|
1
|
Samuelsson EC, Victor FT, Tibblin G and
Svärdsudd KF: Signs of genital prolapse in a Swedish population of
women 20 to 59 years of age and possible related factors. Am J
Obstet Gynecol. 180:299–305. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wu JM, Kawasaki A, Hundley AF, Dieter AA,
Myers ER and Sung VW: Predicting the number of women who will
undergo incontinence and prolapse surgery, 2010 to 2050. Am J
Obstet Gynecol. 205:230.e1–e5. 2011. View Article : Google Scholar
|
|
3
|
Boyles SH, Weber AM and Meyn L: Procedures
for pelvic organ prolapse in the United States, 1979–1997. Am J
Obstet Gynecol. 188:108–115. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shah AD, Kohli N, Rajan SS and Hoyte L:
The age distribution, rates, and types of surgery for pelvic organ
prolapse in the USA. Int Urogynecol J Pelvic Floor Dysfunct.
19:421–428. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Brown JS, Waetjen LE, Subak LL, Thom DH,
Van den Eeden S and Vittinghoff E: Pelvic organ prolapse surgery in
the United States, 1997. Am J Obstet Gynecol. 186:712–716. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nikolova G, Lee H, Berkovitz S, Nelson S,
Sinsheimer J, Vilain E and Rodríguez LV: Sequence variant in the
laminin gamma1 (LAMC1) gene associated with familial pelvic organ
prolapse. Hum Genet. 120:847–856. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Olsen AL, Smith VJ, Bergstrom JO, Colling
JC and Clark AL: Epidemiology of surgically managed pelvic organ
prolapse and urinary incontinence. Obstet Gynecol. 89:501–506.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhu L, Lang J, Feng R, Chen J and Wong F:
Estrogen receptor in pelvic floor tissues in patients with stress
urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct.
15:340–343. 2004.PubMed/NCBI
|
|
9
|
Buchsbaum GM, Chin M, Glantz C and Guzick
D: Prevalence of urinary incontinence and associated risk factors
in a cohort of nuns. Obstet Gynecol. 100:226–229. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Buchsbaum GM, Duecy EE, Kerr LA, Huang LS
and Guzick DS: Urinary incontinence in nulliparous women and their
parous sisters. Obstet Gynecol. 106:1253–1258. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bump RC and Norton PA: Epidemiology and
natural history of pelvic floor dysfunction. Obstet Gynecol Clin
North Am. 25:723–746. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
George G, Joseph J and Ganjifrockwalaa F:
Decreased total antioxidant levels and increased oxidative stress
in South African type 2 diabetes mellitus patients. J Endocrinol
Metab Diabetes South Africa. 22:21–25. 2017. View Article : Google Scholar
|
|
13
|
Pham-Huy LA, He H and Pham-Huy C: Free
radicals, antioxidants in disease and health. Int J Biomed Sci.
4:89–96. 2008.PubMed/NCBI
|
|
14
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Diplock AT: Antioxidants and disease
prevention. Mol Aspects Med. 15:293–376. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tsai-Turton M and Luderer U: Opposing
effects of glutathione depletion and follicle-stimulating hormone
on reactive oxygen species and apoptosis in cultured preovulatory
rat follicles. Endocrinology. 147:1224–1236. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Choy KW, Liu YM, Chu CY, Wang CC, Lui WT,
Lee LL, Pang MW, Rogers MS and Yip SK: High isoprostane level in
cardinal ligament-derived fibroblasts and urine sample of women
with uterine prolapse. BJOG. 115:1179–1183. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Brigelius-Flohé R and Maiorino M:
Glutathione peroxidases. Biochim Biophys Acta. 1830:3289–3303.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Akhtar MS, Lodhi LA, Ahmad I, Qureshi ZI
and Muhammad G: Serum trace mineral variations in Nili-Ravi
buffaloes suffering with prepartum vaginal prolapse in two
different agro-ecological zones of Punjab, Pakistan.
