Park HS, Yang HK, Shin JY, Cho JH, Kim YB, Youn BS, et al: Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 6:239602016. View Article : Google Scholar : PubMed/NCBI

31 

Gao Y, Liao G, Xiang C, Yang X, Cheng X and Ou Y: Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol. 83:185–194. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Ahn C, An BS and Jeung EB: Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol. 412:302–308. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Khan S, Yan-Do R, Duong E, Wu X, Bautista A, Cheley S, MacDonald PE and Braun M: Autocrine activation of P2Y1 receptors couples Ca (2+) release in human pancreatic beta cells. Diabetologia. 57:2235–2245. 2014. View Article : Google Scholar

34 

Roper MG, Qian WJ, Zhang BB, Kulkarni RN, Kahn CR and Kennedy RT: Effect of the insulin mimetic L-783,281 on intracellular Ca2 and insulin secretion from pancreatic beta-cells. Diabetes. 51 Suppl:S43–S49. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Demozay D, Tsunekawa S, Briaud I, Shah R and Rhodes CJ: Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet β-cells. Diabetes. 60:2892–2902. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR and Kim SK: Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell. 23:21–34. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Nguidjoe E, Sokolow S, Bigabwa S, Pachera N, D'Amico E, Allagnat F, Vanderwinden JM, Sener A, Manto M, Depreter M, et al: Heterozygous inactivation of the Na/Ca exchanger increases glucose-induced insulin release, β-cell proliferation, and mass. Diabetes. 60:2076–2085. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Lawrence MC, Naziruddin B, Levy MF, Jackson A and McGlynn K: Calcineurin/nuclear factor of activated T cells and MAPK signaling induce TNF-{alpha} gene expression in pancreatic islet endocrine cells. J Biol Chem. 286:1025–1036. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Gilon P, Chae HY, Rutter GA and Ravier MA: Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium. 5:340–361. 2014. View Article : Google Scholar

40 

Kappel VD, Frederico MJ, Postal BG, Mendes CP, Cazarolli LH and Silva FR: The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. Eur J Pharmacol. 702:264–268. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Castro AJ, Cazarolli LH, de-Carvalho FK, da Luz G, Altenhofen D, dos Santos AR, Pizzolatti MG and Silva FR: Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis. J Sterois Biochem Mol Biol. 150:112–122. 2015. View Article : Google Scholar

42 

Marcelo KL, Ribar T, Means CR, Tsimelzon A, Stevens RD, Llkayeva O, Bain JR, Hilsenbeck SG, Newgard CB, Means AR and York B: Research resource: Roles for calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in systems metabolism. Mol Endocrinol. 30:557–572. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Markwardt ML, Seckinger KM and Rizzo MA: Regulation of glucokinase by intracellular calcium levels in pancreatic β cells. J Biol Chem. 291:3000–3009. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Nussinov R, Tsai CJ, Muratcioglu S, Jang H, Gursoy A and Keskin O: Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle. Expert Rev Proteomics. 12:669–682. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Chamberlain CE, Scheel DW, Mcglynn K, Kim H, Miyatsuka T, Wang J, Nguyen V, Zhao S, Mavropoulos A, Abraham AG, et al: Menin determines K-RAS proliferative outputs in endocrine cells. J Clin Invest. 124:4093–4101. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Kim TK, Lee JS, Jung HS, Ha TK, Kim SM, Han N, Lee EJ, Kim TN, Kwon MJ, Lee SH, et al: Triiodothyronine induces proliferation of pancreatic β-cells through the MAPK/ERK pathway. Exp Clin Endocrinol Diabetes. 122:240–245. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R, Schorle H, Sage J and Kim SK: PDGF signaling controls age-dependent proliferation in pancreatic β-cells. Nature. 478:349–355. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Hoarau E, Chandra V, Rustin P, Scharfmann R and Duvillie B: Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis. 5:e14872014. View Article : Google Scholar : PubMed/NCBI

