|
1
|
Khetan R, Hurley M, Spencer S and Bhatt
JM: Bronchopulmonary dysplasia within and beyond the neonatal unit.
Adv Neonatal Care. 16:17–25; quiz E1-E2. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Northway WH Jr, Rosan RC and Porter DY:
Pulmonary disease following respiratory therapy of hyaline membrane
disease. Bronchopulmonary dysplasia. N Engl J Med. 276:357–368.
1967. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bland RD: Neonatal Chronic Lung Disease in
the Post-Surfactant Era. Biol Neonate. 88:181–191. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jobe AH and Bancalari E: Bronchopulmonary
dysplasia. Am J Respir Crit Care Med. 163:1723–1729. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shahzad T, Radajewski S, Chao CM, Bellusci
S and Ehrhardt H: Pathogenesis of bronchopulmonary dysplasia: When
inflammation meets organ development. Mol Cell Pediatr. 3:232016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jobe AJ: The new BPD: An arrest of lung
development. Pediatr Res. 46:641–643. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rojas MA, Gonzalez A, Bancalari E, Claure
N, Poole C and Silva-Neto G: Changing trends in the epidemiology
and pathogenesis of neonatal chronic lung disease. J Pediatr.
126:605–610. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Charafeddine L, D'Angio CT and Phelps DL:
Aytypical chronic lung disease patterns in neonates. Pediatrics.
103:759–765. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Smith VC, Zupancic JA, McCormick MC, Croen
LA, Greene J, Escobar GJ and Richardson DK: Trends in severe
bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr.
146:469–473. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hussain AN, Siddiqui NH and Stocker JT:
Pathology of arrested acinar development in postsurfactant
bronchopulmonary dysplasia. Hum Pathol. 29:710–717. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Coalson JJ: Pathology of Bronchopulmonary
Dysplasia. Semin Perinatol. 30:1–184. 2006. View Article : Google Scholar
|
|
12
|
Zhang H, Fang J, Su H and Chen M: Risk
factors for bronehopulmonary dysplasiain neonates born at ≤1,500 g
(1999–2009). Pediatr Int. 53:915–920. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hansen AR, Barnés CM, Folkman J and Chen
M: Maternal preeclampsia predicts the development of
bronchopulmonary dysplasia. J Pediatr. 156:532–536. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jakkula M, Le Cras TD, Gebb S, Hirth KP,
Tuder RM, Voelkel NF and Abman SH: Inhibition of angiogenesis
decreases alveolarization in the developing rat lung. Am J Physiol
Lung Cell Mol Physiol. 279:L600–L607. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tang JR, Markham NE, Lin YJ, McMurtry IF,
Maxey A, Kinsella JP and Abman SH: Inhaled nitric oxide attenuates
pulmonary hypertension and improves lung growth in infant rats
after neonatal treatment with a VEGF receptor inhibitor. Am J
Physiol Lung Cell Mol Physiol. 287:L344–L351. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yen TA, Yang HI, Hsieh WS, Chou HC, Chen
CY, Tsou KI and Tsao PN; Taiwan Premature Infant Developmental
Collaborative Study Group, : Preeclampsia and the risk of
bronchopulmonary dysplasia in VLBW infants: A population based
study. PLoS One. 8:e751682013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
McEvoy CT, Jain L, Schmidt B, Abman S,
Bancalari E and Aschner JL: Bronchopulmonary dysplasia: NHLBI
workshop on the primary prevention of chronic lung diseases. Ann Am
Thorc Soc. 11 Suppl 3:S146–S153. 2014. View Article : Google Scholar
|
|
18
|
Karumanchi SA and Lindheimer MD: Advances
in the understanding of eclampsia. Curr Hypertens Rep. 10:305–312.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Levine RJ, Lam C, Qian C, Yu KF, Maynard
SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, et al:
Soluble endoglin and other circulating antiangiogenic factors in
preeclampsia. N Engl J Med. 355:992–1005. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Foidart JM, Schaaps JP, Chantraine F,
Munaut C and Lorquet S: Dysregulation of anti-angiogenic agents
(sFlt-1, PLGF, and sEndoglin) in preeclampsia-a step forward but
not the definitive answer. J Reprod Immunol. 82:106–111. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tsao PN, Wei SC, Su YN, Chou HC, Chen CY
and Hsieh WS: Excess soluble fms-like tyrosine kinase 1 and low
platelet counts in premature neonates of preeclamptic mothers.