Theriogenology. 77:1328–1333. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kim JY, Kim EJ, Jeon MJ, Kim H, Moon YJ
and Bai SW: Association between the poly(ADP-ribose) polymerase-1
gene polymorphism and advanced pelvic organ prolapse. Menopause.
21:177–181. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Visco AG and Yuan L: Differential gene
expression in pubococcygeus muscle from patients with pelvic organ
prolapse. Am J Obstet Gynecol. 189:102–112. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Akhtar K, Broekelmann TJ, Miao M, Keeley
FW, Starcher BC, Pierce RA, Mecham RP and Adair-Kirk TL: Oxidative
and nitrosative modifications of tropoelastin prevent elastic fiber
assembly in vitro. J Biol Chem. 285:37396–37404. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fisher GJ, Wang ZQ, Datta SC, Varani J,
Kang S and Voorhees JJ: Pathophysiology of premature skin aging
induced by ultraviolet light. N Engl J Med. 337:1419–1429. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fisher GJ, Datta S, Wang Z, Li XY, Quan T,
Chung JH, Kang S and Voorhees JJ: c-Jun-dependent inhibition of
cutaneous procollagen transcription following ultraviolet
irradiation is reversed by all-trans retinoic acid. J Clin Invest.
106:663–670. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Siwik DA, Pagano PJ and Colucci WS:
Oxidative stress regulates collagen synthesis and matrix
metalloproteinase activity in cardiac fibroblasts. Am J Physiol
Cell Physiol. 280:C53–C60. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lang J, Zhu L, Sun Z and Chen J: Clinical
study on collagen and stress urinary incontinence. Clin Exp Obstet
Gynecol. 29:180–182. 2002.PubMed/NCBI
|
|
27
|
Liapis A, Bakas P, Pafiti A,
Frangos-Plemenos M, Arnoyannaki N and Creatsas G: Changes of
collagen type III in female patients with genuine stress
incontinence and pelvic floor prolapse. Eur J Obstet Gynecol Reprod
Biol. 97:76–79. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ewies AA, Al-Azzawi F and Thompson J:
Changes in extracellular matrix proteins in the cardinal ligaments
of post-menopausal women with or without prolapse: A computerized
immunohistomorphometric analysis. Hum Reprod. 18:2189–2195. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Goepel C, Johanna Kantelhardt E, Karbe I,
Stoerer S and Dittmer J: Changes of glycoprotein and collagen
immunolocalization in the uterine artery wall of postmenopausal
women with and without pelvic organ prolapse. Acta Histochem.
113:375–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Söderberg MW, Falconer C, Byström B,
Malmström A and Ekman G: Young women with genital prolapse have a
low collagen concentration. Acta Obstet Gynecol Scand.
83:1193–1198. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cooke MS, Evans MD, Dizdaroglu M and Lunec
J: Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB
J. 17:1195–1214. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lupachyk S, Shevalye H, Maksimchyk Y, Drel
VR and Obrosova IG: PARP inhibition alleviates diabetes-induced
systemic oxidative stress and neural tissue 4-hydroxynonenal adduct
accumulation: Correlation with peripheral nerve function. Free
Radic Biol Med. 50:1400–1409. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yoritaka A, Hattori N, Uchida K, Tanaka M,
Stadtman ER and Mizuno Y: Immunohistochemical detection of
4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl
Acad Sci USA. 93:pp. 2696–2701. 1996; View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Halliwell B: Why and how should we measure
oxidative DNA damage in nutritional studies? How far have we come?
Am J Clin Nutr. 72:1082–1087. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kasai H: Analysis of a form of oxidative
DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular
oxidative stress during carcinogenesis. Mutat Res. 387:147–163.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alary J, Guéraud F and Cravedi JP: Fate of
4-hydroxynonenal in vivo: Disposition and metabolic pathways. Mol
Aspects Med. 24:177–187. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dwivedi S, Sharma A, Patrick B, Sharma R
and Awasthi YC: Role of 4-hydroxynonenal and its metabolites in
signaling. Redox Rep. 12:4–10. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Oberley TD and Oberley LW: Antioxidant
enzyme levels in cancer. Histol Histopathol. 12:525–535.