49 

Xiang RL, Mei M, Su YC, Li L, Wang JY and Wu LL: Visfatin protects rat pancreatic β-cells against IFN-γ-induced apoptosis through AMPK and ERK1/2 signaling pathways. Biomed Environ Sci. 28:169–177. 2015.PubMed/NCBI

50 

Ozaki KI, Awazu M, Tamiya M, Lwasaki Y, Harada A, Kugisaki S, Tanimura S and Kohno M: Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrino Metab. 310:E643–E651. 2016. View Article : Google Scholar

51 

Wang H, Gambosova K, Cooper ZA, Holloway MP, Kassai A, Lzquierdo D, Cleveland K, Boney CM and Altura RA: EGF regulates surviving stability through the Raf-1/ERK pathway in insulin-secreting pancreatic β-cells. BMC Mol Biol. 11:662010. View Article : Google Scholar : PubMed/NCBI

52 

Ernesto BM, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF and Garcia-Ocana A: Human β-cell proliferation and intracellular signaling part 2: Still driving in the dark without a road map. Diabetes. 63:819–831. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Oh YS, Shin S, Lee YJ, Kim EH and Jun HS: Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One. 6:e238942011. View Article : Google Scholar : PubMed/NCBI

54 

Hakonen E, Ustinov J, Eizirik DL, Sariola H, Miettinen PJ and Otonkoski T: In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia. 57:970–979. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Zarrouki B, Benterki I, Fontes G, Peyot ML, Seda O, Prentki M and Poitout V: Epidermal growth factor receptor signaling promotes pancreatic β-cell proliferation in response to nutrient excess in rats through mTOR and FOXM1. Diabetes. 63:982–993. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Zhang CC, Yin X, Cao CY, Wei J, Zhang Q and Gao JM: Chemical constituents from hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells. Bioorg Med Chem Lett. 25:5078–5082. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Rosenbaum T, Vidaltamayo R, Sanchez-Soto MC, Zentella A and Hiriart M: Pancreatic beta cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci USA. 95:7784–7788. 1998. View Article : Google Scholar : PubMed/NCBI

58 

Freund V and Frossard N: Expression of nerve growth factor in the airways and its possible role in asthma. Prog Brain Res. 146:335–346. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Roux PP and Barker PA: Neurotrophin signaling through the P75 neurotrophin receptor. Prog Neurobiol. 67:203–233. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Pingitore A, Caroleo MC, Cione E, Castanera-Gonzalez R, Huang GC and Perasud SJ: Fine tuning of insulin secretion by release of nerve growth factor from mouse and human islet β-cells. Mol Cell Endocrinol. 436:23–32. 2016. View Article : Google Scholar : PubMed/NCBI

61 

EI-Gohary Y, Tulachan S, Guo P, Welsh C, Wiersch J, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al: Smad signaling pathways regulate pancreatic endocrine development. Dev Biol. 378:83–93. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Feng Z, Zi Z and Liu X: Measuring TGF-β ligand dynamics in culture medium. Methods Mol Biol. 1344:379–389. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Richardson CC, To K, Foot VL, Hauge-Evans AC, Carmignac D and Christie MR: Increased perinated remodeling of the pancreas in somatostatin-deficient mice: Potential role of transforming growth factor-beta signaling in regulating beta cell growth in early life. Horm Metab Res. 47:56–63. 2015.PubMed/NCBI

64 

Xiao X, Wiersch J, EI-Gohary Y, Guo P, Prasadan K, Paredes J, Welsh C, Shiota C and Gittes GK: TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation. Diabetes. 62:1217–1226. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Blum B, Roose AN, Barrrandon O, Maehr R, Arvanites AC, Davidow LS, Davis JC, Peterson QP, Rubin LL and Melton DA: Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. Elife. 3:e028092014. View Article : Google Scholar : PubMed/NCBI

66 

Bruun C, Christensen GL, Jacobsen ML, Kanstrup MB, Jensen PR, Fjordvang H, Mandrup-Poulsen T and Billestrup N: Inhibition of beta cell growth and function by bone morphogenetic proteins. Diabetologia. 57:2546–2554. 2014. View Article : Google Scholar : PubMed/NCBI