Pediatrics. 116:468–472. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
De Paepe ME, Greco D and Mao Q:
Angiogenesis-related gene expression profiling in ventilated
preterm human lungs. Exp Lung Res. 36:399–410. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mailaparambil B, Krueger M, Heizmann U,
Schlegel K, Heinze J and Heinzmann A: Genetic and epidemiological
risk factors in the development of bronchopulmonary dysplasia. Dis
Markers. 29:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lashkari K, Hirose T, Yazdany J, McMeel
JW, Kazlauskas A and Rahimi N: Vascular endothelial growth factor
and hepatocyte growth factor levels are differentially elevated in
patients with advanced retinopathy of prematurity. Am J Pathol.
156:1337–1344. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bhatt AJ, Pryhuber GS, Huyck H, Watkins
RH, Metlay LA and Maniscalco WM: Disrupted pulmonary vasculature
and decreased vascular endothelial growth factor, Flt-1, and TIE-2
in human infants dying with bronchopulmonary dysplasia. Am J Respir
Crit Care Med. 164:1971–1980. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lassus P, Turanlahti M, Heikkilä P,
Andersson LC, Nupponen I, Sarnesto A and Andersson S: Pulmonary
vascular endothelial growth factor and Flt-1 in fetuses, in acute
and chronic lung disease, and persistent pulmonary hypertension of
the newborn. Am J Respir Crit Care Med. 164:1981–1987. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ambalavanan N, Carlo WA, D'Angio CT,
McDonald SA, Das A, Schendel D, Thorsen P and Higgins RD; Eunice
Kennedy Shriver National Institute of Child Health and Human
Development Neonatal Research Network, : Cytokines associated with
bronchopulmonary dysplasia or death in extremely low birth weight
infants. Pediatrics. 123:1132–1141. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Maniscalco WM, Watkins RH, D'Angio CT and
Ryan RM: Hyperoxic injury decreases alveolar epithelial cell
expression of vascular endothelial growth factor (VEGF) in neonatal
rabbit lung. Am J Respir Cell Mol Biol. 16:557–567. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Levy BD and Serhan CN: Resolution of acute
inflammation in the lung. Annu Rev Physiol. 76:467–492. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Le Cras TD, Markham NE, Tuder RM, Voelkel
NF and Abman SH: Treatment of newborn rats with a VEGF receptor
inhibitor causes pulmonary hypertension and abnormal lung
structure. Am J Physiol Lung Cell Mol Physiol. 283:L555–L562. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Speer CP: Inflammation and
bronchopulmonary dysplasia: A continuing story. Semin Fetal
Neonatal Med. 11:354–362. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Watterberg KL, Demers LM, Scott SM and
Murphy S: Chorioamnionitis and early lung inflammation in infants
in whom bronchopulmonary dysplasia develops. Pediatrics.
97:210–215. 1996.PubMed/NCBI
|
|
33
|
Kramer BW: Antenatal inflammation and lung
injury: Prenatal origin of neonatal disease. J Perinatol. 28 Suppl
1:S21–S27. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jonsson B, Rylander M and Faxelius G:
Ureaplasma urealyticum, erythromycin and respiratory morbidity in
high-risk preterm neonates. Acta Paediatrica. 87:1079–1084. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Døllner H, Vatten L, Halgunset J,
Rahimipoor S and Austgulen R: Histologic chorioamnionitis and
umbilical serum levels of pro-inflammatory cytokines and cytokine
inhibitors. BJOG. 109:534–539. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hartling L, Liang Y and Lacaze-Masmonteil
T: Chorioamnionitis as a risk factor for bronchopulmonary
dysplasia: A systematic review and meta-analysis. Arch Dis Child
Fetal Neonatal Ed. 97:F8–F17. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jobe AH: Blood cytokines and BPD. J
Pediatr. 154:A22009. View Article : Google Scholar
|
|
38
|
Paananen R, Husa AK, Vuolteenaho R, Herva
R, Kaukola T and Hallman M: Blood cytokines during the perinatal
period in very preterm infants: Relationship of inflammatory
response and bronchopulmonary dysplasia. J Pediatr. 154:39–43.e3.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Weaver M, Dunn NR and Hogan BL: Bmp4 and
Fgf10 play opposing roles during lung bud morphogenesis.