1997.PubMed/NCBI
|
|
39
|
Wallace DC: Mitochondrial diseases in man
and mouse. Science. 283:1482–1488. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Arthur JR: The glutathione peroxidases.
Cell Mol Life Sci. 57:1825–1835. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
DeLancey JO: Anatomie aspects of vaginal
eversion after hysterectomy. Am J Obstet Gynecol. 166:1717–1728.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Martin CM and O'Leary JJ: Histology of
cervical intraepithelial neoplasia and the role of biomarkers. Best
Pract Res Clin Obstet Gynaecol. 25:605–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bump RC, Mattiasson A, Bø K, Brubaker LP,
DeLancey JO, Klarskov P, Shull BL and Smith AR: The standardization
of terminology of female pelvic organ prolapse and pelvic floor
dysfunction. Am J Obstet Gynecol. 175:10–17. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Santulli P, Borghese B, Lemaréchal H,
Leconte M, Millischer AE, Batteux F, Chapron C and Borderie D:
Increased serum oxidative stress markers in women with uterine
leiomyoma. PLoS One. 8:e720692013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Scutiero G, Iannone P, Bernardi G,
Bonaccorsi G, Spadaro S, Volta CA, Greco P and Nappi L: Oxidative
stress and endometriosis: A systematic review of the literature.
Oxid Med Cell Longev. 2017:72652382017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lugogo NL, Bappanad D and Kraft M:
Obesity, metabolic dysregulation and oxidative stress in asthma.
Biochim Biophys Acta. 1810:1120–1126. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dikalov SI and Ungvari Z: Role of
mitochondrial oxidative stress in hypertension. Am J Physiol Heart
Circ Physiol. 305:H1417–H1427. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Takacs P, Gualtieri M, Nassiri M,
Candiotti K and Medina CA: Vaginal smooth muscle cell apoptosis is
increased in women with pelvic organ prolapse. Int Urogynecol J
Pelvic Floor Dysfunct. 19:1559–1564. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Takacs P, Nassiri M, Gualtieri M,
Candiotti K and Medina CA: Uterosacral ligament smooth muscle cell
apoptosis is increased in women with uterine prolapse. Reprod Sci.
16:447–452. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim EJ, Chung N, Park SH, Lee KH, Kim SW,
Kim JY, Bai SW and Jeon MJ: Involvement of oxidative stress and
mitochondrial apoptosis in the pathogenesis of pelvic organ
prolapse. J Urol. 189:588–594. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li S, Tan HY, Wang N, Zhang ZJ, Lao L,
Wong CW and Feng Y: The role of oxidative stress and antioxidants
in liver diseases. Int J Mol Sci. 16:26087–26124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Perl A: Oxidative stress in the pathology
and treatment of systemic lupus erythematosus. Nat Rev Rheumatol.