67 

EI-Gohary Y, Tulachan S, Wiersch J, Guo P, Welsh C, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al: A smad signaling network regulates islet cell proliferation. Diabetes. 63:224–236. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Lei C, Zhou X, Pang Y, Mao Y, Lu X, Li M and Zhang J: TGF-β signaling prevents pancreatic beta cell death after proliferation. Cell Prolif. 48:356–362. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Wu H, Mezghenna K, Marmol P, Guo T, Moliner A, Yang SN, Berggren PO and Lbanez CF: Differential regulation of mouse pancreatic islet insulin secretion and Smad proteins by activin ligands. Diabetologia. 57:148–156. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota G and Gittes GK: M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Prov Natl Acad Sci USA. 111:E1211–E1220. 2014. View Article : Google Scholar

71 

Shin JA, Hong OK, Lee HJ, Jeon SY, Kim JW, Lee SH, Cho JH, Lee JM, Choi YH, Chang SA, et al: Transforming growth factor-β induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells. J Cell Biochem. 112:179–188. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Toren-Haritan G and Efrat S: TGFβ pathway inhibition redifferentiates human pancreatic islet β cells expanded in vitro. PLoS One. 9:e01391682015. View Article : Google Scholar

73 

Li J, Ying H, Cai G, Guo Q and Chen L: Pre-Eclampsia-associated reduction in placental growth factor impaired beta cell proliferation through PI3K signaling. Cell Physiol Biochem. 36:34–43. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Huang Y and Chang Y: Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. Prog Mol Biol Transl Sci. 121:321–349. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Lee YS and Jun HS: Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 63:9–19. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Tian L and Jin T: The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes. 8:753–765. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Dai FF, Bhattacharjee A, Liu Y, Batchuluun B, Zhang M, Wang XS, Huang X, Luu L, Zhu D, Gaisano H and Wheeler MB: A novel GLP1 receptor interacting protein ATP6ap2 regulates insulin secretion in pancreatic beta cells. J Biol Chem. 290:25045–25061. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Zhang M, Robitaille M, Showalter AD, Huang X, Liu Y, Bhattacharjee A, Willard FS, Han J, Froese S, Wei L, et al: Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol Cell Proteomics. 13:3049–3062. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Campbell JE and Drucker DJ: Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17:819–837. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Lavine JA and Attie AD: Gastrointerstinal hormones and the regulation of β-cell mass. Ann NY Acad Sci. 1212:41–58. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Kong X, Yan D, Wu X, Guan Y and Ma X: Glucotoxicity inhibits cAMP-protein kinase A-potentiated glucose-stimulated insulin secretion in pancreatic β-cells. J Diabetes. 7:378–385. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Zhang Y, Ding Y, Zhong X, Guo Q, Wang H, Gao J, Bai T, Ren L, Guo Y, Jiao X and Liu Y: Geniposide acutely stimulates insulin secretion in pancreation β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol Cell Endocrinol. 430:89–96. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou M, Yang Q, Mao T and Tong N: Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor. Cell Signal. 26:268–278. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Boutant M, Ramos OH, Tourrel-Cuzin C, Movassat J, Llias A, Vallois D, Planchais J, Pegorier JP, Schuit F, Petit PX, et al: COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways. PLoS One. 7:e308472012. View Article : Google Scholar : PubMed/NCBI

