|
1
|
Nanchen D, Leening MJ, Locatelli I, Cornuz
J, Kors JA, Heeringa J, Deckers JW, Hofman A, Franco OH, Stricker
BH, et al: Resting heart rate and the risk of heart failure in
healthy adults: The Rotterdam Study. Circ Heart Fail. 6:403–410.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cowie MR, Wood DA, Coats AJ, Thompson SG,
Suresh V, Poole-Wilson PA and Sutton GC: Survival of patients with
a new diagnosis of heart failure: A population based study. Heart.
83:505–510. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
van Bilsen M, Smeets PJ, Gilde AJ and van
der Vusse GJ: Metabolic remodelling of the failing heart: The
cardiac burn-out syndrome? Cardiovasc Res. 61:218–226. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu YF, Chu YY, Zhang XZ, Zhang M, Xie FG,
Zhou M, Wen HH and Shu AH: TGFβ1 protects myocardium from apoptosis
and oxidative damage after ischemia reperfusion. Eur Rev Med
Pharmacol Sci. 21:1551–1558. 2017.PubMed/NCBI
|
|
5
|
Lin J, Handschin C and Spiegelman BM:
Metabolic control through the PGC-1 family of transcription
coactivators. Cell Metab. 1:361–370. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Huss JM, Torra IP, Staels B, Giguère V and
Kelly DP: Estrogen-related receptor alpha directs peroxisome
proliferator-activated receptor alpha signaling in the
transcriptional control of energy metabolism in cardiac and
skeletal muscle. Mol Cell Biol. 24:9079–9091. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li X, Zhang S, Blander G, Tse JG, Krieger
M and Guarente L: SIRT1 deacetylates and positively regulates the
nuclear receptor LXR. Mol Cell. 28:91–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sundaresan NR, Gupta M, Kim G, Rajamohan
SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic
response by augmenting Foxo3a-dependent antioxidant defense
mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI
|
|
9
|
Kukreja RC, Salloum FN, Das A, Koka S,
Ockaili RA and Xi L: Emerging new uses of phosphodiesterase-5
inhibitors in cardiovascular diseases. Exp Clin Cardiol.
16:e30–e35. 2011.PubMed/NCBI
|
|
10
|
Das A, Xi L and Kukreja RC: Protein kinase
G-dependent cardioprotective mechanism of phosphodiesterase-5
inhibition involves phosphorylation of ERK and GSK3beta. J Biol
Chem. 283:29572–29585. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
De Toni L, Strapazzon G, Gianesello L,
Caretta N, Pilon C, Bruttocao A and Foresta C: Effects of type
5-phosphodiesterase inhibition on energy metabolism and
mitochondrial biogenesis in human adipose tissue ex vivo. J
Endocrinol Invest. 34:738–741. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ventura-Clapier R, Garnier A and Veksler
V: Transcriptional control of mitochondrial biogenesis: The central
role of PGC-1alpha. Cardiovasc Res. 79:208–217. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bellizzi D, Rose G, Cavalcante P, Covello
G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, et
al: A novel VNTR enhancer within the SIRT3 gene, a human homologue
of SIR2, is associated with survival at oldest ages. Genomics.
85:258–263. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lu Z, Xu X, Hu X, Lee S, Traverse JH, Zhu
G, Fassett J, Tao Y, Zhang P, dos Remedios C, et al: Oxidative
stress regulates left ventricular PDE5 expression in the failing
heart. Circulation. 121:1474–1483. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Das A, Durrant D, Salloum FN, Xi L and
Kukreja RC: PDE5 inhibitors as therapeutics for heart disease,
diabetes and cancer. Pharmacol Ther. 147:12–21. 2015. View Article : Google Scholar : PubMed/NCBI
|