9:674–686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lindblom R, Higgins G, Coughlan M and de
Haan JB: Targeting mitochondria and reactive oxygen Species-driven
pathogenesis in diabetic nephropathy. Rev Diabet Stud. 12:134–156.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nita M and Grzybowski A: The role of the
reactive oxygen species and oxidative stress in the pathomechanism
of the Age-related ocular diseases and other pathologies of the
anterior and posterior eye segments in adults. Oxid Med Cell
Longev. 2016:31647342016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Styskal J, Van Remmen H, Richardson A and
Salmon AB: Oxidative stress and diabetes: What can we learn about
insulin resistance from antioxidant mutant mouse models? Free Radic
Biol Med. 52:46–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Baas AS and Berk BC: Differential
activation of mitogen-activated protein kinases by H2O2 and O2- in
vascular smooth muscle cells. Circ Res. 77:29–36. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ushio-Fukai M, Alexander RW, Akers M and
Griendling KK: p38 Mitogen-activated protein kinase is a critical
component of the redox-sensitive signaling pathways activated by
angiotensin II. Role in vascular smooth muscle cell hypertrophy. J
Biol Chem. 273:15022–15029. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ushio-Fukai M, Alexander RW, Akers M, Yin
Q, Fujio Y, Walsh K and Griendling KK: Reactive oxygen species
mediate the activation of Akt/protein kinase B by angiotensin II in
vascular smooth muscle cells. J Biol Chem. 274:22699–22704. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sundaresan M, Yu ZX, Ferrans VJ, Irani K
and Finkel T: Requirement for generation of H2O2 for
platelet-derived growth factor signal transduction. Science.
270:296–299. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zafari AM, Ushio-Fukai M, Akers M, Yin Q,
Shah A, Harrison DG, Taylor WR and Griendling KK: Role of
NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular
hypertrophy. Hypertension. 32:488–495. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ushio-Fukai M, Zafari AM, Fukui T,
Ishizaka N and Griendling KK: p22phox is a critical component of
the superoxide-generating NADH/NADPH oxidase system and regulates
angiotensin II-induced hypertrophy in vascular smooth muscle cells.
J Biol Chem. 271:23317–23321. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ballinger SW, Patterson C, Yan CN, Doan R,
Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman
BA and Runge MS: Hydrogen peroxide- and peroxynitrite-induced
mitochondrial DNA damage and dysfunction in vascular endothelial
and smooth muscle cells. Circ Res. 86:960–966. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kiningham KK, Oberley TD, Lin S, Mattingly
CA and St Clair DK: Overexpression of manganese superoxide
dismutase protects against mitochondrial-initiated poly(ADP-ribose)
polymerase-mediated cell death. FASEB J. 13:1601–1610. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin MT and Beal MF: Mitochondrial
dysfunction and oxidative stress in neurodegenerative diseases.
Nature. 443:787–795. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Čáp M, Váchová L and Palková Z: Reactive
oxygen species in the signaling and adaptation of multicellular
microbial communities. Oxid Med Cell Longev. 2012:9767532012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Scherz-Shouval R and Elazar Z: Regulation
of autophagy by ROS: Physiology and pathology. Trends Biochem Sci.
36:30–38. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vernon PJ and Tang D: Eat-me: Autophagy,
phagocytosis, and reactive oxygen species signaling. Antioxid Redox
Signal. 18:677–691. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Owens MW, Milligan SA, Jourd'heuil D and
Grisham MB: Effects of reactive metabolites of oxygen and nitrogen
on gelatinase A activity. Am J Physiol. 273:L445–L450.
1997.PubMed/NCBI
|
|
70
|
Viappiani S, Nicolescu AC, Holt A, Sawicki
G, Crawford BD, León H, van Mulligen T and Schulz R: Activation and
modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and
glutathione. Biochem Pharmacol. 77:826–834. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kim NN, Villegas S, Summerour SR and
Villarreal FJ: Regulation of cardiac fibroblast extracellular
matrix production by bradykinin and nitric oxide. J Mol Cell
Cardiol. 31:457–466. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liang CC, Huang HY and Chang SD: Gene
expression and immunoreactivity of elastolytic enzymes in the
uterosacral ligaments from women with uterine prolapse. Reprod Sci.
19:354–359. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Donnini S, Monti M, Roncone R, Morbidelli
L, Rocchigiani M, Oliviero S, Casella L, Giachetti A, Schulz R and
Ziche M: Peroxynitrite inactivates human-tissue inhibitor of
metalloproteinase-4. FEBS Lett. 582:1135–1140. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mayne ST: Antioxidant nutrients and
chronic disease: Use of biomarkers of exposure and oxidative stress
status in epidemiologic research. J Nutr. 133 Suppl 3:933S–940S.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kulms D, Zeise E, Poeppelmann B and
Schwarz T: DNA damage, death receptor activation and reactive
oxygen species contribute to ultraviolet radiation-induced
apoptosis in an essential and independent way. Oncogene.