85 

Nelson WJ and Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Nusse R: Wnt signaling in disease and in development. Cell Res. 15:28–32. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Heller C, Kuhn MC, Mulders-Opgenoorth B, Schott M, Willenberg HS, Scherbaum WA and Schinner S: Exendin-4 upregulates the expression of wnt-4, a novel regulator of pancreatic β-cell proliferation. Am J Physiol Endocrinol Metab. 301:E864–E872. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Xue G, Romano E, Massi D and MandaIa M: Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treat Rev. 49:1–12. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A and Scherbaum WA: Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipicyte-derived wnt signaling molecules. Diabetologia. 51:147–154. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J, et al: Indentification of proliferative and mature β-cells in the islets of Langerhans. Nature. 535:430–434. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Krutzfeldt J and Stoffel M: Regulation of wingless-type MMTV integration site family (WNT) signaling in pancreatic islets from wild-type and obese mice. Diabetologia. 53:123–127. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu Y, Zhang J, Zhang M, Yang Y and Wang DW: Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 β cells via activation of IRS2/PI3K signaling. J Cell Biochem. 114:1488–1497. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Rulifson IC, Karnik SK, Heiser PW, Ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebro M and Kim SK: Wnt signaling regulates pancreatic beta cell proliferation. Proc Nati Acad Sci USA. 104:6247–6252. 2007. View Article : Google Scholar

94 

He X, Han W, Hu SX, Zhang MZ, Hua JL and Peng S: Canonical wnt signaling pathway contributes to the proliferation and survival in porcine pancreatic stem cells (PSCs). Cell Tissue Res. 362:379–388. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Sarkar S and Mandal C, Sangwan R and Mandal C: Coupling G2/M arrest to the wnt/β-catenin pathway restrains pancreatic adcnocarcinoma. Endocr Relat Cancer. 21:113–125. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Zhang YQ, Morris JP, Yan W, Schofield HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di Magliano M: Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Afelik S, Pool B, Schmerr M, Penton C and Jensen J: Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol. 399:204–217. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Lyssenko V: The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: An update. Curr Opin Clin Nutr Metab Care. 11:385–392. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Takamoto I, Kubota N, Nakaya K, Kumagai K, Hashimoto S, Kubota T, Inoue M, Kajiwara E, Katsuyama H, Obata A, et al: TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass. Diabetologia. 57:542–553. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Zhou Y, Oskolkov N, Shcherbina L, Ratti J, Kock KH, Su J, Martin B, Oskolkova MZ, Goransson O, Bacon J, et al: HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. Mol Cell Endocrinol. 430:138–145. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Yao DD, Yang L, Wang Y, Liu C, Wei YJ, Jia XB, Yin W and Shu L: Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis. 6:e17462015. View Article : Google Scholar : PubMed/NCBI

102 

Kiu H and Nicholson SE: Biology and significance of the JAK/STAT signaling pathways. Growth Factors. 30:88–106. 2012. View Article : Google Scholar : PubMed/NCBI

103 

O'Shea JJ and Plenge R: JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 36:542–550. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Zhuang S: Regulation of STAT signaling by acetylation. Cell Signal. 25:1942–1931. 2013. View Article : Google Scholar

105 

Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, et al: Mechanism of activation of protein kinase JAK2 by the growth hormone recetor. Science. 344:12497832014. View Article : Google Scholar : PubMed/NCBI

106 

Liongue C, Taznin T and Ward AC: Signaling via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution. Mol Immunol. 71:166–175. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Linossi EM, Babon JJ, Hilton DJ and Nicholson SE: Suppression of cytokine signaling: The SOCS perspective. Cytokine Growth Factor Rev. 24:241–248. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Shuai K and Liu B: Regulation of gene-activation pathways by PIAS protein in the immune system. Nat Rev Immunol. 5:593–605. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Trengove MC and Ward AC: SOCS proteins in development and disease. Am J Exp Clin Immunol. 2:1–29. 2013.