Development. 127:2695–2704. 2000.PubMed/NCBI
|
|
40
|
Rothwarf DM and Karin M: The NF-kappa B
activation pathway: A paradigm in information transfer from
membrane to nucleus. Sci STKE. 1999:RE11999.PubMed/NCBI
|
|
41
|
Benjamin JT, Carver BJ, Plosa EJ, Yamamoto
Y, Miller JD, Liu JH, van der Meer R, Blackwell TS and Prince LS:
NF-kappaB activation limits airway branching through inhibition of
Sp1-mediated fibroblast growth factor-10 expression. J Immunol.
185:4896–4903. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Goodman RB, Pugin J, Lee JS and Matthay
MA: Cytokine mediated inflammation in acute lung injury. Cytokine
Growth Factor Rev. 14:523–535. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Belperio JA, Keane MP, Lynch JP III and
Strieter RM: The role of cytokines during the pathogenesis of
ventilator-associated and ventilator-induced lung injury. Semin
Respir Crit Care Med. 27:350–364. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Strieter RM, Belperio JA and Keane MP:
Cytokines in innate host defense in the lung. J Clin Invest.
109:699–705. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kotecha S, Wilson L, Wangoo A, Silverman M
and Shaw RJ: Increase in interleukin (IL)-1 beta and IL-6 in
bronchoalveolar lavage fluid obtained from infants with chronic
lung disease of prematurity. Pediatr Res. 40:250–256. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Baier RJ, Majid A, Parupia H, Loggins J
and Kruger TE: CC chemokine concentrations increase in respiratory
distress syndrome and correlate with development of
bronchopulmonary dysplasia. Pediatr Pulmonol. 37:137–148. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Vento G, Capoluongo E, Matassa PG,
Concolino P, Vendettuoli V, Vaccarella C, Frezza S, Zuppi C,
Romagnoli C and Ameglio F: Serum levels of seven cytokines in
premature ventilated newborns: Correlations with old and new forms
of bronchopulmonary dysplasia. Intensive Care Med. 32:723–730.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Viscardi RM, Muhumuza CK, Rodriguez A,
Fairchild KD, Sun CC, Gross GW, Campbell AB, Wilson PD, Hester L
and Hasday JD: Inflammatory markers in intrauterine and fetal blood
and cerebrospinal fluid compartments are associated with adverse
pulmonary and neurologic outcomes in preterm infants. Pediatr Res.
55:1009–1017. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kotecha S, Wangoo A, Silverman M and Shaw
RJ: Increase in the concentration of transforming growth factor
beta-1 in bronchoalveolar lavage fluid before development of
chronic lung disease of prematurity. J Pediatr. 128:464–469. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gauldie J, Galt T, Bonniaud P, Robbins C,
Kelly M and Warburton D: Transfer of the active form of
transforming growth factor-beta1 gene to newborn rat lung induces
changes consistent with bronchopulmonary dysplasia. Am J Pathol.
163:2575–2584. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ichiba H, Saito M and Yamano T: Amniotic
fluid transforming growth factor-beta1 and the risk for the
development of neonatal bronchopulmonary dysplasia. Neonatology.
96:156–161. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Buczynski BW, Maduekwe ET and O'Reilly MA:
The role of hyperoxia in the pathogenesis of experimental BPD.
Semin Perinatol. 37:69–78. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bonikos DS, Benson KG and Northway WH Jr:
Oxygen toxicity in the newborn. The effect of chronic continuous
100 percent oxygen exposure on the lung of newborn mice. Am J
Pathol. 85:623–650. 1976.PubMed/NCBI
|
|
54
|
Crapo JD, Peters-Golden M, Marsh-Salin J
and Shelburne JS: Pathologic changes in the lungs of oxygen-adapted
rats: A morphometric analysis. Lab Invest. 39:640–653.