21:5844–5851. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kaneko T, Tahara S and Matsuo M:
Non-linear accumulation of 8-hydroxy-2′-deoxyguanosine, a marker of
oxidized DNA damage, during aging. Mutat Res. 316:277–285. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Awasthi YC, Sharma R, Sharma A, Yadav S,
Singhal SS, Chaudhary P and Awasthi S: Self-regulatory role of
4-hydroxynonenal in signaling for stress-induced programmed cell
death. Free Radic Biol Med. 45:111–118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cheng JZ, Singhal SS, Saini M, Singhal J,
Piper JT, Van Kuijk F, Zimniak P, Awasthi YC and Awasthi S: Effects
of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and
differentiation of K562 human erythroleukemia cells. Arch Biochem
Biophys. 372:29–36. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li J, Sharma R, Patrick B, Sharma A,
Jeyabal PV, Reddy PM, Saini MK, Dwivedi S, Dhanani S, Ansari NH, et
al: Regulation of CD95 (Fas) expression and Fas-mediated apoptotic
signaling in HLE B-3 cells by 4-hydroxynonenal. Biochemistry.
45:12253–12264. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sharma R, Brown D, Awasthi S, Yang Y,
Sharma A, Patrick B, Saini MK, Singh SP, Zimniak P, Singh SV and
Awasthi YC: Transfection with 4-hydroxynonenal-metabolizing
glutathione S-transferase isozymes leads to phenotypic
transformation and immortalization of adherent cells. Eur J
Biochem. 271:1690–1701. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sharma R, Sharma A, Dwivedi S, Zimniak P,
Awasthi S and Awasthi YC: 4-Hydroxynonenal self-limits fas-mediated
DISC-independent apoptosis by promoting export of Daxx from the
nucleus to the cytosol and its binding to Fas. Biochemistry.
47:143–156. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chaudhary P, Sharma R, Sharma A, Vatsyayan
R, Yadav S, Singhal SS, Rauniyar N, Prokai L, Awasthi S and Awasthi
YC: Mechanisms of 4-hydroxy-2-nonenal induced pro-and
anti-apoptotic signaling. Biochemistry. 49:6263–6275. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Forgione MA, Weiss N, Heydrick S, Cap A,
Klings ES, Bierl C, Eberhardt RT, Farber HW and Loscalzo J:
Cellular glutathione peroxidase deficiency and endothelial
dysfunction. Am J Physiol Heart Circ Physiol. 282:H1255–H1261.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Thu VT, Kim HK, Ha SH, Yoo JY, Park WS,
Kim N, Oh GT and Han J: Glutathione peroxidase 1 protects
mitochondria against hypoxia/reoxygenation damage in mouse hearts.
Pflugers Arch. 460:55–68. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jang YC, Pérez VI, Song W, Lustgarten MS,
Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, et al:
Overexpression of Mn superoxide dismutase does not increase life
span in mice. J Gerontol A Biol Sci Med Sci. 64:1114–1125. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Y, Zhang HM, Shi Y, Lustgarten M, Li
Y, Qi W, Zhang BX and Van Remmen H: Loss of manganese superoxide
dismutase leads to abnormal growth and signal transduction in mouse
embryonic fibroblasts. Free Radic Biol Med. 49:1255–1262. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kwak HB, Lee Y, Kim JH, Van Remmen H,
Richardson AG and Lawler JM: MnSOD overexpression reduces fibrosis
and Pro-apoptotic signaling in the aging mouse heart. J Gerontol A
Biol Sci Med Sci. 70:533–544. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Eldridge A, Fan M, Woloschak G, Grdina DJ,
Chromy BA and Li J: Manganese superoxide dismutase interacts with a
large scale of cellular and mitochondrial proteins in low-dose
radiation-induced adaptive radioprotection. Free Radic Biol Med.