110 

Fleyel T, Brorsson C, Nielsen LB, Miani M, Bang-Berthelsen CH, Friedrichsen M, Overgaard AJ, Berchtold LA, Wiberg A, Poulsen P, et al: CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci USA. 111:10305–10310. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Stanley WJ, Litwak SA, Quah HS, Tan SM, Kay TW, Tiganis T, de Haan JB, Thomas HE and Gurzov EN: Inactivation of protein tyrosine phosphatases enhances interferon signaling in pancreatic islets. Diabetes. 64:2489–2496. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Chou DH, Vetere A, Choudhary A, Scully SS, Schenone M, Tang A, Gomez R, Burns SM, Lundh M, Vital T, et al: Kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc. 137:7929–7934. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Chen H, Kleinberger JW, Takane KK, Salim F, Fiaschi-Taesch N, Pappas K, Parsons R, Jiang J, Zhang Y, Liu H, et al: Augmented stat5 signaling bypasses multiple impediments to lactogen-mediated proliferation in human β-cells. Diabetes. 64:3784–3797. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Choi D, Schroer SA, Lu SY, Wang L, Wu X, Liu Y, Zhang Y, Gaisano HY, Wagner KY, Wu H, et al: Erythropoietin protects against diabetes through direct effects on pancreatic beta cells. J Exp Med. 207:2831–2842. 2010. View Article : Google Scholar : PubMed/NCBI

115 

De-Groef S, Renmans D, Cai Y, Leuckx G, Roels S, Staels W, GradwohI G, Baeyens L, Heremans Y, Martens GA, et al: STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis. 7:e22722016. View Article : Google Scholar : PubMed/NCBI

116 

Shao L, Zhang P, Zhang Y and Ma A: Inflammatory unbalance of TLR3 and TLR4 in PCI patients with or without type 2 diabetes mellitus. Immunol Lett. 161:81–88. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Kruger B, Yin N, Zhang N, Yadav A, Coward W, Lai G, Zang W, S Heeger P, Bromberg JS, Murphy B, et al: Islet-expressed TLR2 and TLR4 sense injury and mediate early graft failure after transplantation. Eur J Immunol. 40:2914–2924. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Yang X, Haghiac M, Glazebrook P, Minium J, Catalano PM and Hanguel-de Mouzon S: Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Hum Reprod. 30:2152–2159. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Sepehri Z, Kiani Z, Nasiri AA, Mashhadi MA, Javadian F, Haghighi A, Kohan F, Bahari A and Sargazi A: Human Toll like receptor 4 gene expression of PBMCs in diabetes mellitus type 2 patients. Cell Mol Biol. 61:92–95. 2015.PubMed/NCBI

120 

Verzila D, Cappuccino L, D'Amato E, Villaggio B, Gianiorio F, Mij M, Simonato A, Viazzi F, Salvidia G and Garibotto G: Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int. 86:1229–1243. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Baldan A, Ferronato S, Olivato S, Malerba G, Scuro A, Veraldi GF, Gelati M, Ferrari S, Mariotto S, Pignati PF, et al: Cyclooxygenase 2, toll-like receptor 4 and interleukin 1β mRNA expression in atherosclerotic plaques of type 2 diabetic patients. Inflamm Res. 63:851–858. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang WJ, Peng YC and Yang KM: Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Exp Ther Med 16: 3275-3285, 2018.
APA
Jiang, W., Peng, Y., & Yang, K. (2018). Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Experimental and Therapeutic Medicine, 16, 3275-3285. https://doi.org/10.3892/etm.2018.6603
MLA
Jiang, W., Peng, Y., Yang, K."Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)". Experimental and Therapeutic Medicine 16.4 (2018): 3275-3285.
Chicago
Jiang, W., Peng, Y., Yang, K."Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)". Experimental and Therapeutic Medicine 16, no. 4 (2018): 3275-3285. https://doi.org/10.3892/etm.2018.6603
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang WJ, Peng YC and Yang KM: Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Exp Ther Med 16: 3275-3285, 2018.
APA
Jiang, W., Peng, Y., & Yang, K. (2018). Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Experimental and Therapeutic Medicine, 16, 3275-3285. https://doi.org/10.3892/etm.2018.6603
MLA
Jiang, W., Peng, Y., Yang, K."Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)". Experimental and Therapeutic Medicine 16.4 (2018): 3275-3285.
Chicago
Jiang, W., Peng, Y., Yang, K."Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)". Experimental and Therapeutic Medicine 16, no. 4 (2018): 3275-3285. https://doi.org/10.3892/etm.2018.6603
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team