1978.PubMed/NCBI
|
|
55
|
Dasgupta C, Sakurai R, Wang Y, Guo P,
Ambalavanan N, Torday JS and Rehan VK: Hyperoxia-induced neonatal
rat lung injury involves activation of TGF-{beta} and Wnt signaling
and is protected by rosiglitazone. Am J Physiol Lung Cell Mol
Physiol. 296:L1031–L1041. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Warner BB, Stuart LA, Papes RA and Wispé
JR: Functional and pathological effects of prolonged hyperoxia in
neonatal mice. Am J Physiol. 275:L110–L117. 1998.PubMed/NCBI
|
|
57
|
Tullus K, Noack GW, Burman LG, Nilsson R,
Wretlind B and Brauner A: Elevated cytokine levels in
tracheobronchial aspirate fluids from ventilator treated neonates
with bronchopulmonary dysplasia. Eur J Pediatr. 155:112–116. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kraybill EN, Runyan DK, Bose CL and Khan
JH: Risk factors for chronic lung disease in infants with birth
weights of 751 to 1000 grams. J Pediatr. 115:115–120. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jobe AH, Hillman N, Polglase G, Kramer BW,
Kallapur S and Pillow J: Injury and inflammation from resuscitation
of the preterm infant. Neonatology. 94:190–196. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wheeler K, Klingenberg C, McCallion N,
Morley CJ and Davis PG: Volume-targeted versus pressure-limited
ventilation in the neonate. Cochrane Database Syst. Rev.
10:CD0036662010.
|
|
61
|
Björklund LJ, Ingimarsson J, Curstedt T,
John J, Robertson B, Werner O and Vilstrup CT: Manual ventilation
with a few large breaths at birth compromises the therapeutic
effect of subsequent surfactant replacement in immature lungs.
Pediatr Res. 42:348–355. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wheeler K, Klingenberg C, McCallion N,
Morley CJ and Davis PG: Volume-targeted versus pressure-limited
ventilation in the neonate. Cochrane Database Syst Rev.
10:CD0036662010.
|
|
63
|
Lista G, Colnaghi M, Castoldi F, Condò V,
Reali R, Compagnoni G and Mosca F: Impact of targeted-volume
ventilation on lung inflammatory response in preterm infants with
respiratory distress syndrome (RDS). Pediatr Pulmonol. 37:510–514.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Courtney SE, Durand DJ, Asselin JM, Hudak
ML, Aschner JL and Shoemaker CT; Neonatal Ventilation Study Group,
: High-frequency oscillatory ventilation versus conventional
mechanical ventilation for very-low-birth-weight infants. N Engl J
Med. 347:643–652. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Clyman RI: The role of patent ductus
arteriosus and its treatments in the development of
bronchopulmonary dysplasia. Semin Perinatol. 37:102–107. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bancalari E, Claure N and Gonzalez A:
Patent ductus arteriosus and respiratory outcome in premature
infants. Biol Neonate. 88:192–201. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Alpan G, Mauray F and Clyman RI: Effect of
petent ductus arteriosus on water accumulation and protein
permeability in the lungs of mechanically ventilated premature
lambs. Pediatr Res. 26:570–575. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chorne N, Leonard C, Piecuch R and Clyman
RI: Patent ductus arteriosus and its treatment as risk factors for
neonatal and neurodevelopmental morbidity. Pediatrics.
119:1165–1174. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Balasubramaniam V, Mervis CF, Maxey AM,
Markham NE and Abman SH: Hyperoxia reduces bone marrow,
circulating, and lung endothelial progenitor cells in the
developing lung: Implications for the pathogenesis of
bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol.
292:L1073–L1084. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
van Haaften T, Byrne R, Bonnet S,
Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J,
Haromy A, Eaton F, et al: Airway delivery of mesenchymal stem cells
prevents arrested alveolar growth in neonatal lung injury in rats.