53:1838–1847. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Smolik AC, Bengez-Pudja L, Cheng I and
Mascotti DP: Characterization of E. coli manganese superoxide
dismutase binding to RNA and DNA. Biochim Biophys Acta.
1844:2251–2256. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Holley AK, Dhar SK, Xu Y and St Clair DK:
Manganese superoxide dismutase: Beyond life and death. Amino Acids.
42:139–158. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Silva JP, Shabalina IG, Dufour E, Petrovic
N, Backlund EC, Hultenby K, Wibom R, Nedergaard J, Cannon B and
Larsson NG: SOD2 overexpression: Enhanced mitochondrial tolerance
but absence of effect on UCP activity. EMBO J. 24:4061–4070. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Motoori S, Majima HJ, Ebara M, Kato H,
Hirai F, Kakinuma S, Yamaguchi C, Ozawa T, Nagano T, Tsujii H and
Saisho H: Overexpression of mitochondrial manganese superoxide
dismutase protects against radiation-induced cell death in the
human hepatocellular carcinoma cell line HLE. Cancer Res.
61:5382–5388. 2001.PubMed/NCBI
|
|
93
|
Suzuki K, Murtuza B, Sammut IA, Latif N,
Jayakumar J, Smolenski RT, Kaneda Y, Sawa Y, Matsuda H and Yacoub
MH: Heat shock protein 72 enhances manganese superoxide dismutase
activity during myocardial ischemia-reperfusion injury, associated
with mitochondrial protection and apoptosis reduction. Circulation.
106 12 Suppl 1:I270–I276. 2002.PubMed/NCBI
|
|
94
|
Boreham MK, Wai CY, Miller RT, Schaffer JI
and Word RA: Morphometric properties of the posterior vaginal wall
in women with pelvic organ prolapse. Am J Obstet Gynecol.
187:1501–1509. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Boreham MK, Wai CY, Miller RT, Schaffer JI
and Word R: Morphometric analysis of smooth muscle in the anterior
vaginal wall of women with pelvic organ prolapse. Am J Obstet
Gynecol. 187:56–63. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Gabriel B, Denschlag D, Göbel H, Fittkow
C, Werner M, Gitsch G and Watermann D: Uterosacral ligament in
postmenopausal women with or without pelvic organ prolapse. Int
Urogynecol J Pelvic Floor Dysfunct. 16:475–479. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ozdegirmenci O, Karslioglu Y, Dede S,
Karadeniz S, Haberal A, Gunhan O and Celasun B: Smooth muscle
fraction of the round ligament in women with pelvic organ prolapse:
A computer-based morphometric analysis. Int Urogynecol J Pelvic
Floor Dysfunct. 16:39–43. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bermingham EN, Hesketh JE, Sinclair BR,
Koolaard JP and Roy NC: Selenium-enriched foods are more effective
at increasing glutathione peroxidase (GPx) activity compared with
selenomethionine: A meta-analysis. Nutrients. 6:4002–4031. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kwak HB, Song W and Lawler JM: Exercise
training attenuates age-induced elevation in Bax/Bcl-2 ratio,
apoptosis, and remodeling in the rat heart. FASEB J. 20:791–793.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kwak HB, Kim JH, Joshi K, Yeh A, Martinez
DA and Lawler JM: Exercise training reduces fibrosis and matrix
metalloproteinase dysregulation in the aging rat heart. FASEB J.
25:1106–1117. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lawler JM, Kwak HB, Kim JH and Suk MH:
Exercise training inducibility of MnSOD protein expression and
activity is retained while reducing prooxidant signaling in the
heart of senescent rats. Am J Physiol Regul Integr Comp Physiol.
296:R1496–R1502. 2009. View Article : Google Scholar : PubMed/NCBI
|