Am J Respir Crit Care Med. 180:1131–1142. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Javed MJ, Mead LE, Prater D, Bessler WK,
Foster D, Case J, Goebel WS, Yoder MC, Haneline LS and Ingram DA:
Endothelial colony forming cells and mesenchymal stem cells are
enriched at different gestational ages in human umbilical cord
blood. Pediatr Res. 64:68–73. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
van Hinsbergh VW and Rabelink TJ: FGFR1
and the Bloodline of the vasculature. Arterioscler Thromb Vasc
Biol. 25:883–886. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Borghesi A, Massa M, Campanelli R, Bollani
L, Tzialla C, Figar TA, Ferrari G, Bonetti E, Chiesa G, de
Silvestri A, et al: Circulating endothelial progenitor cells in
preterm infants with bronchopulmonary dysplasia. Am J Respir Crit
Care Med. 180:540–546. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pavlovic J, Papagaroufalis C, Xanthou M,
Liu W, Fan R, Thomas NJ, Apostolidou I, Papathoma E, Megaloyianni
E, DiAngelo S and Floros J: Genetic variants of surfactant proteins
A, B, C and D in bronchopulmonary dysplasia. Dis Markers.
22:277–291. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Woodgate PG and Davies MW: Permissive
hypercapnia for the prevention of morbidity and mortality in
mechanically ventilated newborn infants. Cochrane Database Syst
Rev: CD002061. 2001. View Article : Google Scholar
|
|
76
|
Van Marter LJ, Allred EN, Pagano M,
Sanocka U, Parad R, Moore M, Susser M, Paneth N and Leviton A: Do
clinical markers of barotrauma and oxygen toxicity explain
interhospital variation in rates of chronic lung disease? The
Neonatology Committee for the Developmental Network. Pediatrics.
105:1194–1201. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Morley CJ, Davis PG, Doyle LW, Brion LP,
Hascoet JM and Carlin JB; COIN Trial Investigators, : Nasal CPAP or
intubation at birth for very preterm infants. N Engl J Med.
358:700–708. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
SUPPORT Study Group of the Eunice Kennedy
Shriver NICHD Neonatal Research Network, . Finer NN, Carlo WA,
Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A,
et al: Early CPAP versus surfactant in extremely preterm infants. N
Engl J Med. 362:1970–1979. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Darlow BA and Graham PJ: Vitamin A
supplementation for preventing morbidity and mortality in very low
birthweight infants. Cochrane Database Syst Rev: CD000501. 2002.
View Article : Google Scholar
|
|
80
|
Jefferies AL: Postnatal corticosteroids to
treat or prevent chronic lung disease in preterm infants. Paediatr
Child Health. 17:573–574. 2012.(In English, French). View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yoder MC Jr, Chua R and Tepper R: Effect
of dexamethasone on pulmonary inflammation and pulmonary function
of ventilator-dependent infants with bronchopulmonary dysplasia. Am
Rev Respir Dis. 143:1044–1048. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Halliday HL: Clinical trials of postnatal
corticosteroids: Inhaled and systemic. Biol Neonate. 76 Suppl
1:S29–S40. 1999. View Article : Google Scholar
|
|
83
|
Tschanz SA, Damke BM and Burri PH:
Influence of postnatally administered glucocorticoids on rat lung
growth. Biol Neonate. 68:229–245. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jobe AH: Postnatal corticosteroids for
preterm infants-do what we say, not what we do. N Engl J Med.
350:1349–1351. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Garland JS, Alex CP, Pauly TH, Whitehead
VL, Brand J, Winston JF, Samuels DP and McAuliffe TL: A three-day
course of dexamethasone therapy to prevent chronic lung disease in
ventilated neonates: A randomized trial. Pediatrics. 104:91–99.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Committee on Fetus and Newborn: Postnatal
corticosteroids to treat or prevent chronic lung disease in preterm
infants. Pediatrics. 109:330–338. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Doyle LW, Halliday HL, Ehrenkranz RA,
Davis PG and Sinclair JC: Impact of postnatal systemic
corticosteroids on mortality and cerebral palsy in preterm infants:
Effect modification by risk for chronic lung disease. Pediatrics.
115:655–661. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Onland W, Offringa M, De Jaegere AP and
van Kaam AH: Finding the optimal postnatal dexamethasone regimen
for preterm infants at risk of bronchopulmonary dysplasia: A
systematic review of placebo controlled trials. Pediatrics.
123:367–377. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Baud O, Maury L, Lebail F, Ramful D, El
Moussawi F, Nicaise C, Zupan-Simunek V, Coursol A, Beuchée A, Bolot
P, et al: Effect of early low-dose hydrocortisone on survival
without bronchopulmonary dysplasia in extremely preterm infants
(PREMILOC): A double-blind, placebo-controlled, multicentre,
randomised trial. Lancet. 387:1827–1836. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mercier JC, Hummler H, Durrmeyer X,
Sanchez-Luna M, Carnielli V, Field D, Greenough A, Van Overmeire B,
Jonsson B, Hallman M, et al: Inhaled nitric oxide for prevention of
bronchopulmonary dysplasia in premature babies (EUNO): A randomised
controlled trial. Lancet. 376:346–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Watterberg KL, Gerdes JS, Cole CH, Aucott
SW, Thilo EH, Mammel MC, Couser RJ, Garland JS, Rozycki HJ, Leach
CL, et al: Prophylaxis of early adrenal insufficiency to prevent
bronchopulmonary dysplasia: A multicenter trial. Pediatrics.
114:1649–1657. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rademaker KJ, Uiterwaal CS, Groenendaal F,
Venema MM, van Bel F, Beek FJ, van Haastert IC, Grobbee DE and de
Vries LS: Neonatal hydrocortisone treatment: neurodevelopmental
outcome and MRI at school age in preterm-born children. J Pediatr.
150:351–357. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lister P, Iles R, Shaw B and Cucharme F:
Inhaled steroids for neonatal chronic lung disease. Cochrane
Database Syst Rev. 4:CD0023112000.
|
|
94
|
Shah V, Ohlsson A, Halliday HL and Dunn M:
Early administration of inhaled corticosteroids for preventing
chronic lung disease in ventilated very low birth weight preterm
neonates. Cochrane Database Syst Rev. 16:CD0019692012.
|
|
95
|
Cole CH, Colton T, Shah BL, Abbasi S,
MacKinnon BL, Demissie S and Frantz ID III: Early inhaled
glucocorticoid therapy to prevent bronchopulmonary dysplasia. N
Engl J Med. 340:1005–1010. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lister P, Iles R, Shaw B and Ducharme F:
Inhaled steroids for neonatal chronic lung disease. Cochrane
Database Syst Rev: CD002311. 2000.
|
|
97
|
Cole FS, Alleyne C, Barks JD, Boyle RJ,
Carroll JL, Dokken D, Edwards WH, Georgieff M, Gregory K, Johnston
MV, et al: Inhaled nitric oxide therapy for premature infants. NIH
Consens State Sci Statements. 29:272010.
|
|
98
|
Poonyagariyagorn HK, Metzger S, Dikeman D,
Mercado AL, Malinina A, Calvi C, McGrath-Morrow S and Neptune ER:
Superoxide dismutase 3 dysregulation in a murine model of neonatal
lung injury. Am J Respir Cell Mol Biol. 51:380–390. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Davis JM, Rosenfeld WN, Sanders RJ and
Gonenne A: Prophylactic effects of recombinant human superoxide
dismutase in neonatal lung injury. J Appl Physiol. 74:2234–2241.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Davis JM, Parad RB, Michele T, Allred E,
Price A and Rosenfeld W; North American Recombinant Human CuZnSOD
Study Group, : Pulmonary outcome at 1 year corrected age in
premature infants treated at birth with recombinant CuZn superoxide
dismutase. Pediatrics. 111:469–476. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Vosdoganes P, Lim R, Moss TJM and Wallace
EM: Cell therapy: A novel treatment approach for bronchopulmonary
dysplasia. Pediatrics. 130:727–737. 2012. View Article : Google Scholar : PubMed/NCBI
|